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ABSTRACT

This paper presents a neural network based surface finish Prediction model in turning operation ,
Orthogona! cutting tests were performed on mild steel using H.S.S cutting tool with different
cutting parameters cutting speed , feed and nose radius of the cutting tool . The collected data was
used to train feed forward back propagation neural network. The developed model has been tested
to predict surface finish for various cutting conditions. The model was found to be powerful &
capable of accurate surface finish prediction for the range it had been trained but the accuracy
deteriorated as the cutting conditions were changed significantly.
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INTRODUCTION

Machining or metal removal processes such turning are widely used in Manufacturing. Productivity
and quality in the finish turning of hardened steels can be improved by optimum selection of the
cutting conditions, and because of the complicated relationships between the parameters of cutting
operation, the machining process is hard to be decomposed or described by classical differential
equations due to larger number of variables & their stochastic, nonlinear relations.

The effect of the cutting parameters on the surface roughness in a turning operation has been
investigated [M Hasegawa, 1976]. The mathematical prediction models for surface roughness have
been obtairzd for common mild steel.
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process control computers as well as data historians made it easy to develop neural network
solutions for process modeling and control. From medical to industrial application, neural networks
have been applied in countless number of situations. Lately, mainly due to the increasing pressure
from consumption markets a lot of research has been done under the field of fault detection,
diagnosis and quality control. The needs produce more and better, informed markets, has had to the
investigation of new methodologies in the quality control area [N. Costa, 1998 ] Neural computing ,
as one of such techniques , became an attractive approach in this area, since neural networks are
adaptable to an involving environment and are able to take a quick decision once they have learned
the proper control function . Artificial neural networks ( ANN ) because they are cost — effective .
easy to understand and because of their ability to learn from examples, have found many
applications in process modeling and control as intelligent sensors, to estimate variables that usually
can be measured on - line in dynamic system identification in fault defection diagnosis and finally .
in process control [ N.Costa,1998].

Tugral et.al. [Tugral Ozel,2002] Outlined a neural network based tool condition monitoring system,
(TCMS), for cutting tool state classification. Orthogonal cutting tests were performed on H13 steel
using PCBN inserts and on line cutting forces data was acquired with a piezoelectric force
dynamometer. Simultaneously flank wear data was measured using a tool maker's microscope and
along with the processed data were fed to aback propagation neural network to be trained. The
developed system then was tested to predict flank wear for various cutting condition. The system
was found to be capable of accurate tool wear prediction for the range it had been trained but the
accuracy deteriorated as the cutting condition were changed significantly.

R.G. Khunchustombham et.al [R.G. Khunchustombham,2001] showed that it can use a neural
network approach to on tina monitoring of a turning process emphisis is given to applying neural
networks to perform information processing and to recognize the process abnormalities in a
machining operation . A neural network monitor based on a feed forward back- propagation =
algorithm is developed. The monitor is trained by detect cutting force signal and measured surface

finish.

Ahmad Ghasempoor [Ahmed Ghasempoor,1997] described a methodology for on — line adjustment

of cutting conditions in a turning operation. The system presented consists of on — line wear
monitoring and optimal adjustment of cutting conditions. A practical optimization goal has been
defined. Simulation results the feasibility of the proposed method.

Sarah. et.al. [Sara 8.Y,] discussed the preliminary development of a neural network based process
monitor and off — line controller for abrasive flow machining of automotive engine intake
manifolds. The process is only observable indirectly, yet the time at which machining achieves the
specified air flow rate must be estimated accurately. A neural network model is used to estimate

when the process has achieved air flow specification so that machining can be terminated. This

model uses surrogate process parameters as inputs because of the inaccessibility of the product
parameter of interest, air flow rate through the manifold.

Neural networks have achieved in recent years a high degree of importance. The availability of . !
1

NEURAL NETWORK MODEL

In this study two neural network models are used. The first model is the back propagation training
neural network (BPTNN) and the second one is the back propagation prediction neural network
(BPPNN)

Neural Network Layers
The network always consists of at lest three layers of processing elements Fig (1). This model has
three layers of processing elements: a) The input layer b) The middle layer ¢) the output layer
(as shown in Fig. (2))
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Fig. (2) NETWORK ARCHITCTURE

The input variable is cutting velocity, feed, and nose radius the depth of cut was 0.25 mm. Each
input variable is assigned to a single input layer-processing element. The output value at the output
layer processing elements is represented as O the surface roughness

The input variable values are carried over to the output of the input layer without any processing.

The output values of the input layer processing units are represented by I, (where =1, 2, 3...) the
number of middle layer processing elements is determined by trial and error after testing the model
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for 2to 8 processing element at the hidden layer. The output values of the middle layer-processing
element are represented by Mj (where j=1,2.3...8). The output layer, which consists of a single
processing element, surface roughness

Training Patterns

The training patterns include three input variable and the measured surface roughness value. In this
study, 32 different training sets for cutting experiments were used as training patterns as shown in
Table (1).

Interconnection Weights

All of the processing elements at input layer are connected to each of the middle layer processing
elements  via interconnections, which are weighted  and  represented by Wi
(where j=1, 2,8 and I=1, 2,3 ...).

The output-and the middle layer elements also connected similarly and the interconnection weights
are represented by Wy (where K=1, ... andj=1, 2, 8...)

The interconnections weights are unknown to the process. A random number generator is initially
used in assigning weights to the inter- layer connections. These weights are  trained, using the
BPTNN model; to match the input patters to the output surface roughness.

Back Propagation Training Neural Network-Forward Passes

Every input layer-processing element, 1, is multiplied by the corresponding weight on the inter-
layer connections of a middle layer processing element. All the products of I, and W;; are then
summed and form the input to a middle layer-processing clement. A sigmoid activation function as
given with eq (1 ) is applied to the input value of the middle layer processing element to get a scaled
output at the output of the middle layer processing element M,

tanh (L) (1)
f(L)=

Where L is given as:
L=X Wij 1 (2)

The same procedure is followed for all middle layer-processing elements. Following through the
network these output values from the middie layer are treated as input values to the output layer.
The sum of the product of the entire middle layer output values (M)) and the inter — layer
connection weights (wy;) to an output layer processing element form the input value to that output
layer processing element. The linear activation function is applied to the output node O is
computed the output O is then compared to the experimentally measured output surface roughness
and the difference in the measured and computed outputs is calculated. This difference in the output
forms the error E at the output layer. This procedure constites the forward flow of the back
propagation model.

Back Propagation Training Neural Network — Backward Pass
The error computed is back propagated through the same network by changing the weights of the
interconnections on the output to middle layer processing elements and also the middle to input
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layer processing elements the error at each output layer processing element is passed backwards
through the derivative of the sigmoid activation function and is computed as:

E, - df (L) g ~

dL

Where E is the computed error at the output layer and Ej is the error at the input of the output layer-
processing element.

The derivative presents a bell- shaped curve when plotted against the input with relatively large
values in the midrange of inputs and small values at either end. The derivative thus contributes to
the stability of the network; since it assures that as the outputs approach 0 or 1 only very small
changes can occur and the error E; will be proportionate to the original error propagate by the input
values of the middle layer processing elements. A rule known as" Delta rule" is applied to
determine how to change the weights |[T.Munkata, 1998]. By applied Delta rule to determine the
error value the change is determined as:

BE. L

(W kj) new — (W k.i) old = (4)

Where difference for the weights is the delta vector, B is a scalar value of the learning constant. E
is a scalar value of the error at the output layer processing element, and L is the input vector to the
output layer processing element.

A momentum term, which results in faster convergence to the ideal weight vector, is used. The term
applies a momentum factor to the difference between the latest known and the previously known
weights. The momentum term is ca}lcu]atcd as follows:

M=a (AW,) (5)

Where M is the momentum term. a is the momentum factor, and AW, is the difference in the latest
known weight and the previously known weight. The values of B, the learning constant and the a.
the momentum factor M are optimized between the range of 0.1 and 0.9 by trial and error. The new
interconnection weights on the output — middle layer are calculated by adding the delta vector and
the momentum term to the old weights.

The middle — input layer interconnection weights also share a part of the error and the error is
calculated as follows:

df (L)
E = [ Wy E (6)

dL
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Where E; is the error of the middle layer processing element, [y Wy E ] is the summation of the
product of the weights of each middle to all output layer processing clements and the error at all
output layer processing

df (L)
elements Ej s is the derivative of the activation function of the

dL

middle — layer processing element for the net input it received.

The error E; computed is now used to change the weights on the interconnection of the
middle ~ input layer. Delta rule and the momentum term are calculated for every middle layer
processing element the summed inputs to the middle layer processing element, error E; and the
original and previous weights, form the inputs error Ej, to the Delta rule and the momentum term.
The remaining input patterns are then presented to the BPTNN sequentially and following the above
procedure, The inter — connection weights on the middle — input layer are constantly changed
[T.Munkata,1998].

A mean square error (MSE) is calculated based on the error between the computed and desired
output at the output layer processing elements. The mean square errors for all the output layer
processing elements and for all patterns presented to the BPTNN are added to get the total error
through one passes. The patterns are presented to the BPTNN and the weights are constantly
changed until the MSE reaches a iixed value of 0.1. The program is terminated after 307 iterations
in case it does not reach the fixed MSE value. Trained weights corresponding to this error are then
stored. Which are used in the BPPNN model.

Collection Training Data

In order to train the ( BPTNN) , training sets have been measured experimentally by Bahaa et .al
[Bahaa. 1. K.,2002], and given in Table (1) The training set consists of three inputs to the input
layer cutting speed in m/min , feed in mm/rev and nose radius in (mm) . The depth of cut was kept
constant (0.25 mm). The surface roughness corresponding to the cutting condition has been
measured.

The discussion here and the tables produced show that for a typical cut for the purpose of
generating the training samples consists of the following. The work piece is turned using specified
cutting conditions. Surface roughness component is observed using two different methods, [Bahaa.
[. K., 2002].

Normalization And Scaling Of Inputs

The input patterns are presented to the BPTNN as a normalized array and are scaled in a range of -1
to 1. The original values are normalized for efficient processing by the net work. The normalization
is carried out using a linear mapping given as

X N max ~ X?\' min
X= (X r— X min) +X N min > (7)
X max ~ X min

Where X is the normalized variable. X , is the real value of the variable before normalization. X
Nmax and X' ymin are maximum and minimum values of the variable after normalization.

42




Number 1 Volume 10 March 2004 Journal of Engineering

Back Propagation Prediction Neural Network Model (BPPNN)

BPPNN architecture is the same as the BPTNN; with exactly the same number of input, middle and
output layer processing elements. The trained set of weights is assigned to the interconnections of
the middle — input and the output — middle — layers. New testing input patterns other then that used
for training the BPTNN. Without the surface roughness, are presented to the BPPNN model. The
BPPNN model works exactly like the forward pass of the BPTNN model.

All of the input variables are normalized in the same range that was used for the BPTNN model.
The input to the middle layer processing elements is the weighted sum of the values from the input
layer processing elements .The weights on the interconnections are obtained from the recorded
weights at MSE = 5.73« 10%°for the BPTNN model . The same sigmoid function as in the BPTNN
model giveas as output at the middle layer processing elements. These outputs and the weight on
the interconnection of the output middle layer processing elements. This input when passed through
the linear function gives an output at the output layer processing elements. The calculated output
value is the predicted surface roughness value for the new testing set or unknown condition.

RESULTS AND DISCUSSION

It has been know that the surface finish is related to the cutting parameters such as the feed, depth of
cut, spindle speed and cutting tool nose radius selected during machining. For the purpose of
predicting a surface finish through the cutting parameters a mapping function between the detected
surface finish values and the other cutting parameters must be valid. In this work only three cutting
parameter feed, spindle speed and nose radius of the cutting tool have been considered in the
analysis These parameters have a major effect on the surface roughness especially when using
H.S.S cutting tool to machined low carbon steel ( 0.2 % carbon ).

To perform this information processing from the measured surface finish values , multilayer feed
forward neural network is implemented as a prediction model .

The main characteristics of the predictor was chosen from several testing models of neural network
are (1) layered architectures (2) strictly feed -forward connection between neurons and (3) no lateral
or back connections.

In the performed model the three nodes in the input layer represent feed, cutting speed and nose
radius, in hidden layer different number of hidden nodes was tested as shown in Table (2.) Eight
nodes where chosen to be used in hidden layer to minimize the performance function

The trained network is used to predict the surface roughness during the orthogonal cutting of
hardened steel work pieces.

Fig (3) shows the training graph of the developed network with eight hidden nodes.

Fig (4-a) and (4-b) show reasonable agreement between the predicted and measured surface
roughness. figures (5) and (6) show similar results.

Surface roughness is also predicted for the cutting conditions other than the patterns for which the
neural network algorithm is trained, fairly large error was observed at those predictions.

In conclusion, predicted surface roughness was found significantly sensitive of the measured cutting
conditions. The major advantage of neural network predictions is that the algorithms can estimate
Surface rouighness progress quite accurately once cutting conditions are known.
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Table (1). Training data
Measured surface Roughness for different cutting conditions and depth of cut 0.25 mm
[ Bahaa.l. K.,2002 ]

Speed- | Nose radius e Surface finish
| Bt T Ao mm/ rev gl
| 7.35 0.25 0.1 38
‘ 7.35 0.25 0.2 69.5
| 7.35 0.25 0.3 66.5
? 7.35 0.25 0.6 16.4
; 7.35 0.5 0.1 35.3
| 7.35 0.5 0.2 33.2
| 7.35 0.5 0.3 48.7

7.35 0.5 0.6 66.8

28.27 0.25 0.1 40.65

28.27 0.25 0.2 72.2

28.27 0.25 0.3 54.9

28.27 0.25 0.6 19.3

28.27 0.5 0.1 40

28.27 0.5 0.2 36

28.27 0.5 0.3 56.3

28.27 0.5 0.6 57

65.97 0.25 0.1 15.09

65.97 0.25 0.2 47.5

65.97 0.25 0.3 30.5

65.97 0.25 0.6 19

65.97 0.5 0.1 14.2

65.97 0.5 0.2 18

65.97 0.5 0.3 18.3

65.97 0.5 0.6 38.2

0.1 24.2
0.2 24.2
0.3 27.12
0.6 8.87
0.1 19.3
0.2 10.5
0.3 15.2
0.6 28.3




A NEURAL NETWORK PREDICTION MODEL FOR 1
SURFACE FINISH IN TURNING PROCESS '

Table (2) network performance for different architecture

No. Of hidden nods

Correlation
coefficient

Error (sse)

0.0522532 0.9195

0.0190485 0.9714

0.0139469 0.9792

0.0181098 0.973

0.00981311 0.985

0.00115506 0.998

5.72%10°%° 1

Performance is 5.7249e-020, Goal is 1e-012

10

107 F

1 T T T

Training-Blue Goal-Black
o

Stop-Training i

Il | 1 L
50 100 150 200 250 200
307 Epochs

i
|
i
Fig. (3) Network Training Graph
|
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Actual output and neural network response
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