University of Baghdad
College of Engineering

Journal of Engineering
JEI/ journal homepage: www.jcoeng.edu.iq
A4\

JOURNAL OF ENGINEERING

Volume 31 Number 4  April 2025

Realization of Current-Mode Inverting and Non-inverting Schmitt
Trigger Circuit using Current Follower Transconductance Amplifier
(CFTA)

Amira R. Hamad
Department of Electrical Engineering, College of Engineering, Salahaddin University, Erbil, Iraq

ABSTRACT

This article proposes a current mode inverting and non-inverting Schmitt trigger circuit,
which utilizes a Current Follower Transconductance Amplifier (CFTA) and its application in
square and triangular wave generators. The hysteresis of a Schmitt trigger is directly
influenced by the process variations and transistor mismatches. This issue is more
challenging in applications where the level of noise and disturbances is not predictable. To
overcome this deficiency, Schmitt triggers with tunable hysteresis can be used as a practical
solution. The suggested circuit consists of a single CFTA analog building block laterally with
one grounded resistor. The grounded resistor makes the realization of the above-mentioned
circuit possible. The proposed circuit has low input impedance and high output impedance,
which is preferred in current mode (CM) circuits. It is characterized by adjustable thresholds
and low power consumption. It provides both inverting and non-inverting responses
without extra floating elements. Additionally, it has electronically adjustable threshold levels
and a wide bandwidth. All these specifications have been validated through PSPICE
simulations. The design focuses on reducing power consumption by incorporating active
elements and grounded resistors. It's Optimizing for low voltage operation, while effectively
managing current to ensure high performance without excessive energy use. It is an efficient
and low-power method for generating square and triangular waves. The PSPICE simulation
results are illustrated, and the given results coincide well with the theoretical expectation.
The total power consumption is 1.26mW at +1.5V supply voltage.

Keywords: Schmitt trigger, CFTA, Current mode.
1. INTRODUCTION

This article proposes using current-mode active components, specifically the current
follower transconductance amplifier (CFTA), in analog electronic circuits to achieve a larger
dynamic range and high bandwidth. The CFTA is highlighted as being particularly beneficial
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in applications such as oscillators and filters (Daibor et al., 2008; Sotner et al., 2009;
Silapan et al,, 2011; Singh et al.,, 2013; Nisha et al., 2015; Singh et al., 2016; Kumari et
al.,, 2017; Ozer, 2021; Prasad et al., 2021; Tasneem et al., 2022; Basak et al., 2022;
Demirel et al., 2023). The regenerative comparator, also known as the Schmitt trigger, was
advanced by Otto Schmitt in the 1930s. This component is commonly utilized in
communication circuits and signal processing to enhance control and minimize noise.
Additionally, it finds applications in frequency doublers, image sensors, and wireless
transponders (Chavez, 1995; Akter et al., 2008; Choi et al., 2009; Yuan, 2009; Janveja et
al., 2016; Wassan et al., 2012; De Marcellis et al., 2017). For the previous two decades,
the demand for low-voltage portable and battery-powered equipment has augmented
drastically. Therefore, researchers have been keen on lowering the supply voltage of analog
circuits. As a low-voltage operative circuit becomes essential, the current mode (CM)
technique is suitable for this resolution (Biolek, 2003). To conquer the operational
amplifier building block handicaps and to get high-speed systems, the analog electronic
circuit engineers observed for additional capabilities and extra building blocks (Biolek,
2003; Keskin et al., 2006; Tangsrirat et al., 2007; Bang et al., 2014; Thakur et al., 2021;
Fathima et al., 2022; Lin et al., 2023; Mohammed et al., 2024). Many papers related to
Schmitt Trigger using voltage differencing transconductance amplifier VDTA, current
differencing transconductance amplifier CDTA, and Z copy current differencing buffer
amplifier (ZCCDBA) are available in the literature. The CM Inverting and non-inverting
Schmitt trigger configuration utilizing a CFTA as active elements is a novel approach in
circuit design. This circuit offers unique advantages over traditional configurations by
utilizing only active elements and grounded resistors, eliminating the need for additional
sub-circuit elements. The ability to provide both inverting and non-inverting responses,
coupled with low voltage and power consumption, wide bandwidth, and electronically
adjustable threshold levels, makes this design stand out in the field of Schmitt trigger
circuits.

Schmitt triggers are susceptible to hysteresis issues caused by process variations and
transistor mismatches, particularly in environments with unpredictable noise (Yuan,
2010a). Implementing tunable hysteresis in Schmitt triggers can mitigate these challenges
(Amiri et al.,, 2020), leading to improved performance and reduced power consumption in
various applications, including power amplifier circuits (Yuan, 2010b; Radfar et al., 2020).
In this paper, detailed analysis and simulation results of the proposed circuit are presented.
The theoretical analysis is compared with PSPICE simulation results, to validate the
functionality and performance of the CM Inverting and non-inverting Schmitt trigger
configurations. Additionally, we discuss the implications and potential applications of this
circuit design in various electronic systems. Through this study, we demonstrate that the CM
Inverting and non-inverting Schmitt trigger circuit based on a CFTA offers a simple, efficient,
and high-performance solution compared to existing Schmitt trigger circuits. The proposed
circuit contains one CFTA active building block with only one grounded passive component.

2. COMPARISONS WITH AVAILABLE SCHMITT TRIGGER CIRCUIT

The proposed CM Inverting and non-inverting Schmitt trigger circuit utilizing a CFTA offers
advantages over existing Schmitt trigger circuits. A key comparison is the use of only one
grounded passive component in the proposed circuit, while other circuits utilize floating
passive components. Additionally, existing circuits often require multiple passive
components like resistors, which increase complexity, unlike the given circuit. Furthermore,
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the proposed circuit operates in CM, distinguishing it from voltage-mode (VM) circuits, and

provides both inverting and non-inverting responses simultaneously, a feature that is not

found in many existing Schmitt trigger circuits.

e The Schmitt trigger circuits (Pal etal., 2015; Madeira et al., 2016; Nagalakshmi et al.,
2018; Ranjan et al., 2018; Srinivasulu et al,, 2020) require more than one passive
component like a resistor which increases the overall complexity of the circuit.

e The Schmitt trigger circuit reported by (Pal et al., 2015; Siripruchyanun et al., 2015;
Kumar et al., 2017; Ranjan et al., 2018; Nagalakshmi et al., 2018; Maheswari et al,,
2019; Srinivasulu et al., 2020; Kannaujiya et al., 2024) is operating in VM, whereas
the proposed circuit Operating in CM.

e The Schmitt trigger circuit reported by (Siripruchyanun et al., 2015; Madeira et al.,
2016; Das etal., 2017; Kumar et al.,, 2017; Nagalakshmi et al., 2018; Maheswari et al.,,
2019) Provides only inverting or non-inverting Schmitt trigger whereas the proposed
circuit Providing inverting and non-inverting Schmitt trigger responses Simultaneously.

e The Schmitt trigger circuit reported by (Pal et al., 2015; Madeira et al., 2016; Ranjan
et al., 2018; Nagalakshmi et al., 2018; Srinivasulu et al., 2020) utilizes of floating
passive component whereas the proposed circuit uses only one grounded passive
component. A summary of the comparative study is given in Table 1.

Table 1. Comparative study of the available Schmitt trigger circuit

. . ALL- Inverting/non-
Active Passive . . .
Grounded | Power | Employing inverting
References Components| Elements . . .
. . Passive | Supply the CM Schmitt trigger
Required | Required
Compt. responses
(Pal et al., 2015) 1 CDBA 3-R NIL +10V NIL Both
(Siripruchyanun et i i
al,, 2015) 1-VDTA 1-R YES +1.5V NIL INV
(Madira et al,, 2016)| ZC-CDTA 2-R NIL +0.85 YES INV
(Kumar et al,, 2017)| MO-CFDITA 1-R YES 10V NIL Both
(Kumar etal., 2017)] DXCCTA NIL - £1.25V YES Non-INV
(Das etal., 2017) CCCDTA NIL - *1V YES INV.
(Ranjan etal,, 2018)] 1-FTFN 2-R - +1.65 NIL Both
(Nagalakshmi et al., i i
2018) 1-CDTA 2-R NIL 25V NIL INV.
(Maheswari et al., i )
2019) ZC-CDBA NIL 0.8V NIL INV.
(Srinivasulu et al., )
2020) 1-CCCII 2R NIL +2V NIL Both
(Kannaujiya et al.,
2024) CMOS - - 1V NIL Both
(Proposed circuit) 1-CFTA 1-R YES 1.5V YES Both

3. METHODOLOGY

3.1 Current Follower Transconductance Amplifiers (CFTA)

The CFTA (Daibor et al., 2008; Nisha et al., 2015) is a four-pin network with ideal
characteristics represented by a specific matrix; it is a useful building block in analog circuit
design. Fig. 1 displays the electrical symbol and equivalent circuit of this network.
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Figure 1. CFTA (a) Symbol (b) Equivalent Circuit

The CFTA's input stage acts as a current follower with low input impedance, this allows
higher transient currents to flow into the amplifier as needed, transferring current to a high-
impedance intermediate Z-terminal. The transconductance stage (g,,), controlled by a bias
current (Ig), transforms the voltage drop across the grounded impedance into output
currents Ix+ and Ix-.

The following matrix characterizes the terminal relations for

Ve 0 0 0 oyf[l
Ll |1 o o ofly
L. |0 +gn 0 of|v.,
I, 0 —gm 0 0] ly._

Where

® Jn isthe transconductance gain of the CFTA, which is given by Eq. (1)

= (1)

m = oy

e Vp:the thermal voltage (V; = 26mV at room temperature)

e [p: the external bias current directly influences the transconductance gain g,, of the
CFTA

3.2 Proposed Schmitt Trigger Circuit and Its Operation

The proposed circuit contains of a one CFTA active building block with only one grounded
passive component as shown in Fig. 2. The circuit operates in CM, with the non-inverting
terminal treated as port F. A sinusoidal input is applied to the F terminal, which has low
impedance. The outputs are taken from the X+ terminal and the X- terminal providing dual
output current responses simultaneously. The saturation levels of output currents are
determined by the exterior bias current Iz changing the transconductance of the CFTA. The
Schmitt trigger electronics circuit which is proposed in the article is shown in Fig. 2. The
proposed circuit operation is explained thus. The dual saturation levels of output currents
lout+ and I,,+— are Ig,¢, and Is,;—. The dual saturation levels for output currents are given as
Isqt+ = +lg and Igq = —Ip for 1,4, and I,,,;_ , respectively.
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X+ Tout+

lin

X- = lout-

Figure 2. Proposed CFTA Schmitt triggers circuit.

The transfer function of the Fig. 2 is given in Eq. (2).

Io_ut‘ — ImRz (2)
Iin 1-gmRz

Hence the Upper Triggering Point (UTP) and Lower Triggering Point (LTP) equations for the
proposed circuit of Fig. 2 are given in Eq. (3) and Eq. (4)

UTP = % * (+15) (3)
mRz
LTP = 11]7 x (=Ip) (4)

The amplitude of the non-inverting Schmitt trigger (1,4 ) is given in Eq. (5)

I _ {Isat+ = Iy for Iyn 2 Iyrp (5)
Ut " Usqe— = I for Iy < Iprp

The amplitude of inverting Schmitt trigger (/,,._ ) is given in Eq. (6)

I _ {Isat+ = Igy for lin < Irp (6)
oM Usqe— = Ip— for Iip = Iyrp

Where

R, is grounded resistor connected at z-terminal.

I+ and Ig,;— are the positive and negative saturation current, respectively.
Iout+ and I,,;_ are the non-inverting and inverting output current, respectively.
Iz, and Iz_ are the positive and negative peak bias current, respectively.

4. SIMULATION RESULTS AND DISCUSSION
4.1 Proposed Schmitt Trigger
PSPICE software was used to simulate the proposed circuit. The simulation utilized a CMOS

structure of Fig. 3, and the dimensions of the transistors are given in Table 2 (Daibor et al.,
2008; Nisha et al., 2015). The CFTA CMOS transistor model parameters are given by TSMC
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0.25pum CMOS process. The circuit was simulated with supply voltages of VDD = -VSS = 1.5V
and a bias current of IB = 28uA. Transient curves for both inverting and non-inverting
Schmitt trigger responses were obtained, showing the simultaneous operation of both
responses. Additionally, the DC transfer characteristics for both inverting and non-inverting
Schmitt trigger responses were analyzed, confirming the circuit's functionality and
performance. The proposed circuit in Fig. 2 was simulated in PSICE software, the input
current is a sinusoidal waveform with a frequency of 30 kHz and +50uA amplitude and an
external grounded resistor of R, = 10k used in the simulation. The transient curves or
inverting and non-inverting Schmitt triggers circuit are shown in Figs. 4 and 5 Additionally,
the observed DC transfer characteristic for inverting /,yr— and non-inverting output Schmitt
trigger Ioyry are shown in Figs. 6 and 7, respectively. The frequency band for the output
response is shown in Fig. 8, it defines the range of frequency and above that the proposed
circuit works successfully. Furthermore, it shows the effect of electronically controllable
upper and lowers triggering points and maximum saturation levels. The proposed circuit
was simulated in different bias currents of 20uA, 28uA, and 35uA. The result is shown in Fig.
9 which shows different upper and lower triggering points. It is evident that the
electronically controllable solution is quite simple, and the total power dissipation by the
proposed circuits is 1.26mW. The low power dissipation is due to CM operation and the non-
inverting DC transfer characteristic of the proposed circuit for different I is exposed in Fig.
10. Additionally, the variations of threshold current levels against bias current are shown in
Fig.11. The effect of high input frequency on the waveform distortion, current amplitudes,
and possible shifting of threshold levels was simulated for the proposed circuit at an input
frequency of 1IMHz and current of #50uA. The simulation result is shown in Fig. 12, it is
obvious that the frequency response of the proposed circuit depended on the frequency
responses of the building blocks.
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Figure 3. The CMOS structure of CFTA

Table 2. Dimensions of the transistors
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Transistor W (um) L (um)
M1-M2, M19-M20 1 0.25
M3-M5, M9-M10, M13, M22-M27 5 0.25
M6-M8, M15-M21 3 0.25
M11-M12 25 0.25
M14 4.5 0.25
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Figure 4. Input ( [;;,) and output (Iyy—) curves of the inverting Schmitt trigger circuit
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Figure 5. Input (I;,) and output (Iy¢4 ) curves of the non-inverting Schmitt trigger circuit.
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Figure 6. Inverting the DC transfer characteristic of the proposed Schmitt trigger circuit
when Iz = 28uA
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Figure 7. Non-inverting DC transfer characteristic when Iz = 28uA
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Figure 8. The frequency spectrum of the proposed circuit.
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Figure 10. Non-inverting DC transfer characteristic of the proposed Schmitt trigger circuit
for different Iz
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Figure 11. The variations of threshold current levels against bias current
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Figure 12. Input current ( I;,) curve of the proposed inverting Schmitt trigger for input
frequency 1MHz

4.2 Application as Waveform Generator

The Schmitt trigger-based CFTA contributes to the generation of square and triangular
waves by utilizing feedback mechanisms that create hysteresis in the circuit as shown in
Fig.13. This hysteresis allows the circuit to switch states at different current levels, which is
essential for producing square waves. Additionally, by incorporating a capacitor at the Z
terminal of the CFTAZ2, the circuit integrates the square wave output to generate a triangular
wave. The outputs for the square and triangular waves are taken from Ioutl and lout2,
respectively.

IB B
X+ lout 1+ X+ lout2
F CFTA F CFTA2
lout 1-
, X-— 7 X

R | I__ c
Figure 13. Square and triangular waveform generator
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Routine circuits analysis and from the ideal behavior of CFTA given in the above matrix it is
easy to derive the transfer function and characteristic equation of Fig. 13 in the form

gmlngR (7)

Transfer function =
Im19m2R+S(C—9gm1RC)

where g1 and g, are the transconductance of the CFTA1 and CFTA 2, respectively.

R is the grounded resistor connected at the z-terminal of CFTA1

C is the grounded capacitor connected at the z-terminal of CFTA2

From the above transfer function, it is clear that the characteristic equation of Fig. 13 in the
form:

Imi19m2R + S(C - gmlRC) =0 (8)

Substituting s = jw, where w is the angular frequency in rad/s, from the above Eq. (8), the
oscillation frequency (f) is written as:

_ 9mi9mzR
f= 21C (gm1R—1) 9)

Fig. 14 shows the simulation result for the waveform generator the element values are
designated as R = 10k() and C = 100pf. To show the effect of capacitor Value on the oscillation
frequency simulates the proposed waveform generator in different capacitors 100pf, 150pF,
and 200pF.

The result is shown in Figs. 15 and 16 which shows different oscillation frequencies. The
capacitor value is inversely proportional to frequency oscillation.

40uA

[ |me——lout1 | | | |

40uA| | i

10uS 11us 12uS 13uS 14uS Time

15u8 16us 1708 18us 19u8 20us

Figure 14. Square and triangle waveform generator
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Figure 15. Triangle waveform generator for different capacitor values.
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Figure 16. The frequency spectrum of the proposed triangle generator for different
capacitor values.

4.3 Non-Idealities Effects and Parasitic Effects

For a more precise evaluation, the outcome of non-idealities and parasitic present in the
CFTA-based design Fig. 3 are to be considered. The occurrence of non-idealities is due to the
presence of a mismatch in the MOS transistors. By allowing for the non-idealities
characteristics of the CFTA, the kinship of the voltages and currents can be rephrased as:

Vi 0 0 0 0771
L| |« o 0 0|
kel |0 +BvBm O 01" [ Vxs
Ix— 0 - ngm 0 0 V-
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where ;= 1 — ¢; and ¢; (|¢;| < 1) indicate the currentgainand g, = 1 — g, and ¢, ( |&,] <
1) indicate the voltage gain. The ideal gain tracking errors are «; and f, for a system,
emphasizing that they should be unity. The parasitic impedances at ports Z and X,
represented as Z and X are Rz //Cz and Ry //Cx respectively. Assuming that (Rg) at port F
to be zero for simplicity. The impedances R; and Ry are treated as infinite, and the
capacitance (Cx) is nearly zero. Additionally, the capacitance (Cz ) is noted to influence the
total capacitance when added in parallel with another capacitor, and a non-ideal equivalent
circuit is shown in Fig. 17.

=
—WA—e

——e
M

|||-—:||—ll

KD

km '
i—=Ah—e

Figure 17. Equivalent circuit of the non-ideal CFTA.

The performance of the circuit is significantly affected by various factors such as parasitic
capacitances and resistances, along with the non-ideal characteristics of MOS transistors.
These elements contribute to the overall tracking error. Understanding these influences is
essential for optimizing circuit design and improving overall functionality re-analysis of the
square and triangle waveform generator circuit yields the modified transfer function and
frequency of oscillation.

B1B221229m19m2R
B1B2a1029m19m2R+S((C+Cz)—PB1@19m1R(C+Cz)

Transfer function = (10)

_ B1Bra1argmi1gmaR
f= 2m(C+Cz) (B1@1gm1R—1) (11)

From Eqgs. 10 and 11, it is appreciated that the transfer function may deviate from the ideal
one due to various parasitic effects and non-idealities.

5. CONCLUSIONS

The proposed circuit presents a current mode Schmitt trigger circuit and its application to
square and triangular wave generators that utilize a Current Follower Transconductance
Amplifier (CFTA), highlighting its benefits such as simplicity, low power consumption, wide
bandwidth, and adjustable thresholds. The functionality of the proposed circuit is validated
through PSPICE simulations, demonstrating its effectiveness in practical applications. The
proposed circuit ensures low power consumption while maintaining performance through
some mechanisms. By using only active elements and grounded resistors, the circuit
minimizes power losses typically associated with passive components. The design is
specifically optimized for low-voltage operation, which inherently reduces power
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consumption. The Current Follower-Transconductance Amplifier (CFTA) allows for efficient
current handling, which contributes to lower overall power usage without sacrificing
performance. The ability to operate over a wide bandwidth means that the circuit can
respond quickly to changes, reducing the need for excessive power to maintain performance.
These factors collectively contribute to the circuit's ability to operate efficiently while
delivering high performance.

NOMENCLATURE
Symbol | Description Symbol | Description
Im Transconductance gain R, Resistance at Z terminal (ohm)
Vr Thermal voltage (Volt) Iy Bias Current (Amper)
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