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ABSTRACT
This paper presents a neural network based surface finish Prediction model in turning operation .

Orthogonal cutting tests were performed on mild steel using H.S.S cutting tool with different

cutting parameters cutting speed , feed and nose radius of the cutting tool . The collected data was

used to train feed forward back propagation neural network. The developed model has been tested

to preclict surface finish for various cutting conditions. The model was found to be powerful &
capable of accurate surface finish prediction for the range it had been trained but the accuracy

deteriorated as the cutting conditions were changed significantly'
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INTRODUCTION
Machining or metal removal processes such turning are widely used in Manufacturing. Productivity

and quality in the finish tumlng of hardened steels can be improved by optimum selection of the

cutting conditions, ancl because of the complicated relationships between the parameters of cutting

oprrutiorr, the machining process is hard to be decotnposed or described by classical differential

equations due to larger number of variables & their stochastic, nonlinear relations.

The effect of the cutting parameters on the surface roughness in a turning operation has been

investigated [M Hasegawa, 1976]. The mathematical prediction models for surface roughness have

been obtairred for common mild steel.
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Neural networks have achieved in recent years a high degree of importance. The availability of
process control computers as well as data historians made it easy to develop neural network
solutions fbr process modeling and control. From medical to industrial application, neural netwgrks
have been applied in countless number of situations. Lately, mainly due to the increasing pressure
from consumption markets a lot of research has been done under the field of fault ditection,
diagnosis and quality control. The needs produce more and better, informed markets, has had to the
investigation of new rnethodologies in the quality control area [N. Costa, l99S ] Neural computing ,
as one of such techniques , became an attractive approach in this area, since neural networks aie
adaptable to an involving environment and are able to take a quick decision once they have learned
the proper control function . Artificial neural networks ( AI.IN ) because they are cost - effective ,
easy to understand and because of their ability to learn from examples, have found many
applications in process modeling and control as intelligent sensors, to estimate variables that usually
can be measured on - line in dynamic system identification in fault clelection diagnosis ancl finally .

in process control I N.Costa, I 998].
Tugral et.al, [Tugral Ozel,2002] Outlined a neural network based to<ll condition rnonitoring system,
(TCMS), for cutting tool state classification. Orthogonal cutting tests were perfbrmed on H13 steel
using PCBN inserts and on line cutting forces data was acquired with a piezoelectric force
dynamometer. Simultaneously flank wear data was measured using a tool maker's microscope and
along with the processed data were fed to aback propagation neural network to be trained. T'he
developed system then was tested to predict flank wear for various cutting condition. The system
was found to be capable of accurate tool wear prediction for the range it had been trained but t6e
accuracy dcteriorated as the cutting condition were changed significantly.
R.G. Khunchustombham et.al [R.G. Iftunchustombham,20Ol] showed that it can use a neural
network approach to on tina monitoring of a turning process emphisis is given to applying neural
networks to perform information processing and to recognize the process abnormalities in a
machining operation A neural network monitor based on a feed forward back- propagation
algorithm is developed. The monitor is trained by detect cutting force signal and measured surface
finish.
Ahmad Ghasempoor [Ahmed Ghasernpoor,lgg7] described a methodology for on - line adjustment
of cutting conditions in a turning operation. The system presented consists of on - line wear
monitoring and optimal adjustment of cutting conditions. A practical optimization goal has been
defined. Simulation results the feasibility of the proposed method.
Sarah. et.al. [Sara S.Y,] discussed the preliminary development of a neural network based process
monitor and off - line controller for abrasive flow machining of automotive engine intake
manifolds. The process is only observable indirectly, yet the time at which machining achieves the
specified air flow rate must be estimated accurately. A neural network model is used to estimate
when the process has achieved air flow specification so that machining can be terminated. This
model uses sulrogate process parameters as inputs because of the inaccessibility of the product
parameter of interest, air flow rate through the manifold.

NEURAL NETWORK MODEL
In this study two neural network models are used. The first model is the back propagation training
neural network (BPTNN) and the second one is the back propagation prediction neural network
(BPPNN)

Neural Network Lavers
The network always consists of at lest three layers of processing elements Fig (1). This model has
three layers of processing elements: a) The input layer b) The middle layer c) the output Iayer
(as shown in fig. (2))
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Fig. ( 1) Illustration of
a processing element

Fie. (2) NETWORK ARCHITCTURE

The input variable is cutting velocity, feed, an<l nose radius the depth of cut rvas 0.25 mm. Each

input variable is assigned to a single input layer-processing element. The output value at the outpurt

layer processing elements is represented as O the surface roughness

The input variable values are carried over to the output of the input layer without any processing.

The output values of the input layer processing units are represented by I. (where I=1 ,2,3...) the

number of middle layer protessing elements is determined by trial and error after testing the model
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for 2to 8 processing element at the hidden lay_er. The output values of the middle layer-processing
element are represented by IVIj (where j:1,2,3...8). The output layer, which consists of a single
processing element, surface roughness

Trainins Patterns
The training patterns include tfuee input variable and the measured surface roughness value. In this
study, 32 different training sets for cutting experiments were used as training pattems as shown in
Table ( t ).

Interconnection Weights
AII of the processing elements at input layer are connected to each of the middle layer processing
elements via interconnections, which are weighted and represented by Wii
(where j:l ,2,8 andl:1,2,3 ...).
The output'and the middle layer elements also connected similarly and the interconnection weights
are represented by Wpi (where K = l, .., and j: l,2, 8...)
The interconnections weights are unknown to the process. A random number generator is initially
used in assigning weights to the inter- Iayer connections. These weights are train"o, urirg th.
BPTNN model; to match the input patters to the output surface roughne-ss.

,sses
Every input layer-processing element, I, is multiplied by the corresponding weight on the inter-
layer connections of a middle layer processing element. All the produ.t, if t, ana \i are then
summed and fbrm the input to a middle layer-processing element. A sigmoid activation f-unction as
given with eq (1 ) is applied to the input value of the middle layer proceising element to get a scaled
output at the output of the middle layer processing element M;

(1)

Where L is given as:

L=EW;iI (2)

The same procedure is followed for all .Tigdl" layer-processing elements. Following through rhe
network these output values from the middle layer are treated as input values to thJoutput-layer.
The sum of the product of the entire middle layer output valuei (Ir4) and the inter - ruy".
connection weights (w1.;) to an output layer processing element form the input value to that output
layer processing element. The linear activation function is applied to ihe output node Os is
computed the output Op is then compared to the experimentally miasured output surface roughness
and the difference in the measured end computed outputs is caiculated. This difference in theiutput
forms the error E at the output layer. This procedure constites the forward flow of the back
propagation model.

ass
The error computed is back propagated through the same ,et**k by changing the weights of the
interconnections on the output to middle layer processing elements and al-so 

-the 
middie to input
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layer processing elements the error at each output layer processing element is passed backwards

through the derivative of the sigmoih activation tunction and is computed as:

(3)

Where E is the computed error at the output layer and Er is the error at the input of the output layer-

processing element.
The derivative presents a bell- shaped curve when plotted against the input with relatively large

values in the midrange of inputs and small values at either end. The derivative thus contributes to
the stability of the network; since it assures that as the outputs approach 0 or I only very small

changes can occur and the error Er will be proportionate to the original elror propagate by the input
values of the middle layer processing elements. A rule known as" Delta rule" is applied to
determine how to change the weigirts [T.Munkata, 1998]. By applied Delta rule to determine the

error value.the change is determined as:

(4)

Where difference for the weights is the delta vector, B is a scalar value of the learning constant. E1

is a scalar value of the error at the output layer processing element, and L is the input vector to the

output layer processing element.
A momentum term, which results in faster convergence to the ideal weight vector, is used. The term
applies a momentum factor to the difference between the latest known and the previously known
weights. The momentum term is calculated as follows:

M= c (a'w r.i ) 
(5)

Where M is the momentum term. o is the momentum factor, and AWpi is the difference in the latest

known weight and the previously known weight. The values of B, the learning constant and the o.
the momentum factor M are optimized between the range of 0.1 and 0.9 by trial and error. The new'

interconnection weights on the output - middle layer are calculated by adding the delta vector and

the momentum term to the old weights.
The middle - input layer interconnection weights also share a part of the error and the error is

calculated as follows:

(6)
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Where Ei is the erot of the middle layer processing element, [f 1yu; E p] is the summation of theproduct of the weights of each middle to all output luy". processing elements and the error at alloutput layer processing

d/ (L)
elements Er is the derivative of the activation function of the

middle - layer processing element fbr the net input it received.
The error El computed is now used to chinge the weights on the interconnection of themiddle - input layer. Delta rule and the momenlum term are calculated for every middle layerprocessing element the summed inputs to the middle layer processing element, error E1 and theoriginal and previous weights, form the inputs error E1, to ih. oelta ruleLd the momentum term.
The remaining input pattems are then presented to the BPTNN sequentially and following the aboveprocedure, The inter - connection weights on the micldle * input layer are constantly changed
[T.Munkata,l998].
A mean square error (MSE) is calculated based on the error between the computed and desiredoutput at the output layer processing elements. The mean square errors for ali the output layerprocessing elements and for all patterns presented to the BPTNN are added to get the total error
through one passes. The patterns are presented to the BPTNN and the weights are constantly
changed until the MSE reaches a lixed value of 0.1. The program is terminated after 307 iterations
in case it dces tr.ot reach the fixed MSE value. Trained *iigt tr corresponding to this error are then
stored. Which are used in the BppNN model.

Collection Trainins Data
ln order to train the ( BPTNN) , training sets have been measured experimentally by Bahaa et .al
[Bahaa' I' K.,2002], and given in Table (1) The training set consisti of three inpuis to the input
layer cutting speed in m/min , feed in mm/rev and nose ruldiur in (mm) . rne deptrr of cut *u, r.!p,constant (0.25 mm). The surface roughness corresponding to the cutting condition has been
measured.
The discussion here and the tables produced show that for a typical cut for the purpose ofgenerating the training samples consists of the following. The work'piece is turned using specified
cutting conditions. Surface roughness component is obsirved using two different methods, [Bahaa.L K.,20021.

Normalization And Scaline Of Innuts
The input pattems are presented to the BPTNN as a normalized arcay ancl are scaled in a range of - lto 1' The oiiginal values are normalizecl for efficient processing by the net work. The norma lizationis carried out using a linear mapping given as

X r max - XN ,i,,

X - (X .- X nrin) +XNmin

Xr.*-Xrin

Where X is the normalized variable. X , is the real value of the variable before normalization. X
11p6x zllld X Nri, are maximum and minimum values of the variable after normalization.

dL

, (7)

I
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Back Propagation Prcdiction Neural Network Model (BPPNN)
exactly the same number of input, middle and

output layer processing elements. The trained set of weights is assigned to the interconnections of
the middie -input und th" output - rniddle - layers. New testing input patterns other then that used

for training the gpTNN. Without the surface roughness, are presented to the BPPNN model. The

BPPNN model works exactly like the forward pass of the BP'|NN model.

All of the input variables aie normalized in the same rallge that was used tbr the BPTNN inodel'

The input to the middle layer processing elements is the weighted sum of the values from the input

layer processing elements .The weights on the interconnections are obtairred from the recorded

weighis at MSE : 5.73* 10-20for ttre BPTNN model . The same sigmoid function as in the BPTNN

model give.:rs as output at the middle layer processing elements. These outputs and the weight on

the interconnection of tfre output middle layer processing elements. This input when passed through

the linear function gives an output at the output layer processing elements. The calculated output

value is the predicted surface roughness value for the new testing set or unknown condition.

RESULTS ANp,pISCUSSION-
nishisre1atedtothecuttingparameterssuchasthefeed,depthof

cut, spindle speed and cutting tool nose radius selected during machining. For the purpose of
prediciing a surface finish through the cutting parameters a mapping function between the detected

iurface finish values and the other cutting parameters must be valid. In this u'ork only three cutting

parameter feed, spindle speed and nose radius of the cutting tool have been considered in the

inalysis These parameters have a major effect on the surface roughness especially when using

H.S.S cutting tool to machined low carbon steel ( 0.2% carbon )'
To perform ihis infonnation processing from the measured surface finish values , multilayer feed

forward neural network is implemented as a prediction model .

The main c.haracteristics of the predictor was chosen from several testing models of neural network

are (1) layered architectures (2) strictly feed -forward connection between neurons and (3) no lateral

or back connections.

In the performed model the three nodes in the input layer represent feed, cutting speed and nose

radius, in hidden layer ditTerent number of hidclen nodes was tested as shorvn in Table (2.) Eight

nodes where chosen to be used in hidden layer to minimize the performance function

The trained network is used to predict the surface roughness during the orthogonal cutting of
hardened steel work pieces.
Fig (3) shows the training graph of the developed network'*'ith eight hidden nodes'

Fig (4-a) and (a-b) show reasonable agreement between the predicted and measured surface

roughness. figures (5) and (6) show similar results.

Surface roughness is also predicted for the cutting conditions other than the patterns for which the

neural network algorithrn is trained, fairly large error was observed at those predictions.

In conclusion, predicted surface roughness was found significantly sensitive of the measured cutting

conditions. The major advantage of neural network predictions is that the algorittrms can estimate

Surface rotighness progress quite accurately once cutting conditions are known'

REFERENCES
Ahmad Ghasempoor (1997), Automatic Adjustment of cutting conditions in turning, univ. Of
polytechnic Department Of Mach; Aero space and Industrial Eng.

Bahaa. Ibraheem. K and Nabeil .k .AL - Sahib (20A2), Surface Finish Characteristics in turning
processes, J. of science and Eng. AL - Anbar univ. lraq , Vol2 NO . 2'

43



B. I. Kazem A NETJRA[, NETWORK PREDICTION MODEL FOR
SURFACE FINISH IN T'URNING PROCESS

M. Hasegawa A. Seirey and R.A.Lindberg (1976), surface roughness model for turning, Tribology
Int., December, p285 -289 .

N. Costa. B. Ribeiro (1998), A neural Prediction Model for monitoring and Fault Diagnosis of a
plastic Injection Molding Process, CISUC - Department of Eng. Informatics, combral portugal,
r 998.

N' Costa, A Tuna, B. Ribeiro, Monitoring an Industrial plastic Injection Moulding Machine using
Neural networks, CISUC - Department of Eng, Informatics, combia, portugal,

R.G. Khunchustombham and G.M. Zhang (2001), A neural Approach to on- line Monitoring of a
turning process, The mechanical Research Report . Univ of Maryland , system Research center.

Sarah. S.Y, Alice E smith (1996), Process Monitoring of Abrasive Flow Machining using A neural
Network predictive model, university of pittsburgh, dept of Industrial Eng.

Tugral Ozel; Abhrjit Nodgir (2002), Prediction of Flank Wear by using back propagation neural
network modeling when cutting hardened H-13 steel with chamfered and honeO bgNI Ilol, Int.J .Of
Maclrine tools and m4pufacture,42,287- 297.

T' Munakata. (1998), Fundamentals Of The New Artificial Intelligence. Beyond Tradition a
paradigs, Springer - Verlag New York Inc..

14



@ Number 1 Volume 10 March 2001 Journal of Engineering

Table (1)' Training data

Measured surface Roughness for different cutting cortditions and depth of cut 0'25 mm

I Bahaa. I.K.,2002]

Nose radius
mm

Feed

mml rev

Surface finish
pm

7.35 0.:15 0.1 38

7.35 0.:15 a.2 69.5

7.35 0.:25 0.3 66.5

7.35 0.:25 0.6 16.4

7.35 0,5 0.1 35.3

7.35 0,5 0,2 33.2

7.35 0.5 0.3 48.7

7.35 0.5 0.6 66.8

28,27 0.25 0.1 .{0.65

28.27 0.25 0.2 72,2

28.27 0.25 0.3 54.9

28.27 0.25 0.6 19.3

28.27 0.5 0.1 40

28.27 0.5 0,2 36

28,27 0.5 0.3 56.3

28.27 0'.5 0.6 57

65.97 0,,25 0.1 15.09

65.97 0,,25 0,2 47,5

65.97 0,25 0.3 30.5

65.97 0,25 0.6 19

65.97 [).5 0.1 14.2

65.97 0.5 0.2 18

65.97 0.5 0.3 18.3

65.97 0,5 0.6 38.2

99.96 0.25 0.1 24.2

98.96 0.25 0.2 24.2

99,96 0.25 0.3 27.12

98.96 $.25 0.6 8.87
19.398.96 l),5 0.1

98.96 t).5 0.2 10.5

98.96 t).5 0.3 15,2

98.96 0.5 0.6 28.3

45



B, L Kazem A NEURAL NETWORK PREDICTION MODEL FOR
SURFACE FINISH IN TURNING PROCESS

Table (2) network performance for different architecture

No. Of hidden nods Error (sse) Correlation
coefficient Ep-ochs

0.0522532 0.9195 45
3 0.0190495 0.9714 48e
4 0.0139469 0.9792 756-5 0.0191099 0,973 2000
6 0.00991311 0.995 2000
7 0.00115506 0.ggg 2000
8 5,72* 16-20 I 307

Fig. (3) Network Training Graph

Performance is 5 .7249e-020, Goal is 1e-012
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Fig. (5) Neural Network response
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Fig. (6) Neural Network response
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