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ABSTRACT 

Perpetual research endeavors have been created within the existing research to improve 

the sustainability elements concerning the road structure sector, i.e., minimize possible 
pollutants and improve monetary profitability. This study aims to determine how recycled 
concrete aggregates (RCA), which come from tearing down buildings, affect rutting 
performance using specimens prepared in a laboratory. Four replacement proportions (0, 
25, 50, 75)% were studied for the coarse portion of natural aggregate. RCA was treated by 
immersing it in hydrochloric acid (HCL). The surface morphology of treated RCA was 
investigated using a scanning electron microscopy (SEM) test. This study employed two 
preliminary assessments: the typical Marshall test to find the ideal asphalt content and 
explore the volumetric properties of asphalt mixes. The other exam was the wheel-tracking 
assessment. A four asphalt concrete slab sample was placed under repeated wheel loads of 
700 N at 55°C to determine its resistance to cracking and rutting. An investigation revealed 
that mixed with RCA content of 75%, rut depth is higher at 11.83%. 
 
Keywords: RCA, Rutting, Wheel-tracking, Dynamic stability. 
  
1. INTRODUCTION 
 

Rutting is the main form of deterioration seen in flexible asphalt pavements. It arises when 
the shear force applied to the pavement surpasses the anti-shear strength of the mix  under 
repeated loading (Yang et al., 2009). Every pavement ages and deteriorates with time 
owing to the repetitive application of vehicle loads and the impact of climatic variables 
(Llopis-Castelló et al., 2020). Deeper pavement ruts might increase repair and 
maintenance expenditures and cause severe traffic safety issues (Al-Bayati, 2024; Ali, 
2024). It significantly impacts asphalt pavements' performance, storing water and making 
the road uneven (Anon, 2020). It also raises the possibility of traffic accidents by decreasing 
tire-pavement friction and hydroplaning (Anon, 2012).  
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About 95% of aggregate particles are bound together by a viscoelastic to visco-plastic 
cement that alternates in consistency according to temperature and load. High binder 
content and poor aggregate graduation conditions are typically the causes of rutting 
(Brown, 1993). The primary purpose of the overall bony structure is to oppose traffic loads. 
Simultaneously, asphalt cement necessitates the adjacency of these particles (Albayati, 
2017; Saleem, 2020; Tahmoorian, 2022). Three primary groups of variables 
fundamentally determine persistent malformation. The initial set of factors categorizes the 
asphalt mixture, encompassing its aggregate characteristics, gradation, cement type, and 
compaction state. The second overarching classification of factors comprises pavement 
temperature, axle design load, and vehicle frequency. Another significant group of factors 
pertains to the attributes of pavement substructures, namely the layers' thickness and the 
substance characteristics of the subbase and base layers (Ngxongo, 2017; Ali, 2021).  
In contrast, population growth, urbanization, and urban development necessitated the 
construction of numerous structures and roads. The heightened demand for basic materials 
adversely affected the environment (Nazal, 2019; Albayati, 2023). Another pressing and 
hazardous environmental concern is accumulating construction objects' waste, which 
requires a lot of landfill space and disposal (Mercante, 2012; Bhusal, 2013; Ismael, 2023). 
Demolishing reinforced or non-inforced concrete structures yields reclaimed concrete 
aggregate RCA. The RCA is extensively used in numerous transit infrastructure projects, like 
base aggregate, Portland cement concrete (PCC) aggregate, and unbound and bound 
pavement layers throughout the United States. However, RCA has not been used much in 
HMA because there has not been enough research on whether it is appropriate. Because of 
the elevated expense of disposal, the lack of virgin aggregate sources, and the limited 
availability of landfills. Globally, research is underway to assess the suitability of RCA in 
asphalt pavements (Mills-Beale, 2010). (Tam, 2007) examined what happened to RCA 
when it was soaked in three robust acid solutions: sulphuric acid, hydrochloric acid, and 
phosphoric acid at 0.1 M for a whole day at 20 °C. The results demonstrated a notable 
lowering in water absorption, enhanced mechanical attributes, and no negative impact from 
chloride and sulfate ions on the RCA. Research has shown that the treatment methods for 
recycled concrete aggregate have not effectively enhanced opposition to permanent 
deformation attributable to the detachment of some cement mortar from the aggregate. 
(Albayati, 2024). (Abass, 2020) used therapeutic methodologies to improve the quality of 
RCA. The initial involved treating the RCA with hydrated lime, while the second employed 
hydrochloric acid. The study determined that when the quantity of RCA grows, the 
permanent deformation of all mixes, including treated and untreated RCA, also rises. 
(Kareem, 2018) employed a novel approach: a two-layered addressing RCA integrated 
inside HMA. A first coat of cement slag pastes and a second coat of sika Tite-BE were applied.  
An investigation concluded that this treatment reduced absorption and increased 
communication with the aggregate and the asphalt binder. Therefore, this study examined 
how vulnerable asphalt mixtures are to rut using different amounts of treated RCA instead 
of coarse aggregate. 
 
2. MATERIALS AND METHODS   
 

The asphalt cement, aggregate, mineral filler, and recycled concrete aggregate used are 
locally sourced and have undergone testing to ensure compliance with the Standards Roads 
and Bridges of Iraq (SCRB) criteria (SCRB R/9, 2003).  
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2.1 Asphalt Cement 
 

The asphalt utilized in this study had a penetration of (40–50), the most often utilized 
material in pavement building. Al-Daurh refinery supplied it results of asphalt binder checks 
conducted (SCRB R/9, 2003). Table 1. displays asphalt cement's physical characteristics. 
 

Table 1. Physical characteristics of Asphalt cement 

Test ASTM Test Measured 
Parameters 

SCRB Limits 

Penetration@ (25 °C,,0.1mm,5sec) (ASTM D5, 2013) 44 40-50 
Softening Point °C (ASTM D36, 2014) 54 - 
Ductility@ (25 ̊ C, cm) (ASTM D113, 2007) 166 >100 
Kinematic Viscosity @ 135 °C, cSt (ASTM D2170, 2007) 404 - 
After the Film Oven Test: 
- Penetration @ 25 °C, %  
- Ductility (25°C,5 cm/min) 

(ASTM D1754, 1997; 
ASTM D5, 2013; 

ASTM D113, 2017) 

 
77 
85 

 
>55 
>25 

 
2.2 Aggregates 
 

Coarse and fine aggregate was obtained from the Al-Obaidi Mix Plant. The size range of 
coarse aggregates for the wearing course is within 12.5 mm and the No. 4 sieve (4.75 mm). 
Fine aggregate had particle sizes between No.4 and No. 200. Laboratory evaluation 
articulated the fundamental characteristics of the aggregate. The outcomes are exhibited in 
Tables 2 and 3 based on the specification limit (SCRB R/9, 2003). Fig. 1 displays the grain 
size distribution. 

Table 2. The coarse aggregate physical characteristics. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1. Aggregate gradation by (SCRB R/9, 2003). 

Property ASTM Test  Measured 
Parameters 

SCRB Limits 

Bulk Specific Gravity.  (ASTM C127, 2015) 2.58 - 
Apparent Specific Gravity (ASTM C127, 2015) 2.61 - 
(%), Water Absorption. (ASTM C127, 2015) 0.55 - 
(%) Los Angeles Machine, Abrasion  (ASTM C131, 2014) 16 (%)30-Max 
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Table 3. The fine aggregate Physical characteristics. 

 
2.3 Mineral Filler 
 

The Iraqi specification mandates that the filler consist of limestone dust or Portland cement. 
This search used limestone dust. Table 4 shows the filler's physical properties. 
 

Table 4. Mineral filler physical characteristics. 

Property Measured Parameters ASTM Test SCRB Limits 
(%) passing,(No.200) 97 - %70 Min 
 Specific Gravity 2.71 (ASTM C-188, 2017) - 

 
2.4 Recycled Concrete Aggregates 
 
The coarse aggregate size was acquired by demolishing a building, resulting in a range of 
diameters from 19 mm to 4.75 mm, guaranteeing sustainability. The collected RCA (all sizes) 
substance was socked in a diluted HCL solution with a concentration of 0.1 mole. A full day 
is required to address the inadequate cement mortar of the RCA and thin down this layer. 
The RCA was then re-sank in clean water for a whole day to remove the acidic solution's 
residue (Ibraheem, 2021; Al-Bayati, 2023). RCA was desiccated in the oven at 100 °C for 
three hours. Then, It was sifted and categorized into the necessary coarse gradations 
accordingly. Fig. 2 displays the RCA, and Table 5 illustrates their physical characteristics. 
For a better look, Fig. 3 shows an SEM examination that shows how the treatment affected 
the RCA. The acid treatment smooths out the surface, but some mortar is still stuck to the 
RCA, and much of the cement slurry stuck to the RCA particles washed away. 
 
3. PROCEDURE FOR EXPERIMENTS 
 

The testing methodology incorporated the Marshall and wheel tracking experiments to 
ascertain the optimum asphalt composition and susceptibility to rutting. 
 
 

 
 
 
 

 

 

 

Figure 2. Concrete waste and RCA particles. 

Property ASTM Test Measured 
Parameters 

SCRB Limits 

Bulk Specific Gravity (ASTM C128, 2015) 2.60 - 
(%)Water Absorption (ASTM C128, 2015) 0.94 - 
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Table 5. Physical properties of coarse (RCA). 

 

 

 

 

 

 

 

 

 

                              (a) Untreated.                                                        (b) Treated. 
 

Figure 3. Morphological features of RCA. 
 

3.1 Marshall Test 

The Marshall method was utilized by (ASTM D6927, 2015) to find the optimum asphalt 
content, as seen in Fig. 4. Three (101.6 × 63.5) mm cylindrical samples weighing 1200 gm 
were manufactured. The mixes were pressed down 75 times on both sides, and asphalt 
contents (from 4 to 6%) were adopted with an increment of 0.5%. The Asphalt Institute's 
recommendations have identified 4% of air voids as the primary factor when selecting the 
optimum asphalt content (OAC) in this design. Also, all the properties were examined to find 
the exact requirements for control mixes stability, flow, voids, and bulk density (Jasim, 
2021; Badr, 2024). To calculate the Marshall stability and flow on the control mix with 
treated RCA, 25%, 50%, and 75% were used.  
 
3.2 Wheel Tracking  

 A wheel-tracking device replicates the resistance of combination asphalt to rutting depth by 
subjecting the samples to loads exerted by a wheel that moves continuously across them. 
The compactor can apply suitable loads by implementing a Dyne compaction device that 
adheres to (EN 12697-33, 2019) specifications to achieve the desired density or thickness 
of asphalt slabs. Standards were used to evaluate dynamic stability (DS) and the rut depth at 
a 70 PSI stress level applied to rectangular samples at 55 ˚C over 5000 cycles. Compressed 
asphaltic slabs are manufactured at AV equal to 4% utilizing a roller compactor device. This 
project used compact slabs of (400×300×50) mm. They weighed around 13,500 g. At the 
contact area, the loaded wheel applies 700 N. Fig. 5 shows the wheel-tracking device at the 
University of Baghdad, and Fig. 6 displays the wheel-tracking test sequences. 
 
 

Test ASTM Test Measured Parameters 
Bulk Specific Gravity. (ASTM C127, 2015) 2.40 
% Water absorption. (ASTM C127, 2015) 2.84 
Abrasion by Los Angeles Machine, [%]. (ASTM C131, 2015) 20 
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Figure 4. Marshall specimens prepared and tested sequences. 

 
 

 

 

 

 

 

Figure 5. Wheel-tracking device at the University of Baghdad. 

 
 

 

 

 

 
(a) Dyna-Compact Roller Machine. 

 

 

 

 

 

           

                 (b). Prepared mixture.                                            (c). Casting the loose mixture. 
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(d). some of the tested slabs. 
 

Figure 6. Sequences of wheel tracking test. 
 

4. RESULTS AND DISCUSSION 
 
4.1 Marshall Test Results 
 
Table 6 lists the Marshall test findings for the treated RCA and the control mixture. Notice 
that when the quantity of RCA in asphalt mixes increases, the OAC also increases. Due to the 
porousness of the cement mortar, adhering to the aggregate allows for increased absorption 
of bitumen binder. The asphalt content of mixtures made with 75% treated RCA increased 
by 7.73% over the conventional mix, shown in Fig. 7. According to the test findings, the RCA 
mixes outperform the control mixtures regarding stability and flow values. It comes from 
pores in the cement mortar that cling to the aggregate, permitting increased absorption of 
asphalt binder. When the highest stability values of treated RCA samples were examined, 
acid treatment made the 75% RCA combination 25.26% more stable. Also, the uneven outer 
layer of the recycled aggregate helped the specimen be more stable, improving the adhesion 
and bonding between the binder and aggregate. All flow values increase and fulfill the (SCRB 
R/9, 2003) requirements. The maximum Marshall flow increase recorded for mixes 
containing 75% treated RCA was 46.01% over the control mixture. 
 

Table 6. The Marshall results. 

C= Control, TRCA= Treated RCA 

 
The bulk density of treated RCA was inferior to that of the control combination. The 
combination in which 75% treated RCA was included exhibited the most significant 
reduction, 0.77% lower than the control mixture. More research by (Pourtahmasb and 
Karim, 2014; Hou et al., 2018; Daquan et al., 2018) has also shown that adding more RCA 
to asphalt mixes makes them less dense overall. The treated RCA also changed the VMA 
values. Due to the RCA's uneven and rough surface, all groups decreased. The mixtures 
containing treated RCA by 75% showed the most significant decrease of 6.73%. Fig. 8 (a, b, 
c, and d) demonstrates the impact of RCA on Marshall results.  

Treatment RCA, 
% 

O.A.C, 
% 

Stability, 
kN 

Flow, 
mm 

Bulk 
density, g/cm3 

VTM, 
% 

VMA, 
% 

VFA, 
% 

C 0 4.91 9.34 2.63 2.332 4.0 14.71 72.80 
TRCA 25 5.00 10.03 3.50 2.322 4.0 14.17 71.77 
TRCA 50 5.21 10.49 3.68 2.316 4.0 13.91 71.24 
TRCA 75 5.29 11.70 3.84 2.314 4.0 13.72 70.85 
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Figure 7. The Impact of RCA ON O.A.C. 

 

(a) Stability and RCA. 

 
(b) Flow and RCA. 

 
(c) Bulk density and RCA. 
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(d) VAM and RCA. 

            
 Figure 8. The influence of RCA on Marshall's results: Stability, (b) flow, (c) density, (d) 

VMA. 
4.2 The Wheel Tracking  
 
Four slabs measuring 300×200×50 mm were tested under a moving wheel load of 700 N for 
10,000 cycles at 55°C. The rutting patterns in asphalt mixes were studied using dynamic 
stability (DS), the number of cycles that cause a 1 mm change in shape in the final quarter of 
a wheel tracking test, which lasts an hour (Zhang, 2022). Given the extended duration of 
the test, Eq. (1) was employed to ascertain the dynamic stability (Phan, 2022). 
 

Dynamic Stability (
Cycle

mm
 (=

10000−7500

𝑅𝐷10000−𝑅𝐷7500
               (1) 

 
Where: 
RD10000= Rut depth at 10000 cycles, RD 7500 = Rut depth at 7500 cycles.  
Table 7 and Fig. 9 show the rutting of each mixture over 10,000 cycles. All treated RCA 
combinations had deeper ruts than the reference mixture. An explanation could be the 
amount of asphalt. The recorded maximum rut depth was in combinations that included 
75% pre-soaked RCA, which increased by 11.83% over the reference mixture. In Table 8 
and Fig. 10, the DS of each mix was inferior to that of the initial blend. 

 

 
 

 
 
 
 

 

 

 

 

 

Figure 9. Rutting depth(mm) at 10000 cycles. 
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Figure 10. Relation between dynamic stability and rut depth and RCA. 
 

Table 7. Rutting depth (mm) at 10000 cycles. 

 
 
 

Table 8. Dynamic Stability (Cycle/mm) per Equation (1). 

 
 
 

 
6. CONCLUSIONS 
 

The experiment for this study used ten different asphalt mixes with varying amounts of 
coarse and natural aggregate replaced by RCA (25%, 50%, and 75%, respectively). The 
experiments carried out allow for the following conclusions: 
1. The optimum asphalt cement percentage rose when treated RCA was replaced with virgin 

aggregates. Upon replacing 75% of the coarse RCA with virgin material, there was a 7.73% 
increase. 

2. Marshall stability increased by adding recycled concrete aggregate to the asphalt mixes. 
When using 75% coarse RCA, the observed increase was 25.26%. It is because  the 
recycled concrete exhibited several broken faces, sharp edges, and potholes, which 
enhanced the surface contact area. 

3. The Marshall flow rose due to the increasing ideal asphalt content with a continuous rise 
in replacement ratios for recycled concrete aggregate. The most considerable increase 
was 46.01% when using 75% coarse RCA. 

4. The volumetric characteristics were mainly unchanged with incorporating RCA, as all 
combinations complied with the SCRB 2003 Iraqi standard. 

5. As the amount of RCA in the asphalt blend rises, the bulk density falls because the cement 
mortar enhances its adhesion to the aggregate. The combination in which 75% treated 
RCA was included exhibited the most significant reduction, 0.77% lower than the control 
mixture.  
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6. Mixes with variously proportioned treated RCA types show higher rutting resistance and 
a greater rutting depth than the control mixture. Indications suggest that treating RCA 
does not effectively enhance opposition to permanent deformation. 

7. Because cement mortar was removed during RCA treatment, the asphalt mixture's 
volumetric properties and groove depth changed in small to significant ways. 

8. Incorporating RCA resulted in an extended duration of mixing, and it is necessary to 
maintain a high temperature throughout the mixing procedure, not below 160 °C, and 
with a higher asphalt concentration. 

 

NOMENCLATURE 
 

Symbol  Description  Symbol   Description  
A.V  Air voids, % SCRB State Corporation for Roads  

and Bridges, 
AASHTO American Association of State  

Highway and Transportation Officials 
VFA Voids filled by asphalt 

O.A.C Optimal Asphalt Content VMA Voids mineral aggregate 
TRCA  Treated Recycled Concrete Aggregate DS Dynamic Stability 
RCA Recycled Concrete Aggregate RD Rutting depth 
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 الخلاصة

تم إنشاء جهود بحثية مستمرة ضمن الأدبيات المتاحة لرفع عناصر الاستدامة المتعلقة بصناعة البنية التحتية للطرق، أي تقليل  
المشتقة من   (RCA) تقييم تأثير الكتل الخرسانية المعاد تدويرهاالملوثات المحتملة وتعزيز الربحية المالية. يهدف هذا العمل إلى 

(  75،  50،  25،  0المباني المهدمة على أداء التخدد باستخدام عينات تم إعدادها في المختبر. تمت دراسة أربع نسب استبدال )
معالجة تمت  الخام.  الكتل  الخشن من  للجزء   ٪ RCA الهيدروكلوريك في حمض  في  (HCl). عن طريق غمرها  التحقيق  تم 

استخدمت هذه الدراسة اختبارين أوليين:   (SEM). المعالج باستخدام تحليل المجهر الإلكتروني الماسح RCA مورفولوجيا سطح
اختبار مارشال النموذجي لتحديد محتوى الإسمنت الأسفلتي الأمثل واستكشاف الخصائص الحجمية لمخاليط الأسفلت. اختبار 

سم وتعرضت    5×    40×    30( من بلاطة خرسانية أسفلتية بقياس  4ختبار تتبع العجلة. تم تصنيع عينة )آخر تم إجراؤه هو ا
درجة مئوية لفحص مقاومتها للتخدد الناتج عن التآكل. وقد كشف التحقيق أن    55نيوتن عند    700لأحمال عجلات متكررة بقوة  

 . .%75بنسبة  RCA طها بمحتوى % عند خل 11.59عمق التخدد الناتج عن التآكل يكون أعلى عند 
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