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ABSTRACT

Real-world signals are often intricate and difficult to analyze. Therefore, to facilitate the
analysis of signal components, the researchers represent the signal in different domains
(transform domain), providing a new perspective and offering significant advantages in
understanding the various components of signals. Therefore, discrete transforms have been
the subject of extensive study. In this paper, a new hybrid form of orthogonal polynomial is
introduced named discrete Cosine-Krawtchouk-Tchebichef transform (DCKTKT). Which is
based on combining discrete Cosine transform with krawtchouk and tchebichef polynomials.
The mathematical and theoretical formulations of DCKTKT are presented, followed by an
evaluation of its performance against other hybrid forms. The results demonstrate that
DCKTKT along with their corresponding moments. Surpasses existing hybrid polynomials
regarding energy compaction. Additionally, a face recognition application is performed and
by using a well-known database with clean and noisy environments, DCKTKT is used to
transform face images into the moment domain to facilitate feature extraction. illustrating
the proposed polynomial's robustness against different types of noise and its superior
feature extraction capabilities compared to the latest hybrid forms.

Keywords: Discrete COS transform, Discrete Tchebichef transform, Discrete Krawtchouk
transform, Face recognition, Hybrid form.

1. INTRODUCTION

Signals are considered an essential carrier of information. These signals can be either
deterministic or stochastic (Pachori, 2023). Also, the conveyed signal can be classified as
one-dimensional (1D), like a speech signal, two-dimensional (2D), like an image, three-
dimensional (3D), like a video, and four-dimensional (4D), like volume data over time. The
study of signals is involved in many disciplines, including signal processing, communications
theory, and control systems. This study aroused the interest of many researchers in the field
of engineering, science, and many specializations, and they used different methods to
analyze, transmit, and process that signal.
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In general, signals are complex in nature, making them difficult to deal with and understand.
Therefore, to facilitate their handling, we must simplify or represent them in an
understandable mathematical formula, such as simple signals, general basis functions,
complex exponential functions, Bessel functions, or orthogonal functions.

Representation using orthogonal functions is one of the most preferred signal
representations (Pachori, 2023) because of its properties, such as orthogonality in its basis
function that gives an efficient analysis of the signal’s components by isolating each feature
in a specific polynomial, making it easier to process. Also, it reduces noise (Yaru and
Xiaohong, 2009) by analyzing the behavior of each type of noise and separating the signal
from the noise. Also, the orthogonality property provides a high compression without losing
essential information; and the discrete cosine transform undeniably exhibits this property
to a significant extent (Walmsley et al.,, 1994). Lastly, it has a near-zero redundancy
(Mukundan et al., 2001) and numerical stability (Mahmmod et al., 2022).

Other unique properties of orthogonal functions that determine their performance and
capabilities to extract features are localization and energy compaction (EC) properties
(Mahmmod et al., 2018; Abdulhussain et al,, 2021). Energy compaction facilitates data
transmission and storage by concentrating the majority of the signal's energy into a limited
number of transform coefficients (Wang et al., 2000). The localization property defines the
orthogonal function's ability to extract features by creating a relation between the transform
coefficients and their specific locations within the signal (Abdulhussain et al., 2021).
Given the urgent need to extract more features and streamline data processing and storage
for optimal analysis and transmission, combining multiple polynomials for example
Tchebichef polynomial (Zhu et al., 2007), Krawtchouk polynomial (Feinsilver and Kocik,
2005; Asli and Flusser, 2014), Charlier polynomial (Abdul-Hadi et al,, 2020), wavelet
polynomial (Abood, 2013) and Hahn polynomial (Yap et al., 2007) to leverage their unique
features and introducing a new polynomial with more robust features than the individual
one is imperative. Hence, the proposed polynomial combines the strengths of several
polynomials, including Krawchouk, Chebyshev, and the Discrete Cosine Transform (DCT), to
create a new hybrid transform that offers distinct advantages, particularly in terms of energy
compaction and feature extraction. This elevates performance in various applications, such
as image processing, compression, and pattern recognition. For instance, Krawchouk
polynomials are effective at extracting features from signals, while Chebyshev polynomials
and the Discrete Cosine Transform (DCT) are commonly used in compression algorithms.
DCT achieves robust energy compaction by concentrating the signal's energy into a few low-
frequency coefficients. By combining these polynomials, the resulting transform leverages
the strengths of each component, thereby enriching the overall transform's capability for
efficient data representation and analysis.

2. MATERIALS

In this section, the mathematical definitions and fundamentals of the materials utilized in
this paper is presented, which include the preliminaries of discrete orthogonal polynomials
and the definitions of orthogonal moments.

2.1 Tchebichef Moments

In general, orthogonal moments are coefficients that provide a concise representation that
captures an image's global information (features) using orthogonal polynomials as basis
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functions (Hu, 1962; Markandey and deFigueiredo, 1992). Let ®mn be the definition of
Tchebichef moments based on a discrete Tchebichef polynomial (Mukundan, 2004)

_ 1  §N-1yN-1 ..
Brn = ooy 2x=0 Zy=0 Tn () T () £ () (1)

Where f{ij) denotes the pixel value of (ij) position in the image, p(-) is the squared-norm
which is given by (Wu and Yan, 2016; Hussein et al., 2023):

p(n,N) = (2n)! (;V;Jr"l (2)

Where N is the polynomial size Tn(x) is the Tchebichef polynomial (TP) function, with order
n and length N, which is determined by (Pee, 2017; Lu and Asli, 2023):

T, (x) = %(1 —N), 3 Fy(=n,—x,1+n:1,1 = N;1),n,x = 0,1,..,N — 1 (3)

where n is the polynomial order, x is the signal length and w(x) is the wight function and
3F, is the hypergeometric function (Idan et al., 2020), they are expressed as follows:

wr (x) =1 (4)
3Fo(—n,—x, L Am L1 = N;1) = Bi, ok (5)
@r=a@+1)(@+2),..,(a+k+1) =% 6)
therefore, Th(x) can be rewritten as follows:

T, (x) = (1-N)y 3 Fp(—1,—x,1+1;1,1-N;1) )

(2n)! (é‘;ﬁ)

Using of hypergeometric and gamma formulas to calculate the polynomial values is highly
time-consuming and it causes numerical propagation (Radeaf et al., 2019). On the other
hand, calculating the higher order of polynomial values using recurrence relations
concerning order n and variable x is limited by numerical instabilities, which results in
significant information loss in reconstructing large images. Thus, the algorithm in
(Abdulhussain et al., 2017) is used to mitigate this issue, where the Tn(x) is equal to:

( a;T,(x —1) + a,T,,(x — 2),
o<n<VN/y2<x<N/, -1
blTn—l(x) + szn_Z(X),
T”(x):<N/2<n<N—1,Lx<x<N/2—1 (8)
Y, Tale + 1) + %/, T, (x + 2),
Ny <n<N—1,L, <x<L,—12
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where
_ —n(n+1)—(2x-1)(x—N —-1)—x
1= X(N —x)
_ x-DE-N-1)
2= x(N —x)

b, 2N (4n2-1)
1= " (n2-N2)
b 1-n |(2n+1) |N2-(n-1)3
2= n \J(@2n-3)4 (m2-N2)

Ly = 0.5N — ,/(0.5N)% — (0.5n)2

For signal reconstruction the following formula is used (Zhu et al., 2010):

fG@) = ZAZ Xz Ta(; N) Ty G5 DB, 0, = 0,1, ,N = 1 (9)
2.2 Krawtchouk Moments

Krawtchouk moments are constructed using Krawtchouk polynomials, which serve as the
basis function set (Yap et al.,, 2003); these polynomials are linked to the binomial
distribution and satisfy the orthogonality property that introduced in (Zhu etal., 2010), and
which states that:

Y=o Kn GOKR (0Owi (%) = pie(n) By (10)

where @,,,,, is the krawtchouk moment, p; (n) is the square norm of krawtchouk polynomial
which is given by (Abdulhussain et al., 2018):

) = (- (£2)" - (11)

14 (=N+1)n

wy (x) is the weight function which is given by (Abdulhussain et al., 2018) and define as:

o) = (P @ = p)" T (12)
and KP(x)is a classical krawtchouk polynomial with nth order and parameter p, which is
define by (Yap et al., 2003):

1
Kﬁ(x) = Z%:O ak,n,pxk = ,F 1(—n,—x; —=N; ;) (13)

Where x, n=0,1,2, .., N, N > 0, p € {0, 1}, and ,F ; named the hypergeometric function of
krawtchouk polynomial and is given by (Yap et al., 2003):

o ( @k z*
2F 1(61, b; C, Z) = Zk:O (’;)k k F (14)

And (a)y is the rising factorial which is given by:

I'(a+k)

(@Akx=a(@a+1)(a+2),..,(a+k+1) = =

(15)
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To avoid numerical fluctuations in Krawtchouk polynomial computations, the traditional
method of normalizing by the norm is used (Yap et al., 2003):

(16)

But when dealing with higher values of N (e.g., 100), the above equation alone fails to
guarantee the stability of the Krawtchouk polynomials. Therefore, a weighted Krawtchouk
polynomials is introduced to achieve numerical stability (Tahiri et al., 2022):

RP(x) = KP Wk(x)
0 X —> N-1
0
R2
n R1 R3
R4
N-1

Figure 1. Four parts partitioning of krawtchouk polynomial plain.

The calculation of polynomial values using the hypergeometric and gamma functions is
highly demanding in terms of time, requiring high mathematic operations (factorials,
powers, sums, etc.) for each polynomial order, therefor, to mitigate this problem, the
algorithm described in (Mahmmod et al., 2020) is used. First the coefficients Kn(0) and
Kn(1) are computed, using the following formula:

~ (N-n) ~

KR 0) = [y * Kia(0) (18)
kP (0) = /(1 —p)N1 (19)
~ - N-1) [((N-1)p

RP(1) = "p*(lj(_ - ) /((1_;)pK,’f(O), n=01.,N-2 (20)

For the R1 coefficients as Fig. 1 shows the following equations are used:

KP(x+1)=ExKP(x)-FxK’(x—1),n = 0,1,..,N- 1 (21)
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_ p(N-x—-1)+x(1-p)-n

— JpA-p)(x+D(N-1-x) (22)
- -

Jp(1=p)x(N=x) (23)

= Jpa-p Gt DN-1-x)

Third, to compute the R2 coefficients using the symmetry relation of Krawtchouk polynomial
about the primary diagonal (n=x) the following equation is used:

Ky () = KY(n) (24)
And for the R3 and R4 coefficients the symmetry relation about secondary diagonal is used:
Riyoxcy(N —n—=1) = (=D)" " 1K7 (%) (25)
At the end, the (p > 0.5) coefficients are computed using the following relation:

Ky () = (D" KZ(N —x — 1) (26)
To compute krawtchouk moments the following equation is used:

B = NN LKP (KD () f(i,)), ,j = 0,1,..,N—1; (27)

While, for signal reconstruction the following formula is used:

FG) = XN YN VK (KD (%) O, 1) = 0,1,...,N—1; (28)

2.3 Discrete Cosine Transform (DCT)

In image processing, the Discrete Cosine Transform (DCT) is highly regarded by researchers.
Large DCT coefficients are mainly found in the low-frequency region, leading to excellent
energy compaction (Abbas, 2005; Wang and Shang, 2020). The discrete cosine transform
a(k) function is defined using the following Eq. given by (Jain, 1989):

\/%cos(% 2x+1)) fork=0

a(k) = (29)

2 mn
\/;cos(a (2x+1)) fork>0

the moments computation of 2D signal for the DCT are given by the following equation
(Wang and Shang, 2020):

Brim = BnBm ZiLo" X1 £(1,1) cos(,, (2x + 1)) cos(; (2x + 1)) (30)

Where0 <n<M-—-1land0<m<N-1
While to reconstruct the 2D signal, the following equation is used:
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fG,1) = BuBm ZiLo! 2326 Brm c0s G- (2x + 1)) cos (G (2x + 1)) (31)

3. THE PROPOSED HYBRID POLYNOMIAL

For effective signal analysis and enhanced efficiency in signal transmission and storage, the
combination of various polynomials exploits and strengthens their individual characteristics
(localization and energy compaction). This combination ensures that the strengths of each
polynomial are utilized to their fullest potential, resulting in more effective and reliable
signal processing. Therefore, this section presents the proposed hybrid form of orthogonal
polynomial namely DCKTKT, which is based on a combination of well-known OPs such as
Cosine transform with krawtchouk and tchebichef polynomials. The nth order hybrid form
Rn(x), is defined by the following formula:

Rn(x; N) = X0 Z;(N)X;(x; N)Y;(n; N)X;(x; N)Y;(n; N), n,x = 0,1,..,N- 1 (32)

where Xj(x; N), Yj(n; N), and Zj(N) are krawtchouk polynomial (KP), tchebichef
polynomial (TP) and discrete Cosine transform (DCT), respectively. The matrix
representation is defined as follows:

R = Q:QxQ7rQxQr (33)
R = Q.(QxQr)? = Rpckrxr (34)

where Qk, Qc and Qrt are matrix form of KP, DCT, and TP, respectively. Fig. 2 shows the plot
of the DCKTKT of a cameraman image of (128x128) image size, and using control parameter
p = 0.5, and N = 128. Observably, the first quarter accumulates all the signal information by
containing the high energies, whereas the low energies are dispersed among the other
transform coefficients; therefore, this hybrid form can achieve high energy compaction as
compared to other hybrid forms.

Amplitude

150
100

yoget ¥

Figure 2. The representation of cameraman image in DCKTKT domain.

Fig. 3 demonstrates the process for generating DCKTKT coefficients based on DCT, KP and
TP. It is essential to mention that DCKTKT has superior EC property over previous hybrid
forms and does not localize in space.
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( Matrix
\ multiplication DCKTKT

Polynomial size N
Control parameter P 41

Figure 3. The flow chart of DCKTKT moments generation.

Matrix Matrix to the ]
multiplication power of 2

4. METHODS

In this section, the methods used to evaluate the performance of the DCKTKT hybrid form is
presented.

4.1 Energy Compaction (EC)

Energy compaction is a cornerstone of any orthogonal polynomial. It is defined as the ability
of a transformation to represent the signal with a small number of transform coefficients
while maintaining the accuracy and quality of the signal. This property is particularly useful
for data compression, noise reduction, efficient storage and transmission and feature
extraction.

Using a Markov sequence procedure of the first-order, zero mean and length N to find the
distribution of moment energies for DCKTKT which is based on conversion the M matrix
(covariance matrix with different covariance coefficient, p) into a transform domain using
the following equation from (Abdulhussain et al., 2019):

T, = R *M  RT (35)

Where R is any orthogonal polynomial matrix and T is the transform coefficients’ matrix.
p=0.8 and p=0.9 are two covariance coefficients that used in this study with N=8 to make a
comparison between the existing polynomials (DKTK (Mahmmod et al. 2018), DTKT
(Jassim and Raveendran, 2012), SKTP (Abdulhussain et al., 2019), STKP (Idan, 2020))
and the proposed one in terms of the transform coefficient variance as shown in Table 1, for
DKTT and SKTP.

The minimum values start from the edges and then gradually increase until reaching the
middle, where the maximum value settles and vice versa for DTKT, STKP and DCKTKT where
the maximum value settle in the middle.

Whilst, to check the EC capabilities of the existing polynomials and DCKTKT, the normalised
basis restriction error Jnis used (Zhu et al., 2010):

N—-1 .2
_ 2q=n93
— yN-1 .27
2g=0 9§

In =0,1,..,N—1 (36)
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Table 1. The variance distribution of the transform coefficient when N = 8 and p = (0.8, 0.9).

D p=0.8 p=0.9
DTKT | DKTT | STKT | SKTT | DCKTKT | DTKT | DKTT | STKT | SKTT | DCKTKT

1| 2336 | 0.254 | 3.031 | 0.188 2.038 2.585 0.160 | 3.402 | 0.108 2.616
2| 0.659 | 0.676 | 0.457 | 0.349 1.246 0.571 0.568 | 0.257 | 0.187 1.248
3| 0526 | 1.295 | 0.269 | 1.016 2.515 0.446 1.309 | 0.183 | 0.869 2.852
41 0479 | 1.774 | 0.242 | 2.446 1.087 0.398 1.964 | 0.158 | 2.836 0.677
5| 0479 | 1.774 | 0.242 | 2.446 0.577 0.398 1.964 | 0.158 | 2.836 0.348
6 | 0.526 | 1.295 | 0.269 | 1.016 0.260 0.446 1.309 | 0.183 | 0.869 0.126
7 | 0.659 | 0.676 | 0.457 | 0.349 0.155 0.571 0.568 | 0.257 | 0.187 0.074
8| 2336 | 0.254 | 3.031 | 0.188 0.122 2.585 0.160 | 3.402 | 0.108 0.058

4.2 Face Recognition Application

Face recognition technology plays a crucial role in automatically identifying or verifying
individuals from images or videos. It operates in two main modes: face
authentication(Jassim and Raveendran, 2012), which is a one-to-one matching process,
comparing a query face image with a specific template image to verify identity, and face
identification (Jassim and Raveendran, 2012), which involves a one-to-many comparison
between the query face against multiple images in a database to determine the correct
identity.

Historically, various approaches have been developed for face recognition, starting in the
1990s where the entire face is used as input for recognition and included both linear and
non-linear techniques such as PCA, LDA, DCT, KPCA, and CNNs; these approaches are called
holistic approaches (Zafaruddin and Fadewar, 2014). While in the early 21st century,
Feature-based approaches (Chellappa et al., 1992) gained traction by focusing on key facial
features (e.g., nose, mouth, eyes) or geometric properties, employing tools like LBP, HOG,
SIFT, and SURF. More recently, Hybrid approaches (Benradi et al., 2023) were developed,
and blended these methods to leverage the strengths of both and enhance recognition
performance (Ameen et al., 2023).

o1 04 06
Orthogonal Batch Fully
Q}momm] Normalization WC d
hybrid form me: Layer

The first layer, which This technique enables
compute the orthogonal each convolutional layer to
moments for the input learn more independently
images and whose size by normalizing the outputs

corresponds to the moment of the preceding layers to
order. enhances the  overall

learning process and
reduces the chances of
overfitting and divergence.

function to
probability
representing each class.

output

— 05

2D Max-
Pooling Layer

, 02

S
Convolution
layer
03

After the convolution layers, a

This layer performs a linear
combination on the incoming
data from earlier layers, and
then applies the softmax

vector

The a.um of this layer is to Activation ‘ )

identify a set of features Layer with Poolmg layer is usually
within the moment matrix, ReLUt incorporated to reduce the
rather than directly in the dimensions of the feature maps. As

original image, through the
application of 2D
convolution operations.

The feature maps generated by
the convolution layer are
transformed non-linearly in the
activation layer for identifying
intricate features that linear
regression can't handle.

a result, the network's parameters
are reduced, computation times are
improved, and the risk of
overfitting is decreased.

Figure 4. Flow chart of face recognition system.
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On the other hand, to extract more features efficiently from facial images, orthogonal
moments are used, particularly those involving Krawtchouk polynomials, due to their
robustness against noise and their ability to capture both global and local features. In this
work a comparison between the recent hybrid forms and the proposed one in terms of
accuracy in noisy and noise free environments using ORL database. Fig. 4 illustrates the
flow chart of the face recognition implementation process that depends on CNN hybrid
approach with orthogonal polynomials, which follows a similar structure to the face
recognition workflow detailed in (El Madmoune et al., 2023).

4.2.1 Dataset

The ORL Faces database, formerly titled 'The ORL Database of Faces,' comprises a collection
of face images captured between April 1992 and April 1994 at the laboratory. It includes ten
images per subject for 40 distinct individuals, with variations in lighting, facial expressions
(such as open/closed eyes or smiling/not smiling), and facial details (such as wearing glasses
or not). The images were consistently taken against a dark, uniform background, with
subjects positioned upright and facing forward, allowing for slight lateral movement. Each
image is 92x112 pixels in size, with 256 levels of gray per pixel. Fig. 5 depicts an example of
the used images.

The database is randomly divided into 70% training images and the rest for testing in the
case of a noisy and noise-free environment, except that in the case of a noisy environment,
the (Speckle, Poisson, Salt and Pepper, and Gaussian) types of noise are added to the testing
images.

Figure 5. image examples of ORL database.

5. RESULTS AND DISCUSSION
5.1 Energy Compaction

The fewer polynomial coefficients used in signal reconstruction, the better, and this is
achieved through the EC property using the restriction error equation (36). Figs. 6 and 7
compare the existing polynomials and the proposed polynomial in terms of Jn against n,
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where the covariance coefficient p is 0.8 and 0.9. This shows that DCKTKT exceeds the recent
hybrid form in performance, achieving the minimum Jn value faster. As a result, DCKTKT's
superior ability to concentrate signal energy into fewer coefficients leads to higher efficiency
and reduced computational complexity. Adequate energy compaction guarantees that the
majority of signal information is captured in a smaller subset of moments, leading to faster
reconstruction and better preservation of essential features with minimal loss.

1

:\ DCKTKT|
% DKTT
| DTKT
0.8 " SKTP
RN STKP
3 |\ \
To0sr |\ Y
=
5
L 04t
B
B
02 F
0 " | L 1 o~
1 128 256 384 512 640 768 896 1024

Number of retained samples (m)

Figure 6. Restriction error comparison of the proposed polynomial and the recent
polynomials (p = 0.8).

1 T
t\- DCKTKT
|ﬁ'.l DKTT
| '.I DTKT
0.8\ SKTP
'I I". \ STKP
1 I'I
= | 1}
5 06| \
= [\ 0\
g \
EoaF \ 0\
W 1
8 \ A\
AR\
02+ \*m
o
\\"‘.'---._ | —
_“".-—-_,________ -""—-________

1 128 256 384 512 640 768 896 1024

Number of retained samples (m)

Figure 7. Restriction error comparison of the proposed polynomial and the recent
polynomials (p = 0.9).

5.2 Face Recognition Application

Two benefits will be obtained by combining orthogonal polynomials with the CNN module
in the face recognition application. The first is the reduction in the processing complexity,
and the second is an increase in the computational speed (El Madmoune et al., 2023).
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For noise-free environment and with different orders of moments’ selection, as shown in
Table 2, which illustrates the accuracies of hybrid forms in different orders of moments’
selection, The accuracy can be computed using the following formula:

Number of Correct Predictions

Accuracy = (37)

Total Number of Predictions
the DCKTKT shows improved results, especially when the moments’ orders become smaller;
At order (30x30) the DCKTKT achieve 90.00% also at order (40x40) the accuracy becomes
95.00%, which lead to fewer data to be processed and less execution time.

On the other hand and as shown in Fig. 8, with the addition of noise to the images, for
example (Speckle, Poisson, Salt and Pepper, and Gaussian) at different rates (0.05 and 0.01),
the DCKTKT polynomial shows remarkable accuracy results at order (30x30) as shown in
Table 3, and especially with speckle noise, whilst at order (40x40) and as shown in Table
4, the DCKTKT is superior to other polynomials in terms of salt and pepper noise the
accuracy is 95.00% Which is similar to the accuracy result of noise-free environment. Also,
when adding a Poisson noise, the DCKTKT polynomial achieved high results, 93.75%. This
confirms that DCKTKT is highly noise-tolerant and successfully captures the essential
features needed for face recognition. It also achieves the most remarkable recognition
performance, even under the effect of noise.

Table 2. Classification accuracies of recent hybrid forms with DCKTKT in different orders.

Order SKTP STKP DTKT DKTT DCKTKT
30 81.25% 78.75% 57.50% 83.75% 90.00%
40 82.50% 80.00% 63.75% 88.75% 95.00%
50 86.25% 86.25% 62.50% 92.50% 88.75%

Table 3. Classification accuracies of recent hybrid forms with DCKTKT in (order = 30).

SKTP STKP DTKT DKTT DCKTKT

Speckle 62 = 0.05 86.25% 77.50% 38.75% 77.50% 90.00%
Speckle 62=0.01 85.00% 75.00% 53.75% 82.50% 91.25%
Poisson 78.75% 82.50% 58.75% 85.00% 88.75%

Salt and Pepper-d = 0.05 77.50% 71.25% 27.50% 76.25% 81.25%
Salt and Pepper-d = 0.01 80.00% 73.75% 53.75% 82.50% 88.75%
Gaussian = 0.05 72.50% 51.25% 7.50% 58.75% 60.00%
Gaussian = 0.01 81.25% 71.25% 36.25% 82.50% 85.00%

Table 4. Classification accuracies of recent hybrid forms with DCKTKT in (order = 40).

SKTP STKP DTKT DKTT DCKTKT

Speckle 62= 0.05 80.00% 73.75% 30.00% 82.50% 90.00%
Speckle 62=0.01 80.00% 81.25% 61.25% 88.75% 91.25%
Poisson 83.75% 76.25% 58.75% 85.00% 93.75%

Salt and Pepper-d =0.05 | 83.75% 63.75% 23.75% 87.50% 85.00%
Salt and Pepper-d =0.01 | 81.25% 80.00% 56.25% 90.00% 95.00%
Gaussian = 0.05 76.25% 40.00% 7.50% 77.50% 72.50%
Gaussian = 0.01 82.50% 66.25% 35.00% 90.00% 91.25%
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Figure 8. Classification accuracy for different orders of different hybrid forms with DCKTKT. (a)

noise free environment, ((b) poisson, (c) 1%
Gaussian, (f) 5% Gaussian, (g)

salt and pepper, (d) 5% salt and pepper, (e) 1%
1% spacle, (h) 5% spacle) noises.
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In summary, the study reveals that by combining different polynomials such as TP, KP, and
DCT, the resulting hybrid form can leverage the strengths of each polynomial. For instance,
the discrete cosine transform has a superior energy compaction property, distinguishing it
from other polynomials, and the krawtchouk polynomial has a high localization, giving it a
high ability to extract features. Therefore, the proposed hybrid form has superior energy
compaction, and with improved feature extraction property, the proposed polynomial can
more effectively focus on relevant information, resulting in a more precise and resilient face
recognition system capable of identifying subtle variations in facial features under various
conditions, whether noise-free or noisy. Furthermore, this hybrid form minimizes
redundancy in data representation, optimizing resource utilization and improving the
overall recognition performance.

6. CONCLUSIONS

This paper proposes a new hybrid form of orthogonal polynomials along with their
corresponding moments. The proposed hybrid form, named DCKTKT, is derived from three
OPs: DKP, DTP, and DCT. The results show that DCKTKT excels in energy compaction
compared to existing hybrid forms. To assess its effectiveness, a Face Recognition system
was implemented as an application. The integration of orthogonal polynomials with a CNN
module in the Face Recognition system achieved remarkable accuracy, surpassing SKTP,
STKP, DTKT, and DKTT in both clean and noisy environments. Thus, the proposed DCKTKT
hybrid OP exhibits superior performance and holds significant promise in signal feature
extraction. Future work will focus on applying DCKTKT and its transform domain to various
computer vision fields, particularly image compression, due to its high energy compaction
properties.

NOMENCLATURE
Symbol Description Symbol Description
Discrete Cosine-Krawtchouk- :
DCKTKT Tchebichef transform KP Krawtchouk Polynomial
DCT Discrete Cosine Transform TP Tchebichef Polynomial
EC Energy Compaction STKP |Squared Tchebichef Krawtchouk Polynomia
DKT Discrete Krawtchouk Transform| DTKT | Discrete Tchebichef Krawtchouk Transform
DTT Discrete Tchebichef Transforms| CNN Convolutional Neural Network
OoP Orthogonal Polynomial TTR Three Term Recurance Relation
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