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THREE DIMENSIONAL INTERSECTIONS
BY ANGULAR OBSERVATIONS
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ABSTRACT

The research introduces a new mathematical model for computing the position of points in space
(X, Y, Z) by the intersection of inclined angles derived from the measured horizontal and vertical
angles using spherical trigonometry principles with the aid of the conventional surveying instrument
(Theodolite), The most probable value (m.p.v) of the position of a point should be computed by the
method of least squares when the redundancy in observations exists and then it provides us with the
precision indices for the computed coordinates.
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INTRODUCTION

The determination of the position of a point in space is a common problem in surveying
engineering, which is done either by linear measurements (distances) or by angular measurements
(angles) or both. The first type of measurements is accomplished by using electronic distance
measuring instruments (EDM), and the second type is accomplished by the theodolite for observing
vertical and horizontal angles. Sometimes it is too hard or impossible to occupy the unknown point
by an EDM reflector, therefore angular observations will be more applicable and effective.

This research introduces a new method to determine the position of a point in three dimensional
space system (X, y, z) by angular observations which is achieved by measuring horizontal and
vertical angles to the unknown point from the fixed points, thence the developed mathematical
model offers the simultaneous determination of the three coordinates of the unknown point instead
of determining the planimetric coordinates (x, y) separated from the (z) coordinate of the point.

It should be noted that the new method utilizes the same concept of Church method in
Photogrammetry which is used to compute the exterior orientation parameters of photos. The
research deals with the problem considering redundant angular observations which must exceed
three derived inclined angles.

Many researchers tried to solve the problem in several procedures. However, the famous solution
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was introduced by (Ball) 1973, this researcher take into account the measured horizontal and
vertical angles directly but his procedure has the disadvantage of producing the unknown distances
between the fixed points and the unknown point besides the three unknown coordinates (x, y, z), but
he overcome this problem by matrices maneuver but the solution is still tedious and complicated.
The derived method is too active, promising, and offers a wide range of applications in surveying
engineering that deals with positions in space (X, y, z) system such as monitoring the deformation of
large structures, when connected to local or referenced datum.

THE PROPOSED MATHEMATICAL MODEL
In vectors geometry it is a well-known principles that the dot product of any two vectors is written
as follows:

A.B =/A//B/ cos (p) (D

Where

A =Xai +Yaj + Zak

B = Xbi +Ybj + Zbk

¢ = the angle between vectors A and B.

/A/, /B/ = the length of vectors A and B respectively.

It follows that for any angle () in space, the following relationship could be used for the
evaluation of ¢

X Xpy+Y Y. +2 .72,

cosg =
? [All B/

(2)

Now, in space intersection problem Fig. (1) it is obvious that if angle (@) is measured in plane 1P2
then the position of the unknown point (p) could be determined in three dimensions.

2 >

4

HORIZON

Fig. (1)

Angle (¢) as noticed is an inclined angle, thus it could be evaluated by measuring horizontal angle
(8) and vertical angles (a, ) then applying the principles of spherical trigonometry as discussed in
appendix A.
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cos @ = cos 0 cos a cos B+ sin o sin B (3)

According to Fig. (1), the following equations are obtained:-

(x, _xpo)Axlz +(n "ypo)AJ’n +(z, ‘Z,,o)Azlz

cos(gl) =
[131,,,‘,
\(x m— X ,,)A’Q +( =Y )A ‘\+(27 — ‘,)AZZ.
cos(2) = 2 e m T 7 ¥ Jn T2 T 2y ) (4)
Ll
COS(¢n) = (xn B x[’” )Axn] + (yn - ypv )A_V,,] + (Zn - Zp" )Azm
Ll

Where point’s 1,2,3...n are fixed points, While X 0s Y o and z , represent the approximate position
of P, which could be obtained by solving any plane triangle to determine (xp,, . yp,,) since the

horizontal angles are measured then determining the z, by the measured vertical angles.

LINEARIZATION AND LEAST SQUARE METHOD

To solve the problem, the system of non linear equations eq. (4) must be linearized by using Tylor’s
theorem, and it is obvious that three observations are the required number of observations to have a
unique solution. It must be noted that three control points are enough to solve the problem if more
than two inclined angles (¢) are measured, but when a redundant observations are available with (n)
total observations, then the problem must be solved by the method of least square to find the most
probable value of the position of point P.

The linearized form of the equations is developed by partially differentiating the function with
respect to the parameters neglecting higher order terms.

The final linearized equations are:

Fl=by pr+ b dyp+ bis de
F2=by, pr+ by dyp+ b3 de
. . (5)

Fn = by dxp+ bpz dyp+ by dz,

In eq. (5), n represents the number of observations and the b’s (coefficients) and F’s
(constant terms) are defined as follows (zero subscript signifies that the estimated values for x,, yp,
z, are used in the computations): -

A

by =dx 2 — A (x, _x1)

b=dyn-Ai(y, —y)
biz=dz, - A (z,, —z1)

Where

A| = [ COS ((p])( 112 /lp"l )]
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l

2 2 2
]p°1 = (dxpl,] + dypol + dzp“l )2
(6)
by =dx 32— Az (x, —X2)
bn=dys-A2(y, —¥2)
by =dz 32— Ax(z, — Z3)
Where
Aj = [ cos {92)( 123 /lp(,2 )]
1
2 2 2.5
o= (dx ,, +dy ., +dz ., )
bu = dx 15— Ax (xp‘, —Xp)
bnz = dy 1n— An (yp,. - )/n)
bnz =dz 1n— Ay (Zp(, - Zn)
Where
A, = [ cos (on)( 1in /lnp,, )]
1
_ 2 2 2 5
lo=(dx . ~+dy .~ +dz, )
Also
fl =l [ 11211)0 COS @) — dX]2 (X] - xp,, )— dy 12 (y1 - y,,, ) —dz 12 (Z] — Zp‘, )]
f2=[13l, , cos gz —dx3 (x2- x, ) —dy 23 (y2- ¥,.)-dz3 (22~ 2 ,)] (7

fo=[lnl, . cos @n—dxa (Xn- x,. ) =dyni (Yo -y )= dzui (20— 2 )]

Eq.(4) are solved by the method of least square for adjustment by observation equations to obtain
the corrections dxp,dy, and dz; to the approximate values x . y , and z , .

The solution in matrix form is:
X=B"WB)"!'(B"WEF) (8)

Where

X =(3*1) column matrix of corrections.

B = (n*3) matrix of partial derivatives of the function with respect to the unknowns.
W = (n*n) square matrix of weights.

F = (n*1) column matrix of constant terms.

The corrections are added to X 0o and z, to obtain the improved estimates and the procedure is

repeated to determine new corrections to be added to the improved estimates. The iterations are
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continued until the corrections become negligible. The iterations of the solutions decreased when
the initial estimates are chosen properly.

ILLUSTRATIVE EXAMPLE

An experimental test was adopted to evaluate the new developed method by using real data taken
from observations made previously to survey the dimensions and verticality of the Baghdad
university building,

As shown in the Fig. (2), four control points (1,2,3, and 4) were used and an angular intersection is
achieved from these fixed points to the unknown point (p) lying at one of the top corners of the
building. These derived angles were ¢,, ¢,, @3, and @4 from the observed horizontal and vertical
angles (ai , Bi, 01 ) by the cosine rule (see appendix A) as illustrated in Table (1).

Table (1) Measured Angles

Z meter

1 H'I méler

X meter L ¥ meter

| Measurel
" horizontal -

"angle
From~to

Measured
- “vertical

angle
~ point P

Computed |

- Inclined

Angle ¢

30.000

100.000 1,540

100.000

2~p
18°05°02”’

52°31°59”

55°02°29”

29.948

162.291 1535

118.148

4~p
154°59°23"

72°18°07°

106832

31.120

309.158 1630

88.882

l~p
10°50°12”

21939°14”

2404034457

31.682

2
312.411 1385

99.932

(000

3~p
83°37°36’

Adopted local origin

Fig. (2)
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It must be noted that the adopted coordinate system was local (x,y,h) in this test, and as stated
before the type of the coordinate system is not essential since the derived model is applicable to any
three dimensional model.

The approximate position of P is selected randomly as x . =110.000, Y,.=110.000, and z,=

100.000 in meters.

The solution is illustrated in Table (2), which represents the five iterations needed to solve the
problem until the amount of corrections became insignificant.

An appropriate program was prepared by using the MATLAB programming language on a personal
computer to solve the problem and to compute the final adjusted coordinates (Xp, ¥p, and z,) as
illustrated in appendix B.

Table (2) Improved Computed Positions for Five Iterations

iterations |

Xp Y, Z,

142.597 | 128.742 | 106.760

142,724 | 133.244 | 99.860

142.752 | 133.038 99.493

142,752 | 133.037 | 99.492

142.752 | 133.037 | 99.492

CONCLUSIONS

It is obvious from the experimental test that the developed model is too efficient in determining the
three dimensional position of points because of the fast convergence and the accuracy indices that
could be provided in the solution with a minimum required number of control points (three points)
through the method of least squares which means that this model could be adopted for the
applications of dimensional surveying and monitoring the deformation of large structures like dams,
bridges and towers, also the method could be adopted in photogrammetric applications.
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NOMENCLATURE

A B: vectors in space.

Xas Ya, Za: position of point A in space.

X, Y, and Zp: position of point B in space.

Xps ¥p, and z,: approximate position of the unknown point P.
li: spatial distance.
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—d

b’s: coefficients.

a, B: vertical angles.

0 : Horizontal angle.

¢ : Inclined angle between A&B

APPENDIX A

Computation of Inclined Angles

Let the line OA represents the gradient of a plane inclined to the horizontal OA’ whilst line OB is
the gradient of a second plane inclined at B’ to the horizontal OB’ Fig. (Al).
The horizontal angle between the lines OA and OB, i.e. 4'OB', is 6 whilst the inclined lines
themselves lie in a common plane and subtend an angle ¢ in the plane AOB. Assuming the point
above O is Z (the zenith); the arcs 4'AZ ,B'BZ and AB are all part of great circles. In the
spherical triangle AZB, Z=60, b=90°-a, a=90°-f and z =o. By the cosine rule.

__cosg—sinasin

cosd Al
cosacos ff
cosd = 508 ¢'— cos(90 - (-x) cos(90.— 5) A2
sin(90 — &) sin(90 — )
And thus
cos @ = cosB cosa cos B + sin a sin B A3

This means that the inclined angle ¢ could be computed by using measured vertical and horizontal
angles (a, B3, 8)
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APPENDIX B

Computer Program
%%0%%%%%%%%%% 3 DIMENSIONAL INTERSECTION%%%%%%%%%%%
xp=110;yp=110;zp=100;n=4;
for i=1:4 '
i
x(i,1)=input('enter x coordinates');
y(i,1)=input ('enter y coordinates="),
z(i,1)=input(‘enter z coordinates=");
end
q=[55.2593;24.7991,106.2923;85.1425],
q=q.*pi/180;r="chose';c=0;wz=0;
while ¢~=4
n=4;
dx(1,1)=(x(2,1)-x(1,1)); dx(2,1)=(x(1,1)-x(3,1));dx(3,1)=(x(4,1)-x(2,1)); dx(4,1)=(x(3,1)-x(4,1)):
dy(1,1D)=(y€2,1)-y(1,1));dy(2,1)=(y(1,1)-y(3,1));dy(3,1)=(y(4,1)-y(2,1));dy(4.1)=(y(3.1)-y(4,1));
dz(1,1)=(z(2,1)-2(1,1));dz(2,1)=(z(1,1)-2(3,1));dz(3,1)=(z(4,1)-2(2,1));dz(4,1)=(z(3,1)-z(4,1));
%0%0%0%0%0%0%0%0%0%0%0%0%%%6% %% %% %6%0%0%6%%%% %% %6 %6 %6 % %0 %0 %0 % %% %% % % % %o Y% %o % Yo
dxp(1,1)=xp-x(1,1);dxp(2,1)=xp-x(3,1);dxp(3,1)=xp-x(2,1);dxp(4,1)=xp-x(4,1);
dyp(1,1)=yp-y(1,1);dyp(2,1)=yp-y(3,1);dyp(3, )=yp-y(2,1);dyp(4,1)=yp-y(4,1);
dzp(1,1)=zp-z(1,1);dzp(2,1)=zp-z(3,1);dzp(3.1)=zp-z(2,1);dzp(4,1)=zp-z(4,1);
%%%0%%%0%%%0%%% %% %% %% %% %%%0%6% %% % %% %% %% %% % %% %% %% % %% % % %
fori=1:4
Ip(i,1)=sqrt(dxp(i,1)"2+dyp(i,1)"2+dzp(i,1)"2);
end
fori=1:n
1(i, 1 )y=sqrt(dx(i,1)"2+dy(i,1)"2+dz(i,1)"2);
a(i,1)=(cos(q(i,1))*(1(i,1)/p(i,1)));
end
fori=1:n
b1(i,1)=(dx(i,1)-a(i,1)*dxp(i,1));
b2(i,1)=(dy(i,1)-a(i,1)*dyp(i,1));
b3(i,1)=(dz(i,1)-a(i,1)*dzp(i,1));
%%%%0%0%%% %% %% %%%% %% %% %% %6%6% %% %% % %% %% %% %% %%
f(i.1)=(1(1,1)*Ip(i,1)*cos(q(i, 1))-dx(i,1)*dxp(i,1)-dy(i,1)*dyp(i,1)-dz(i,1)*dzp(i,1));
end
b=[bl b2 b3];
btb=b'"*b;
btf=b'*f;
x1=inv(btb)*btf
if x1<=.00001
c=4;
end
format long g
xp=xp+x1(1,1)
yp=yptx1(2,1)
zp=zp+x1(Z,1)
wz=wz+1
end
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v=b*x1-f;

vv=v'*¥v;
s=vv*inv(btb)
fori=1:3

veov(i, 1 )=sqrt(s(i,i));
end




