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ABSTRACT

There are numerous real-world applications for delay differential equations, including
engineering model systems with time delays, such as control systems and communication
networks, time-limited meals, blood pressure, hemopoiesis, and others, especially when the
oscillation in these equations is exploited. To fulfill the goal of this study, certain of the
coefficients in the first-order logistic equation must be piecewise continuous. This can only
be accomplished by using the delay differential equations with the piecewise constant
argument to investigate the oscillation or nonoscillation property of all first-order logistic
equation solutions. The solution's piecewise constant is the largest integer function. Using
techniques such as transforming the non-linear delay differential equation to a linear delay
differential equation and then using integral inequality, we provide adequate circumstances
for all solutions to oscillate. To ensure all solutions, required and adequate conditions have
been defined. After that, looking at an example shows how the oscillation of the food-limited
equation. Also, the figures appearing at the end of examples show more explanation.
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1. INTRODUCTION

Due to their widespread application in a variety of fields, including biology, ecology,
engineering, communications, and others, delay differential equations are regarded as one
of the most significant categories of food limited (Cooke, 1984; Mahmoud and Dheyaa,
2013; Ali and Al-Zughaibi, 2024). Oscillation of erythrocytosis and anemia were studied
in females and males in equilibrium(Hadeed and Mohamad, 2024; Hadeed and
Mohamad, 2024). First-order nonlinear neutral differential equations with multiple non-
monotonic delays and several variable coefficients with influential terms are discussed and
dependent on many essential theorems in delay (Yuan, 2001; Papaschinopoulos and
Schinas, 2007; Qaraad et al., 2022; Abbas and Mohamad, 2023). The existence of a
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solution to the nonlinear differential-difference problem is discussed (Jones, 1962) . The
speed of propagation of solutions is then explored using initial data supported by a compact
p(r(w)
k
Hutchinson’s equation, r(w) = 0 and K is positive constant. Hutchinson's equation has been

investigated by several authors, who have provided appropriate conditions to ensure the
oscillation of each solution as well as conditions to ensure the convergence of all non-
oscillatory solutions of that equation (Gopalsamy et al., 1988; Gopalsamy, 1992).
(Bazighifa et al., 2020) introduced a new oscillation criteria for the solutions of even-order
neutral differential equations with a p-Laplacian like operator. (Chatzarakis and
Logaarasi, 2023) investigated the forced oscillation of impulsive fractional partial
differential equations. Sufficient conditions are established which guarantee the
solutions' oscillation by applying the integral transformation technique and differential
inequality method. Also, an example is shown to illustrate them. Some oscillation
conditions for the solution of the non-autonomous food-limited equation with constant and
variable delays were discussed in (Berezensky and Braveman, 2003; Yuji and Weigao,
2003; Dou and Li, 2011; Abdulhamid, 2012; Tian and An, 2023). The oscillation criteria
for the delay equation or neutral differential equations with the piecewise constant
argument are discussed, where some conditions are set to ensure the oscillation for every
solution of these equations (Aftabizadeh et al., 1987; Partheniadis, 1988; Agwo, 1998;
Yuan, 2001; Zhiguo and Jianhua, 2003; Wang and Cheng, 2009; Zhang and Hong-Xu,
2011; Muminov and Radjabov, 2024). The oscillation properties and asymptotic behavior
of solutions of neutral differential equations under the influence of impulses have been
investigated, and some appropriate conditions have been obtained to ensure the oscillation
of each solution of these equations (Mohamad and Jaddoa, 2020a; Mohamad and Jaddoa,
2020b).

In this paper, some conditions are produced to ensure the oscillation of the logistic equation,
also when using some conditions for the function r(w) to translate the logistic equation to
time delay limited food and find the oscillation to it.

form of the differential equation, ¢(w) = r(w)e(w) (1 — ),T(w) < w, known as

0@ = 1@9@) (e@ =) fip-r)-glo-11) =0 (1)

Where 7 € C[[ty, ©); R*], @ € PC[[ty,®); R*], Bi,7; € (0,), [.]Is the greatest integer
function, PC is the space of all piecewise continuous functions. For time, w € [k.k + 1),k =
0,1,2, ..., Eq. (1) becomes

?'(@) = r@p@@@ -y fipo—1) - pl- D). @

A function ¢(w) is considered to be a solution of Eq. (1) if 9(w) € C}[[wy — T, ); R], with
the potential exception of the points [w] € [0, ) where one-sided derivatives exist, and
Eq. (1) satisfied by ¢ (w) as a solution (Cooke, 1984).
The first-order impulsive neutral differential equations were explored, and some impulsive
conditions were discovered to ensure the oscillation of all solutions to these equations
(Mohamad and Jaddoa, 2020a). The oscillation criteria were examined for all solutions to
first-order linear neutral differential equations with positive and negative coefficients.
A solution ¢ (w) Is said to oscillate if there exists a sequence {w,}, w,, = © as m — o such
that ¢ (w,,) = 0.
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The graphing of the figures shown in this paper was used the mathway graph in the internet.

2. MATERIALS AND METHODS

In this section, three results are obtained for the oscillation of every solution of Eq. (1). The
unique positive equilibrium, or what we can call the steady state of Eq. (2), can be calculated
as follows: let at equilibrium, ¢(w) = ¢(w —1;) = @(k — 1) = p*and a(w) = a” hence

a*
= 3
Y CIVYL A ©
Theorem 1. Assume that 0 < a(w) < ¢* (XL, B; + 1), and
k+1
1
lim supf r(s)ds >—. (4)
koo Jg ®

Then every solution of Eq. (2) oscillates about its equilibrium ¢*.

Proof: Suppose that Eq. (2) possesses a nonoscillatory solution ¢(w), let ¢@(w) > @7,
p(w—1;)> 0" k—1) > ¢*, for time, w€ [k,k+1), k=012, (for the case
¢(w) < @*, the proof can be treated similarly).

Let x(w) = (p( ) *(@) > 1, and x(w) = 0 if and only if (w) = ¢*, that

is x(w) is osc1llat1ng if and only if ¢(w) oscillates about equilibrium ¢*, from (p(w) =
p*e*@ yields ¢'(w) = @*x'(w)e*®), hence Eq. (2) leads to

X(@) = r(@)@(@) = ). fig"e O e, 5)

By using a(w) — Yi=; Bi@* — ¢* < 0, Eq. (5) reduce to
x'(w) <r(w) (a(a)) —@* (1 + zi=1ﬁi>> <0

Therefore, x(w) is a nonincreasing function.
Integrating Eq. (5), from k to k + 1 one can conclude.

x(k+1)- x(k) —f 'a(w)r(w) dw — @ f r(a))z L B e @ dy —
p*exk-1 fk r(w)dw. (6)

Since a(w) < @* (T~ ;i +1), e¥@ > 1, e*X® > 1 + x(w), then Eq. (6), leads to
x(k+1)-x(k)
n k+1 n k+1
<o) B r@dete ) fi r@de
n e T
—0 Y B j r@do - e [ r(w)do,
i=1 k

<@ I B [T r(W)dw — 7 (L +x(k — D) [ r(w)dw,
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k+1
< —@*x(k— I)J. r(w)dw,
K

k+1
x(k+1) <x(k) - <p*x(k)f r(w)dw,
k

k+1
< x(k) <1 — <p*f r(w)dw).
k

Since x(k + 1) > 0 and x(k) > 0, then

k+1
1-— <p*fk r(w)dw > 0. (7

Letting k — oo, the inequality (7) leads to a contradiction with condition (4).

Theorem 2. Suppose that a(w) = ¢*~, B; + 1), and

k+1 S
lim supf r(s)ds >—. (8)
K @

k—o0

For some § > 0. Then every solution of Eq. (2) oscillates about its equilibrium ¢*.

Proof: Suppose that Eq. (2) possesses a nonoscillatory solution ¢ (w). Let x(w) = In %,

so x(w) <0, if p(w) < ¢@*or x(w) > 0,if p(w) > ¢*, and x(w) = 0 if and only if p(w) =
¢*, this means that x(w) is oscillatory if and only if ¢ (w) oscillates about equilibrium ¢*.
Let ¢(w) < ¢*, o(w—1) <@*, p(k—1) < ¢*, for time, w € [k,k+ 1), k=012,
(for the case ¢(w) > ¢*, the proof can be treated similarly). It follows that e*®) < 1, and
from

o(w) = p*e*@ yields ¢'(w) = @*x'(w)e*®), hence Eq. (2) leads to

(@) = (@) (al@) = Y pigre @ — grexten), ©)
i=1

Or

Y@ 2 @)@ =) fi =9 (10)

Since a(w) — XL Bip* —¢* =0, it can be concluded from (9) that x(w) is a non-
decreasing function. Integrating Eq. (9), from k to k + 1 one can conclude.

x(k +1)-x(k) = [ a(@)r(@) do — ¢ [ r(w) Bk, e @ P dw -

Since a(w) = @* (X%, f; + 1), e @ <1, e¥@ <1+ ﬁThen Eq. (10) leads to (11)
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x(k+1)-x(k)
n k+1 n k+1
>0’ Q) p+D | r@de—' Y fi[  rwdo
= k 1= k

k+1
— <p*ex("_1)f r(w)dw,
k
k+1 1 k+1
> p* ok -
> .L r(w)dw — @*(1 +x(k— 1))fk r(w)dw,

B (p* k+1
= Txk—D ka r(w)dw,

(p* k+1
x(k+1)=x(k)— % r(w)dw,
k

Since x(w) < 0, and nondecreasing then there is a time, w, € [k, k + 1) > 0 such that for
any L = —x(w,) or x(w) = —L,w = w, thus

(p* k+1
x(k+1)=1L (—1 + 7 r(w)dw).
K

Since x(k + 1) < 0 then

* nk+1

-1 +(Z—2 ] r(w)dw < 0.

When k — oo, the last inequality leads to a contradiction with condition (8).

Remark 1. Let r*, ¢ € (0, ) exists such that

*

rlw) =———. 12
¢ 2iz1 Bi (12)
Fortime,w € [k.k + 1),k = 0,1,2, ... then Eq.(2) becomes
n
X' (@) = 1) (a(@) = ) fip7e @ — grextkD), (13)
i=1

The following results concern with Eq. (13).

Theorem 3. Suppose that a(w) = ¢* (X2, Bi + 1). Then every solution of Eq. (13) oscillates
about its equilibrium ¢* if and only if

=1 (14)

¢(w)

x 7

Proof: Suppose that Eq. (2) possesses a nonoscillatory solution ¢ (w). Let x(w) = In
so x(w) <0, if p(w) < ¢@*or x(w) > 0,if p(w) > ¢*, and x(w) = 0 if and only if p(w) =
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¢*, this means that x(w) is oscillatory if and only if ¢ (w) oscillates about equilibrium ¢*.
Let p(w) < ¢*, p(w —1;) < @*, 9k —1) < ¢, fortime,w € [k, k + 1), k=0,1,2,-- (for
the case @(w) > ¢*, the proof can be treated similarly). It follows that e*(®) < 1, and from

o(w) = p*e*@ yields ¢'(w) = @*x'(w)e*®), hence Eq. (2) leads to

n

X'(@) =1(@) (@) = ) figrer @ — grert), (15)

i

Or
¥ (@) 2 7w) (a() - ZB(p ~¢)

Since a(w) — Y, Bi¢" —¢@* =0, it can be concluded from (15) that x(w) is a non-
decreasing, Eq. (15) reduced to
* n
¥ (@)= <a(w) @ il + 2y b’J)
CZi:l ﬁi
Therefore, x(w) is a non-decreasing function on w € [k, k + 1).
Integrating Eq. (15), from k to k + 1 one can conclude.

> 0.

k+1a w) =Y . *ex(w_fi)_ *ex(k—l)
x(k +1)-x(k) = r* f (@) — X1 Big ¢ . 6

k ¢ Z’f=1 Bi
Since a(w) = @* (T, B; + 1), e*® < 1, then Eq. (15) leads to

k+1(p*(2?=1 .Bi + 1) — gg*Z?zlﬁi _ QD*ex(k_l)

x(k+1)-x(k) = r*] dw,
k CZiF:l ﬁi 1
k11 _ px(k-1) Tt ——~
2r*<p*f fdwz—#.
k CTZi=1 Bi fi‘Zi=1 Bi
T*¢* —
x(k+1)-x(k) = —*1)
c iz Bi
Since x(w) is a non-decreasing function, r* and ¢ Y.¥_, 3; Are positive, which yields
r*¢* -
x(k—1)
x(tk+1)-xtk—1) > —————7——=
cr Zéczllﬁi
T,*(p* 5
x?(k—1)
xtk+1)=2x(k—1)(1 - ).
CZi‘czl ﬁi

Since x(w) < 0, and nondecreasing then there is a time, w, € [k, k + 1) > 0 such that for
any L > —x(wq) or x(w) = —L,w = w, thus

xtk+1)=2L| -1+ ——
c

Since x(k + 1) < 0 then
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which contradicts the presumption.
3. RESULTS AND DISCUSSION

In this section, finding sufficient conditions for the logistic equation solutions of first-order
nonlinear delay differential equations with piecewise constant argument—whether these
oscillatory solutions are convergent or non-convergent—was necessary to arrive at the
results.

The following example satisfies the conditions of theorem1.

Example 1. Consider the first-order neutral differential equation with a piecewise constant

1 =
¢'(w) —r(we(w) |la(w) — Ee_fgo(w —m)—@pk—-1)|=0, k=12,..,wy=0. 17)

b1 k—1 w
Where r(w) = +,a((u) =e 2+2—08e 2 sin(Qk —2) + 256_7 cos2w,fB =

2—8e 2 sin2w

%e_f,c? € [0,3).

k+1 k+1 5 1
> “dw==>=.
jk r(w)dw_Jk 4dw 4>2

All conditions of theorem 1 are met, hence according to theorem 1, every solution of Eq. (17)

oscillates about equilibrium and the solution ¢ (w) = 2 — §e ™ 2 sin 2w oscillates about ¢* =
2. Fig. 1 show the solution ¢ (w) oscillates about 2 when § = 1and § = 5.

¢(w)

()
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p(w)

10

(b)

Figure 1. (a) 6 = 1, the solution oscillates about ¢* = _1—7:, (b) 6 =5, the solution

: « 5
oscillates about ¢* = ﬁ

The following second example satisfies the conditions of theorem 2.

Example 2. Suppose that the first-order neutral differential equation with piecewise
constant given by

L b4
¢'(w) —r(w)p(w) [“(“)) —(e2 - Dp(w—m) — (eZ2 + Do(w — 2m) — p(k — 1)] =0, k
= 1,2, e, Wo = 0. (18)
While,r(w) = —5——, a(w) = 1+ 2e3 (1 —Zcos Zw) +2sin 2w — L cos(2k — 2), B, =
1—5c052a) 2 3 2

ez —1,p,=ez+1,6 €[-22).7(w) 2%, wy=0,¢" = 1.

k+1 k+1
f r(w)dw = f —dw =1.25> 1.
k ko 4

2
0 2 L 311/2 21

()
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2
N
0 ™2 T 311/2 2T
(b)
Figure 2. (a) § = 1, the solution oscillates about ¢* = 1.(b) § = 1.9, the solution oscillates
about ¢ = 1.

All conditions of theorem 1 are met, hence according to theorem 1, every solution of Eq. (18)
oscillates about equilibrium, the solution p(w) =1 — gcos 2w oscillate about ¢* = 1. Fig.
2 shows the solution ¢ (w) oscillates about 1 when § = 1.

Note that, the solution approach is more equilibrium when § — 0.
The following example satisfies the conditions of theorem 3.

Example 3. Suppose that the first-order neutral differential equation with piecewise
constant given by

¢'(@) ~ 1(@)pw) [a(w) — ¢ (0~ g) ~pk=D]=0, k=12,..,w5=0. (19)

—0.25cosw

¢(w) = 2 — sinw, While,r(w) = 4, a(w) =
2,L=—-1,r"=8w,=0,¢" = 2.

+4—sin(k—1)+cosw, 1 =1,c=

2—sinw

**1

Clear that .
ear tha T =

So that, by using theorem 3, one can conclude, the function ¢ (w) Is oscillatory, see Fig.3

_
\\/

Figure 3. The solution oscillates about ¢* = 2.
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4. CONCLUSIONS

Understanding and computing all possible solutions to the first-order nonlinear logistic
neutral differential equation using the piecewise constant argument. Furthermore, the
oscillation trend seeks to investigate and determine the necessary and sufficient conditions
for the oscillation of solutions to the first-order neutral differential equation with piecewise
constant argument. In this work, we used a neutral differential equation model with
piecewise constant arguments to examine the oscillatory behavior of food rations. According
to our research, the model displays oscillatory behavior under specific circumstances,
indicating variations in the availability and consumption of food. These findings emphasize
how crucial it is to model food systems while taking temporal delays and discrete changes
in the food supply into account. The results of this study can help guide resource
management and food security policy decisions. Future studies should examine how other
variables. Adequate conditions were drawn to create the convergence or divergence of all
solutions for the first-order neutral differential equation with a piecewise constant
argument for time. w — oco. All obtained results are presented with illustrative examples.

NOMENCLATURE
Symbol Description Symbol | Description
) The time 6 Positive constant
r(w) Growth rate of people at time w L Positive constant
o(w) Density of people at time w @[w — 1] | Density of people at
discontinues time w — 1
a(w) Positive function at time w e*(@) Exponential function
" B, Positive constants C Positive constant
l
i=1
¢(w — ;) | Density of people at delay time w — 1;| x(w) Logarithmic function
[.] [s the greatest integer function
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