
 

 

Journal of Engineering 
journal homepage: www.jcoeng.edu.iq  

Volume 31        Number 6       June 2025  
 

 

 

*Corresponding author 
Peer review under the responsibility of University of Baghdad. 
https://doi.org/10.31026/j.eng.2025.06.08 
© 2025 The Author(s). Published by the College of Engineering, University of Baghdad 
                   This is an open access article under the CC BY 4 license (http://creativecommons.org/licenses/by/4.0/). 
 

Article received: 23/11/2024 
Article revised: 07/01/2025  
Article accepted: 20/01/2025 

Article published: 01/06/2025 
149 

 

Tumour Chemotherapy by Continuous Infusion Drug Using Exponential 
Growth 

 

Sokaina Sabah Hassan   * , Hayder M. Al-Saedi  
 

Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq  
 

ABSTRACT 

We present a theoretical framework combining exponential growth dynamics and 

Michaelis-Menten kinetics to model the interaction between tumor density and drug 
concentration delivered via an infusion pump. The model accounts for the saturation of 
tumor growth inhibition at high drug concentrations, reflecting biological saturation effects. 
Continuous infusion chemotherapy is highlighted as a superior delivery method, 
maintaining consistent drug levels at the tumor site while reducing systemic side effects 
compared to conventional bolus methods. The framework provides a predictive tool for 
determining the critical drug concentrations and tumor densities required for tumor 
elimination while minimizing adverse effects. Stability analysis, based on solving nonlinear 
equations, identifies equilibrium points that represent steady states of tumor density and 
drug concentration. The stability of these points is examined to assess the long-term 
effectiveness of chemotherapy regimens. Illustrative numerical simulations demonstrate 
how variations in drug delivery rates, tumor properties, and kinetic parameters influence 
therapeutic outcomes. Key factors such as the minimum drug concentration needed to 
suppress tumor growth and conditions for tumor eradication or regrowth are identified. 
Sensitivity analysis further reveals how parameter changes affect system stability and 
outcomes, offering insights for optimizing dosing strategies. This framework bridges 
theoretical modeling and practical challenges in cancer chemotherapy, providing a versatile 
tool for understanding and improving treatment strategies. It can be adapted to various 
tumor types and treatment modalities, supporting advancements in personalized medicine 
and future cancer therapy research. 
 

Keywords: Chemotherapy, Exponential growth,  Infusion drug delivery, Michaelis-Menten 
kinetics, Stability. 
 

1. INTRODUCTION 
 

Cancer remains a leading cause of mortality worldwide, with an estimated 19.3 million new 
cases diagnosed annually and 10 million cancer-related deaths (Berger et al., 2022). The 
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primary modalities for cancer treatment include surgery, radiation therapy, chemotherapy, 
and immunotherapy (Baskar et al., 2012). Among these, chemotherapy remains a 
cornerstone due to its ability to target proliferating cancer cells. However, its efficacy is often 
limited by systemic toxicity, imprecise drug delivery, and the emergence of drug resistance 
(Keefe and Bateman, 2012; Brenner et al., 1967). These challenges necessitate the 
development of advanced therapeutic strategies to optimize drug administration and 
improve patient outcomes. Chemotherapy involves the administration of pharmacological 
agents that disrupt the growth and replication of cancer cells. A wide variety of 
chemotherapeutic agents exist, each targeting specific stages of the cell cycle or molecular 
pathways involved in tumor progression (Padmanabhan et al., 2021). Despite their 
efficacy, the lack of precise drug delivery mechanisms often leads to systemic side effects 
and suboptimal therapeutic outcomes. To address these issues, infusion pumps have 
emerged as a promising technology for controlled and sustained drug delivery. Infusion 
pumps administer drugs in regulated doses, minimizing toxicity and improving drug 
targeting (Mayla et al., 2024; Hassan and Al-Saedi, 2025). Several researchers have 
investigated the potential of infusion pumps in oncology. For instance, (Jones, 1987; Dibrov 
et al., 1985) explored their use for continuous drug delivery in experimental cancer models, 
highlighting their potential to maintain therapeutic drug levels.  (Blackshear et al., 1979; 
Aroesty et al., 1973).  Studied the efficacy of implantable pumps, demonstrating reduced 
complications compared to external devices. More recently, mathematical models have been 
employed to simulate and optimize chemotherapy delivery systems. (Ledzewicz and 
Schättler, 2021). Developed control strategies for chemotherapy scheduling, while 
(Sharpe and Dobrovolny, 2021), used mathematical models to analyze drug-tumor 
dynamics. (Jawad et al., 2023; Anand et al., 2022). Extended these models by 
incorporating patient-specific parameters to enhance treatment precision. Despite these 
advancements, several gaps remain in the literature. Most existing studies focus on the 
pharmacokinetics of chemotherapy without fully integrating the dynamics of drug delivery 
systems. Furthermore, few models account for the biological constraints imposed by drug 
transport kinetics and the interaction of chemotherapeutic agents with tumor cells. This 
research addresses these gaps by developing a mathematical model that combines 
Michaelis-Menten kinetics with drug-tumor interactions, specifically tailored for 
chemotherapy delivery via an implantable infusion pump. Michaelis-Menten kinetics, 
traditionally used to model enzymatic reactions, provides a robust framework to describe 
the rate-limiting behavior of drug absorption and metabolism, offering a more realistic 
representation of the system (Liu and Yang, 2014).  
The governing problem in this study is to optimize the dosage and timing of chemotherapy 
to maximize tumor cell eradication while minimizing systemic toxicity. Using a system of 
coupled differential equations, we model the concentration of the chemotherapeutic drug 
(C) and the tumor cell population (w). The equations are derived based on fundamental 
principles of pharmacokinetics and tumor growth, incorporating parameters such as drug 
efficacy, tumor proliferation rates, and the saturation effects of drug delivery. Additionally, 
the infusion pump’s design is modeled to ensure precise dosing, accounting for the benefits 
of implantable devices in reducing external complications, such as infection and 
inflammation. 
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2. FORMULATING THE MODEL 
 

We begin with a schematic illustration of the application of cancer chemotherapy between 
tumor density and drug concentration by an infusion pump, as shown in Fig.1. F refers to 
the flow rate of the pump and u to the rate of blood flow away from the tumor site. In many 
situations, drugs that sustain the health of a patient cannot be administered orally but must 
be injected directly into the circulation. This can be done with serial injections (Malinzi et 
al., 2021), or in particular instances, using continuous infusion, which delivers some 
constant level of medication over an extended time interval. 

 

 

 

 

 

Figure 1. Exponential modeling device for continuous infusion chemotherapy, a tumor (w) 
is considered to be a group of identical cells, all of which are uniformly exposed to C units 

of the drug. 

The appropriate word equations are, now the system of equations involving the drug C and 
the tumor cell 𝑤 equation which might contain terms as follows 

   (1) [
rate change of 
tumor for time

] = [
growth rate of

 cells
] − [

drug − induced
 death rate

] , 

   (2) 
 [

rate change of 
drug for time

] = [
rate drug 

infused
] − [

rate of 
uptake 
by cells

] − [
rate of

 removal by 
 the circulation

], 

 
We assume that w is the number of tumor cells per unit of blood volume. 
C is the number of drug units in circulation per unit of blood volume. 
Now, we will write what each term Eqs.    (1)-   (2) represents 
 

   (3) 
 

[
rate change of 
tumor for time

] =
dw

dt
 

the tumor grows exponentially 

 

   (4) 
 
 

[
growth rate of

 cells
] = A(𝐶)w, 

and 

   (5) 
 

[
drug − induced

 death rate
] = Fw. 

On the other hand, the rate change of drug is defined as 

Inflow 

0C 

Dilution 

F 

               Blood  inflow 

w=tumour density 

C=drug concentrations 
Removal rate 

 

 

pump 
u 

f 
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   (6) 
 

[
rate change of 
drug for time

] =
dC

dt
 

where the three terms in Eq.    (2) are,  

 
   (7) 
 

[
rate drug 

infused
] = FC0, 

 
   (8) 
 [

rate of 
uptake 
by cells

] = −α A(𝐶)w, 

and 

 

   (9) 
 [

rate of
 removal by 

 the circulation

] = −uC. 

We are combining the assumptions of a rate change of tumor for time t with a rate change 
of drug for the time of differential equations. 
By substituting an Eqs.    (3),   (4), and    (5) in Eq.    (1), we get 
 

(10) 
 

𝑑𝑤

𝑑𝑡
= A(𝐶)𝑤 − 𝐹w. 

By substituting an Eqs.    (6),   (7),   (8), and    (9) in Eq.    (2) we get 

(11) 
 

𝑑𝐶

𝑑𝑡
= 𝐹𝐶0 − 𝛼 𝐴(𝐶)𝑤 − 𝑢𝐶. 

The parameters in the above system and their descriptions are summarised in Table 1. 
 

Table 1. Summary of the quantities and model parameters and dimensions of the model Eqs. (10) 
and (11) 

 

 

Quantity Description Dimensions 
A(C) The tumor growth rate and drug consumption (1/Unit time) 
𝐀𝐦𝐚𝐱 The maximal tumor reproduction rate (1/Unit time) 

𝐀𝐧 The amount of medication at which the growth rate is in the 
middle of the upper limit 

(Mass/Volume) 

C The concentration of drug solution in a patient body (Mass/Volume) 
𝑪𝟎 The concentration of drug solution in the infusion pump (Mass/Volume) 
F The pump flow rate (Volume/Unit time) 
u Rate of blood flow away from the tumor site (Volume/Unit time) 
V The volume of the blood in direct contact with the tumor area Volume 
𝐰 The number of tumor cells per unit of blood volume (Number/Volume) 
𝛂 Drug exhaustion rate (Mass/Number) 
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2.1  Corrected Version 

By writing the exact dimension of Eqs. (10) and (11) we find they are not quite correct, so 
we now have to discover the mistakes made in writing them. 

(12) 
 

number

volume∗time
=

1

time
∗

number

volume
−

volume

time
∗

number

volume
. 

We discovered an inconsistency in the second term for Eq. (10) by looking at the dimensions; 
one way to correct this problem is to divide Fw by the quantity that holds the size 

dimensions. Since the only parameter available is V, we can regard 
Fw

V
, as the appropriate 

correction. Note that Fw is the number of tumor cells leaving per unit of time, so 
𝐹𝑤

𝑉
,  is the 

effective density of tumour cells  leaving per unit of time, thus we find the following 
corrected version of Eq. (10). 

(13) 
 

𝑑𝑤

𝑑𝑡
= A(𝐶)𝑤 −

𝐹𝑤

𝑉
 . 

Now, we write a corrected version of Eq. (11). 
 

(14) 
mass

volume∗time
=

volume

time
∗

mass

volume
−

mass

number
∗

1

time
∗

number

volume
−

volume

time
∗  

mass

volume
. 

A similar analysis applied to Eq.(11), and reveals that the terms  FC0 and uC should be 
divided by 𝑉 after correcting by the same procedure, thus we arrive at the following 
corrected version of Eq. (11), 

(15) 𝑑𝐶

𝑑𝑡
=

𝐹𝐶0

𝑉
− 𝛼 𝐴(𝐶)𝑤 −

𝑢𝐶

𝑉
 . 

2.2  Michaelis-Menten Kinetics 
 

The growth rate increases with drug availability only to a certain threshold. The individual 
tumor cells can only absorb drugs and proliferate at a restricted pace. A mechanism that 
exemplifies this phenomenon is the Michaelis-Menten kinetics (Wood and Thakker, 1982). 

(16) 𝐴(𝐶) =
𝐴𝑚𝑎𝑥𝐶

𝐴𝑛+𝐶
 .  

As shown in Fig. 2, the interaction of tumors with drugs is based on the drug catalysis of cell 

tumors, which is based on a similar model of enzyme catalysis by Michaelis and Menten, 

developed in  (Michaelis, 1925). Kinetics are characterized by a maximal rate of drug growth 

rate (denoted. 𝐴𝑚𝑎𝑥) and sensitivity to concentration (denoted 𝐴𝑛, referred to as the 

Michaelis–Menten constant) this latter term is the concentration of the drug that causes the 

growth rate to function at ½ 𝐴𝑚𝑎𝑥   (Kenakin, 2012) . The reaction exhibits a slow rise in 

percentage when the concentrations are low. When concentrations are elevated, the drug’s 

growth rate does not show a percentage change but reaches its maximum rate (Leskovac, 

2003). 
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Figure 2.  Michaelis-Menten kinetics: tumor growth rate and drug consumption A(C) is 

assumed to be a saturating function of drug concentration. 

Substitute Eq. (16) in Eq. (13) and Eq.(15). 

(17) 𝑑𝑤

𝑑𝑡
= (

𝐴𝑚𝑎𝑥𝐶

𝐴𝑛+𝐶
) 𝑤 −

𝐹𝑤

𝑉
 , 

(18) 
 

𝑑𝐶

𝑑𝑡
=

𝐹𝐶0

𝑉
− 𝛼 (

𝐴𝑚𝑎𝑥𝐶

𝐴𝑛+𝐶
) 𝑤 −

𝑢𝐶

𝑉
 . 

 
2.3  Non-Dimensionalisation of the Model 
 

Rescaling, or non-dimensionalizing, is the process of transforming a collection of equations 
(often ordinary differential equations or partial differential equations) into dimensionless 
forms by modifying the scale of the variables in the model (Conejo, 2021; Brunetkin et al., 
2018) For the selection of the optimal rescaling technique, we first analyze the situation in 
which the tumor and medications are uniformly distributed throughout space, thus spatially 
uniform (Pérez et al., 2017).  

We make a dimensional analysis of Eqs. (17)  and (18). We then substitute  w = w∗ŵ  , C =
C∗Ĉ , t = t∗τ. into Eq. (17), where w∗, C∗ and t∗ are those which have no dimensions and ŵ, Ĉ, 
τ are those which represent the units of measurement. 
 

(19) 
 

𝑑𝑤∗�̂�

𝑑𝑡∗𝜏
= (

𝐴𝑚𝑎𝑥𝐶∗�̂�

𝐴𝑛+𝐶∗�̂�
) 𝑤∗�̂� −

𝐹𝑤∗�̂�

𝑉
. 

Now we multiply both sides by 𝜏, divided by ŵ, and the result is  

(20) 
 

𝑑𝑤∗

𝑑𝑡∗
= 𝜏 (

𝐴𝑚𝑎𝑥𝐶∗�̂�

𝐴𝑛+𝐶∗�̂�
) 𝑤∗ − 𝜏

𝐹𝑤∗

𝑉
, 

We take a common factor (�̂�) from the denominator of the first term. 
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(21) 
 

𝑑𝑤∗

𝑑𝑡∗
= 𝜏𝐴𝑚𝑎𝑥 (

𝐶∗

𝐴𝑛
�̂�

+𝐶∗
) 𝑤∗ −

𝜏𝐹

𝑉
𝑤∗, 

 

(22) 
 

we choose  𝜏 =  
𝑉

𝐹
 , and �̂� = 𝐴𝑛, 

 
substitute Eq. (22) in Eq. (21), 

(23) 
 

𝑑𝑤∗

𝑑𝑡∗
=  

𝑉

𝐹
 𝐴𝑚𝑎𝑥 (

𝐶∗

1 + 𝐶∗
)  𝑤∗ −  𝑤∗. 

(24) 
 

Let 𝛼1 =  
𝑉

𝐹
 𝐴𝑚𝑎𝑥 , 

(25) 
 

 
𝑑𝑤∗

𝑑𝑡∗
=  𝛼1 (

𝐶∗

1+𝐶∗) 𝑤∗ − 𝑤∗. 

Remove the stars from the equation, so that the final version of Eq.(17) is, 

(26) 
 

𝑑𝑤

𝑑𝑡
= 𝛼1 (

𝐶

1 + 𝐶
) 𝑤 − 𝑤. 

Now, in a similar method, we  substitute the definitions of the parameters w, C, and t into 
Eq. (18). We then get 

(27) 
 

𝑑𝐶∗�̂�

𝑑𝑡∗𝜏
=

𝐹𝐶0

𝑉
− 𝛼 (

𝐴𝑚𝑎𝑥𝐶∗�̂�

𝐴𝑛+𝐶∗�̂�
) 𝑤∗�̂� −

𝑢𝐶∗�̂�

𝑉
, 

If we multiply both sides by 𝜏, divided by �̂�, the result is, 

(28) 
 

𝑑𝐶∗

𝑑𝑡∗
= 𝜏

�̂�

𝐹𝐶0

𝑉
−  𝛼𝜏 (

𝐴𝑚𝑎𝑥𝐶∗

𝐴𝑛
�̂�

+𝐶∗
)  𝑤∗  

�̂�

�̂�
− 𝑢

𝑉
∗ 𝐶∗𝜏, 

 we substitute Eq. (22) in Eq. (28), 
(29) 
 
 
 

𝑑𝐶∗

𝑑𝑡∗
=

𝐹

𝑉
 .

𝑉
𝐹

𝐴𝑛
𝐶∘ − 𝛼 

𝑉

𝐹
(

𝐴𝑚𝑎𝑥𝐶∗

1+𝐶∗ ) 𝑤∗ �̂�

𝑐̂
−

𝑢

𝑉
𝐶∗ 𝑉

𝐹
, 

(30) 
 

𝑑𝐶∗

𝑑𝑡∗
=

𝐶∘

𝐴𝑛
− 𝛼𝜏  (

𝐴𝑚𝑎𝑥𝐶∗

1+𝐶∗ ) 𝑤∗ �̂�

�̂�
− 

𝑢

𝐹
𝐶∗. 

 

(31) 
 
 

𝑑𝐶∗

𝑑𝑡∗
= 𝛼2 − 

𝛼𝜏𝐴𝑚𝑎𝑥�̂�

𝑐̂
 .

𝐶∗

1+𝐶∗
 𝑤∗ −

𝑢

𝐹
𝐶. 
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(32) 
 

Let  �̂� =  
�̂�

𝛼𝜏 𝐴𝑚𝑎𝑥
, 𝛼2 =  

𝐶∘

𝐴𝑛
, and let  𝛼3 =

𝑢

𝐹
 . 

 
(33) 

 

And substitute Eq. (32) in Eq.(31) 

𝑑𝐶∗

𝑑𝑡∗
=  𝛼2 −

𝛼𝜏𝐴𝑚𝑎𝑥

�̂�
 .

�̂�

𝛼𝐴𝑚𝑎𝑥𝜏
 (

𝐶∗

1+𝐶∗
) 𝑤∗ − 𝛼3𝐶. 

We then remove the stars from the equation, 

(34) 𝑑𝐶

𝑑𝑡
=  𝛼2 − (

𝐶

1+𝐶
) 𝑤 − 𝛼3𝐶. 

The system of Eq. (17) and (18) with seven parameters is transformed to the dimensionless 
system with three parameters after the non-dimensionalization process as 

�̇� = 𝛼1 (
𝐶

1+𝐶
) 𝑤 − 𝑤. (35) 

�̇� = 𝛼2 − (
𝐶

1+𝐶
) 𝑤 − 𝛼3𝐶, (36) 

where hypotheses  𝛼1, 𝛼2, 𝛼3, in Eqs. (24) and (32) are dimensionless values. 
 
3.  LINEAR STABILITY ANALYSIS 
 

In this section, we will discuss steady-state solutions for the model and, linear stability 
analysis for the continuous infusion model (Mitlin, 1993). 

3.1  Steady-State Solutions for Model 

The equilibrium points (�̅�, 𝐶̅), for the dynamical system can be found by making the right-
hand sides of Eqs. (35) and (36) equal to zero as a first step (Tschoegl, 2000; Zheng et al., 
2011) �̇� = 0, �̇� = 0. 

(37) 
 

𝛼1 (
�̅�

1+�̅�
 ) �̅� − �̅� = 0, 

(38) 
 

𝛼2 − (
�̅�

1+�̅�
 ) �̅� − 𝛼3𝐶̅ = 0. 

From Eq. (37)  

 w̅ ( α1 ( 
C̅

1+C̅
) − 1 ) = 0, 

either, ŵ = 0, or α1 ( 
C̅

1+C̅
) = 1,  

(39) C̅

1+C̅
=

1

 α1
. 
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α1C̅ = 1 + C̅, which leads to  α1C̅ − C̅ = 1 then  ( α1 − 1)C̅ = 1. 

(40) 
 

C̅ =
1

α1−1
. 

Substituting, w̅ = 0 in Eq. (38) α2 − 0 − 𝛼3C̅ = 0, C̅ =
α2

𝛼3
. 

(41) 
 

The first steady-state point is  𝑆1 = ( w̅1 , 𝐶1̅ ) = ( 0,
α2

𝛼3
). 

Substituting Eq. (40) in Eq. (38) gives 

α2 − (

1

α1−1

1+
1

α1−1

) w̅ − 𝛼3  
1

α1−1
= 0, leads to α2 − (

1

α1
) w̅ −

𝛼3

α1−1
= 0, leads to 

w̅ = α1 (α2 −
𝛼3

α1−1
). 

(42) 
 

The second steady state point is 𝑆2 = ( w̅2 , 𝐶2̅) = (α1 (α2 −
𝛼3

α1−1
) ,

1

α1−1
). 

To summarise this section, the steady-state points of the model are 

(43) 
 

𝑆1 = ( w̅1 , 𝐶1̅ ) = ( 0,
α2

𝛼3
). 

(44) 𝑆2 = (w̅2, 𝐶2̅) = (α1 (α2 −
𝛼3

α1−1
) ,

1

α1−1
). 

In the next section, we shall now determine whether 𝑆1,  𝑆2,  𝑆3 and 𝑆4 are stable steady 
states. 

3.2  Linear Stability Analysis for Continuous Infusion in Exponential Case 
 

Linearisation is the use of analytical techniques specifically developed for studying linear 
systems to analyze the properties of a nonlinear function close to a precise point. The 
linearisation of a function is the identification of the first-order term of its Taylor expansion 
in the vicinity of the end of interest inside a system defined by the described equation 
(Mohsen and Naji, 2022) The Jacobian matrix eigenvalues calculated at a hyperbolic 
equilibrium point may be used in the stability analysis of autonomous systems to determine 
the properties of that equilibrium (Ghaffari and Lasemi, 2015; Kravaris and Kookos, 
2021) Presented below is a comprehensive explanation of the linearisation theorem. 
Further clarification is required for linearisation in time-varying systems (Hartman, 1960; 
Matthias and Christian, 2014) where the stability criteria are Tr. (J) < 0 and det(J) > 0. 

If we assume the right-hand sides of Eqs. (35) and (36) as the functions 𝑓 and 𝑔.  

𝑓(𝑤, 𝐶) = 𝛼1 (
𝐶

1+𝐶
) 𝑤 − 𝑤.    (45) 
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𝑔(𝑤, 𝐶) = 𝛼2 − (
𝐶

1+𝐶
) 𝑤 − 𝛼3𝐶.    (46) 

Then the  nonlinear functions f and 𝑔 are assumed to have steady-state solutions, denoted 
by �̅� and 𝐶̅, the Jacobin matrix for the nonlinear system of Eqs.    (46) and    (48). 

   (47) 

𝐽(𝑤, 𝑔) = [

𝜕𝑓

𝜕𝑤

𝜕𝑓

𝜕𝐶
𝜕𝑔

𝜕𝑤
 
𝜕𝑔

𝜕𝐶

], 

 
where 

   (48) 
 

𝜕𝑓

𝜕𝑤
= α1 (

C

1+C
) − 1,  

𝜕𝑓

𝜕𝑐
= α1𝑤 (

1

(1+𝐶)2), 

 
   (49) 
 
 

𝜕𝑔

𝜕𝑤
= − (

C

1+C
),  

𝜕𝑔

𝜕𝑐
= − (

1

(1+𝐶)2) 𝑤 − α3. 

We then substitute  Eqs    (48) and    (49) in Eq    (47). 
 

   (50) 
 𝐽(𝑤, 𝑐) = [

α1 (
C

1+C
) − 1 α1𝑤 (

1

(1+𝐶)2)

− (
C

1+C
)  − (

1

(1+𝐶)2) 𝑤 − α3

], 

 

For the first equilibrium point 𝑠1 = ( 0,
α2

𝛼3
) 

                               
(51) 

𝐽𝑆1
= 𝐽 (0,

α2

𝛼3
) = [

α1α2

𝛼3+α2
− 1 0

−α2

𝛼3+α2
−α3

].    

 

𝑇𝑟 (0,
𝛼2

𝛼3
) =

𝛼1𝛼2

𝛼3+𝛼2
− 𝛼3 − 1,    (52) 

𝑑𝑒𝑡 (0,
α2

𝛼3
) = −α3 (

α1α2

𝛼3 + α2
− 1), 

   (53) 

since α1 > 1 This led to  
α1α2

𝛼3+α2
> 1, leads to det(J) < 0. 

Then ( w̅1 , 𝐶1̅ ), is a saddle point. 

For the second equilibrium point 𝑠2 = (α1 (α2 −
𝛼3

α1−1
) ,

1

α1−1
), 
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𝐽 (𝛼1 (𝛼2 +
𝛼3

1−𝛼1
) ,

1

𝛼1−1
) = [

0 (𝛼1 − 1)2 (𝛼2 −
𝛼3

𝛼1−1
)

−
1

𝛼1
−

(−1+𝛼1)2𝛼2+𝛼3

𝛼1

], 

(54) 

𝑇𝑟(𝐽) = −
(−1+𝛼1)2𝛼2+𝛼3

𝛼1
 leads to  𝛼2 >

𝛼3

𝛼1−1
 then 𝑇𝑟(𝐽) < 0, (55) 

 

𝑑𝑒𝑡(𝐽) =
(−1+𝛼1)((−1+𝛼1)𝛼2−𝛼3)

𝛼1
> 0. (56) 

Then (�̅�2, 𝐶2̅),  is stable. 

3.3  Analysis for Stability of Steady States for Continuous Infusion in Exponential Case 
 

In conclusion to the delivery of drugs by continuous infusion system, we will interpret the 
various results to extract helpful information from the mathematical analysis. To summarize 
our findings, we have determined that a sensibly operating delivery of drugs will always 
have a stable steady-state solution with the tumor populating the growth cell. Recall that this 
equilibrium can be biologically meaningful provided that, 𝛼1and 𝛼2 , satisfy the inequalities. 
 
From Eq. (44), 𝛼1 − 1 > 0, leads to 𝛼1 > 1, 
 
This constraint must be satisfied to prevent negative values of the drug 
concentration, �̂�2. 
 
From the same Equation, the first term which represents the tumour density 
 

(57) 
 
 

α1 (α2 −
𝛼3

α1−1
), which is also non-negative and leads to α2 >

𝛼3

α1−1
, (58) 

 
This constraint must be satisfied to prevent negative values of the tumor population, w̅1. 
 

From Eq. (24), 𝛼1 =  
𝑉

𝐹
 𝐴𝑚𝑎𝑥 ,                                                                                                                      (59) 

𝛼2 =
𝑐∘

𝐴𝑛
,              (60) 

The first condition (57) is thus equivalent to  

𝐴𝑚𝑎𝑥 >
𝐹

𝑉
 ,  

We notice that both sides of this inequality have dimensions 1/𝑡𝑖𝑚𝑒. It is more revealing to 
rewrite this as 

1

𝐴𝑚𝑎𝑥
<

𝑉

𝐹
.        (61) 
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To interpret this, observe that. 𝐴𝑚𝑎𝑥  , is the maximal tumor reproduction rate (in the 

presence of unlimited drugs. 
𝑑𝑤

𝑑𝑡
= Amax𝑤). Thus 

1

Amax
,  is proportional to the doubling time 

of the tumor population.  
v

F
 is the time it takes to replace the whole fluid volume in the 

medicine pump  with a fresh drug medium. Eq.       (61) reveals that if the tumor doubles the 
time. 𝜏2, is smaller than the emptying time of the chamber (×1/ ln 2 ), the tumor will not be 

washed out in the efflux faster than it 𝐶2̅ =
1

α1−1
, and from Eq.(32). α2 =

𝐶∘

𝐴𝑛
,  by substituting 

these equations into Eq.(58). 

 

α2 >
𝛼3

α1−1
, leads to 

𝐶∘

𝐴𝑛
> 𝐶2̅𝛼3, this means 𝐶∘ > 𝐴𝑛𝐶2̅𝛼3  

Substituting the value of 𝐶2̅  
 

𝐶∘ >
𝐴𝑛𝛼3

α1−1
 ,  by substituting the value of α1, 

𝐶∘ >
𝐴𝑛𝛼3

𝑉

𝐹
 𝐴𝑚𝑎𝑥−1

 leads to 

𝐶∘ >
𝐴𝑛𝛼3

𝐴𝑚𝑎𝑥
⁄

𝑉

𝐹
 −

1

𝐴𝑚𝑎𝑥

,  Or  
𝐶∘

𝐴𝑛
> 𝐶2,  

        (62) 

Since �̂� = 𝐴𝑛, is the reference concentration used in endearing Eq.(35) and (36) 
dimensionless, we see that 

𝐶̅ = 𝐶2̅�̂� = 𝐴𝑛𝐶2̅, 

The original dimension-carrying steady state (whose units are mass per unit volume) thus, 
Eq.        (62), is equivalent to 
 
𝐶∘ > 𝐶2̅. 
 
This summarizes an intuitively obvious: the initial drug is larger than the drug in the 
medicine pump, and its concentration in the tank does not exceed its concentration. The time 
required for the tumor to multiply must be less than the time needed for complete drug 
replacement within the tumor site. 
The values we choose must satisfy the condition we have deduced. 
 

The first condition 𝛼1 > 1, or the second condition  𝛼2 >
𝛼3

𝛼1−1
.         (63) 

 
4.  NUMERICAL RESULTS AND DISCUSSION 

In this section, the interaction between tumor volume and drug concentration by the 
infusion pump is studied. We apply three numerical cases for the values in Table 2 and 
Table 3. Using MATHEMATICA code to solve the model in Eqs.    (45) and    (46), MATLAB 
R2023a is used to find out the numerical solution of the system of Eqs.    (45) and    (46) via 
the Runge-Kutta method, where the blue curve indicates the tumor density and the red curve 
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indicates the drug concentration. Exponential model programming is used to use Eqs.    (45) 
and    (46). phase-plane diagrams;  can depict each of these situations graphically. 
 
4.1  Standard Parameters Set 

 

To implement numerical examples in the aforementioned system, we need to choose 
numbers that meet the criteria in Table 2 and simulate several scenarios to demonstrate the 
outcomes in each scenario. Hence, we choose the predetermined parameters shown in the 
table. The parameter V, as stated in a 2020 article (Sharma and Sharma, 2024), comprises 
around 10.5 pints (5 liters) on average (V=5000 ml) of blood in the typical human adult body, 
with potential variations influenced by many variables. Theoretical knowledge of the 
parameter F is derived from its calibration by the pump manufacturer. The standard value 
of F falls within the range of 1-6 ml/day (Edelstein-Keshet, 2005). The highest tumor 
reproduction rate, denoted as 𝐴𝑚𝑎𝑥 , is equivalent to the intensity of the administered 
dosage. Assuming the values of the coefficients provided in the exponential model (Hassan 
and Al-Saedi, 2024), r = 0.0331 and 𝐴𝑚𝑎𝑥 = 0.0331. Adjusted dosage (𝐴𝑛) is the dosage at 
which the growth rate falls between the upper and lower limits. Let 𝐴𝑛 be equal to 0.015545. 

Table 2. Model parameters and their units.   
 

Symbol Description Typical value Unit Source 
𝐴𝑚𝑎𝑥  The maximal tumor 

reproduction rate 
0.0331 (1/day) (Hassan and 

Al-Saedi, 
2024) 

𝐴𝑛 The amount of 
medication at 

which the growth 
rate is in the middle 

of the upper limit 

0.015545, 
0.001,0.005,0.01,0.02, 

0.06 

(Mass/ ml) estimated 

𝐶∘ The concentration 
of the drug in the 

infusion pump 

0.0331 (Mass/ml) (Hassan and 
Al-Saedi, 

2024) 
F The pump flow rate 6, 6, 6, 6, 6,  5 ( Ml/day) (Edelstein-

Keshet, 
2005) 

𝑢 The rate of blood 
flows away from 
the tumor site. 

3, 3, 3, 3, 3, 8 ( Ml/day) estimated 

𝑉 The volume of the 
blood in direct 

contact with the 
tumor area 

5000, 5000, 5000, 
5000,  5000, 226.586 

𝑀𝑙 (Sharma 
and Sharma, 

2024) 

α The drug 
exhaustion rate 

0.0005 (Mass/number) estimated 

We will substitute the values in Table 2. into Eqs. (24) and (32) we will get the values of 

𝛼1, 𝛼2, and 𝛼3 as in the following Error! Not a valid bookmark self-reference. 
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Table 3. Dimensionless parameter values of the model.  
 

Nondimensional 
parameter 

Dimension 
form 

value Unit 

𝛼1 
 
𝑉

𝐹
 𝐴𝑚𝑎𝑥 

26 dimensionless 

𝛼2  𝐶∘

𝐴𝑛
 

0.20753, 33.1, 6.62, 3.31, 
1.665 

dimensionless 

𝛼3 𝑢

𝐹
 0.5 dimensionless 

Finally, we apply a numerical case. Substitute the values in Table 2 and Table 3. The 

interpretation of these equilibrium points is as follows: Using several examples as shown in  

Table 2 we solve the equations, find the points, and identify the stable and unstable points. 

We take different cases of α as in Table 3 and observe how the solution behaves. A numerical 

simulation of the system of  Eqs.    (45) and    (46) are performed to illustrate the analytical 

behavior to provide a picture of the level. As a result, the model can be predicted in terms of 

how it will behave under a variety of initial conditions, but for a pre-defined set of parameter 

values. The curve (path) of the initial values is shown in Fig. 3. Using MATHEMATICA(13.2) 

and seeing the agreement of the analytical solution with the numerical solution later, we 

take the stable points to denote the tumor volume and the drug dose. 

4.2  Case Study One 

We will take the first case when α1 > 1 and  𝛼2 >
𝛼3

𝛼1−1
, where 𝛼1 = 26, 𝛼2 = 0.20753 and 

𝛼3 = 0.5,  it is seen from the numerical results α1 > 1, α2 < 1 and  α3 < 1, that it has two 
points, one is stable (4.87578,0.04),  and the other is unstable (0,0.41506). In Fig. 4(a), and 
(b) the tumor goes to the point where the tumor is stable when the point is 
stable (4.87578,0.04). We took different initial conditions greater than the stable point when 
the initial condition was w0=6, C=0.009, and noticed that the curve was heading towards the 
stable value as in Fig. 4(a) and we took different initial conditions smaller than the stable 
point when the initial condition was w0=4, C=0.1, and notice that the curve was heading 
towards the stable value as in Fig.4(b) this is consistent with the analytical aspect of the 
problem, which is the linear stability analysis in Fig. 3. We notice that there is one stable 
point (4.87578,0.04), so to find the real values with dimension units of tumors and drugs, 
we use 

𝑤 = 𝑤∗�̂� = 4.87578 ∗
0.015545∗6

0.0005∗5000∗0.0331
= 5.49563 (Number/Volume),       (64) 

𝐶 = 𝐶∗�̂� = 0.04 ∗ 0.015545 = 0.0006218 (Mass/Volume).        (65) 

This means the size of the tumor is 5.49563, it needs a concentration of drug 0.0006218,  and 
in the same way for other cases.  
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Figure 3. MATHEMATICA generated a phase-plane diagram ( the delivery of drugs by 

continuous infusion of a two-species system with 𝛼1 = 26 , 𝛼2 = 0.20753 and 𝛼3 = 0.5). 

 

Figure 4. MATLAB numerical results of the Delivery of Drugs by Continuous Infusion of a 
two-species system with 𝛼1 = 26, 𝛼2 = 0.20753 and 𝛼3 = 0.5. a)  When the initial 

condition 𝑤0=6, C=0.09. b)  When the initial condition 𝑤0=4, C=0.1. 
 

4.3  Case Study Two  

We will take the second case when α1 > 1 and  𝛼2 >
𝛼3

𝛼1−1
,  where the value of 𝛼1 = 26, 𝛼2 =

33.1, and  𝛼3 = 0.5. We take different values of 𝐴𝑛 are found in Michelis-Menten the lower 
the value of 𝐴𝑛 , the faster it is to reach half 𝐴𝑚𝑎𝑥 . We will take four cases for  𝐴𝑛,  for example,  
𝐴𝑛 = 0.001, 𝐴𝑛 = 0.005, 𝐴𝑛 = 0.01, 𝐴𝑛 = 0.02 as in Fig.5.  

From the numerical results of the second case that meets the condition  α1 > 1, α2 < 1,  α3 <
1, in Fig.(7)(a) and (b), it is seen that it has two points, one is stable (860.08,0.04),  and the 
other is unstable (0,33.1) that the tumor goes to the point where the tumor is stable when 
the point is stable (860.08,0.04). We took different initial conditions greater than the stable 
point when the initial condition was w0=900, C=0.09, and noticed that the curve is heading 
towards the stable value as in Fig.7(a). 

a b 
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Figure 5. Michaelis-Menten kinetics with different values for 𝐴𝑛.  

We took different initial conditions smaller than the stable point when the initial condition 
was w0=800, C=0.01, and noticed that the curve is heading towards the stable value as in 
Fig.7(b) this is consistent with the analytical aspect of the problem, which is the linear 
stability analysis in Fig. 6(a). and we noticed that there is one stable point (860.08,0.04), to 
find the real values with dimension units of tumors and drugs, we use 

𝑤 = 𝑤∗�̂� = 860.08 ∗
0.001∗6

0.0005∗5000∗0.0331
= 62.36229  (Number/Volume),       (66) 

𝐶 = 𝐶∗�̂� = 0.04 ∗ 0.001 = 0.00004 (Mass/Volume).        (67) 

This means the size of the tumor is 62.36229 it needs a concentration of drug 0.00004, and 
in the same way for other cases. 

In Fig.(7)(c) and (d) the value of 𝛼1 = 26, 𝛼2 = 6.62, and  𝛼3 = 0.5. It has two points, one is 
stable (171.6,0.04),  and the other is unstable (0,13.24) that the tumor goes to the point 
where the tumor is stable when the point is stable (171.6,0.04). We took different initial 
conditions greater than the stable point when the initial condition was w0=200, C=0.09, and 
noticed that the curve is heading towards the stable value as in Fig.7(c) and we took 
different initial conditions smaller than the stable point when the initial condition was 
w0=100, C=0.01, and noticed that the curve is heading towards the stable value as in Fig.7(d) 
this is consistent with the analytical aspect of the problem, which is the linear stability 
analysis in Fig. 6(b). We notice that there is one stable point (171.6,0.04), to find the real 
values with dimension units of tumors and drugs, we use 

𝑤 = 𝑤∗�̂� = 171.6 ∗
0.005∗6

0.0005∗5000∗0.0331
= 62.21148   (Number/Volume),       (68) 

𝐶 = 𝐶∗�̂� = 0.04 ∗ 0.005 = 0.0002 (Mass/Volume).        (69) 

This means the size of the tumor is 62.21148 it needs a concentration of drug 0.0002, and in 
the same way for other cases. 

In Fig.(7)(e) and (f) the value of 𝛼1 = 26, 𝛼2 = 3.31, and  𝛼3 = 0.5. It has two points, one is 
stable (85.54,0.04),  and the other is unstable (0,6.62) the tumor goes to the point where the 
tumor is stable when the point is stable (85.54,0.04). We took different initial conditions 
greater than the stable point when the initial condition was w0=90, C=0.09, and noticed that 

 



Journal of Engineering, 2025, 31(6) 
 

S. S. Hassan and H. M. Al-Saedi       

 

165 

the curve is heading towards the stable value as in Fig. 7(e) and we took different initial 
conditions smaller than the stable point when the initial condition was w0=80, C=0.01, and 
noticed that the curve is heading towards the stable value as in Fig.7(f) this is consistent 
with the analytical aspect of the problem, which is the linear stability analysis in Fig. 6 (c). 
we notice that there is one stable point (85.54,0.04), to find the real values with dimension 
units of tumors and drugs, we use 

𝑤 = 𝑤∗�̂� = 85.54 ∗
0.01∗6

0.0005∗5000∗0.0331
= 62.02296  (Number/Volume),       (70) 

𝐶 = 𝐶∗�̂� = 0.04 ∗ 0.01 = 0.0004 (Mass/Volume).        (71) 

This means the size of the tumor is 62.02296 it needs a concentration of drug 0.0004, and in 
the same way for other cases.   

In Fig. 7 (g) and (h) the value of 𝛼1 = 26, 𝛼2 = 1.655, and  𝛼3 = 0.5. It has two points, one is 
stable (42.51,0.04),  and the other is unstable (0,3.31) the tumor goes to the point where the 
tumor is stable when the point is stable (42.51,0.04). We took different initial conditions 
greater than the stable point when the initial condition was w0=45, C=0.09, and noticed that 
the curve is heading towards the stable value as in Fig. 7(g) and we took different initial 
conditions smaller than the stable point when the initial condition was w0=40, C=0.01, and 
we noticed that the curve is heading towards the stable value as in Fig. 7(h) this is consistent 
with the analytical aspe  ct of the problem, which is the linear stability analysis in Fig. 6(d).   

 

 

 

 

 

 

 

 

 

 

 

Figure 6. MATH  EMATICA generated a phase-plane  diagram ( the Delivery of Drugs by 
Continuous Infusion of a two-species s  yst  em) with a) 𝛼1 = 26, 𝛼2 = 33.1, 𝛼3 = 0.5.             

b) 𝛼1 = 26, 𝛼2 = 6.62,  𝛼3 = 0.5, C) 𝛼1 = 26, 𝛼2 = 3.31,  𝛼3 = 0.5. d)  𝛼1 = 26, 𝛼2 = 1.655,  
𝛼3 = 0.5.   

 

a 
b 

d c 
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Figure 7. MATLAB numerical results of the Delivery of Drugs by Continuous Infusion of a 

two-species system with different values for 𝐴𝑛. 
a)When the initial condition 𝑤0=900, C=0.09. b) When the initial condition 𝑤0=800,C=0.01. 
c)  When the initial condition 𝑤0=200, C=0.09. d)  When the initial condition 𝑤0=100, C=0.01. 
e)  When the initial condition 𝑤0=90,  C=0.09.  f)  When the initial condition 𝑤0=80, C=0.01. 
g)  When the initial condition 𝑤0=45,   C=0.09. h)  When the initial condition 𝑤0=40,C=0.01. 

a b 

c 
d 

e f 

h g 
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We notice that there is one stable point (42.51,0.04), to find the real values with dimension  
units of tumors and drugs, we use 

𝑤 = 𝑤∗�̂� = 42.51 ∗
0.02∗6

0.0005∗5000∗0.0331
= 6264592    (Number/Volume),       (72) 

𝐶 = 𝐶∗�̂� = 0.04 ∗ 0.02 = 0.0008 (Mass/Volume).        (73) 

This means the size of the tumor is 6264592 it needs a concentration of drug 0.0008, and 
in the same way for other cases 

4.4 Case Study Three 

We will take the third case when 𝛼1 > 1 and 𝛼2 <
𝛼3

𝛼1−1
. 

 𝛼1 =  
𝑉

𝐹
 𝐴𝑚𝑎𝑥 =

226.5861∗0.0331

5
= 1.5, 𝛼2 =

𝐶∘

𝐴𝑛
=

0.0331

0.06
= 0.55166, 𝛼3 =

𝑢

𝐹
=

8

5
= 1.3, the 

values we have chosen do not meet conditions in Eq.         (63). From the numerical results in 
Fig.9(a) and (b) the value of 𝛼1 = 26, 𝛼2 = 1.655, and  𝛼3 = 0.5. it has two points, one is 
stable (0,0.42435),  and the other is unstable (−3.07251,2) the tumor goes to the point 
where the tumor is stable when the point is stable (0,0.42435). We took different initial 
conditions greater than the stable point when the initial condition was w0=5, C=0.9, and 
noticed that the curve is heading towards the stable value as in Fig. 9(a) and we took 
different initial conditions smaller than the stable point when the initial condition was 
w0=0.5, C=0.2, and we noticed that the curve is heading towards the stable value as in 
Fig.9(b) this is consistent with the analytical aspect of the problem, which is the linear 
stability analysis in Fig. 8, we notice that there is one stable point (0,0.42435), to find the 
real values with dimension units of tumors and drugs, we use 

𝑤 = 𝑤∗�̂� = 0 ∗
0.06∗6

0.0005∗226.586∗0.0331
= 0  (Number/Volume),       (74) 

𝐶 = 𝐶∗�̂� = 0.04 ∗ 0.06 = 0.025461 (Mass/Volume).        (75) 

 

Figure 8. MATHEMATICA generated a phase-plane diagram ( the Delivery of Drugs by 
Continuous Infusion of a two-species system with :𝛼1 = 1.5, 𝛼2 = 0.55166,  𝛼3 = 1.3. 
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Figure 9. MATLAB numerical results of the delivery of drugs by continuous infusion of a 
two-species system, 𝛼1 = 1.5, 𝛼2 = 0.55166,  𝛼3 = 1.3. a)  When the initial condition 𝑤0=5, 

C=0.9. b)  When the initial condition 𝑤0=0.5, C=0.2. 

5.  CONCLUSIONS 
 

This study presents a mathematical model integrating exponential growth and Michaelis-
Menten kinetics to explore the dynamic interaction between tumor growth and 
chemotherapy drug infusion. Through dimensional analysis and model refinement, we 
derived a non-dimensionalized system of equations, which enabled detailed stability 
analysis and parameter optimization. The findings demonstrate that continuous drug 
infusion can stabilize tumor growth within a specific range of parameters, shedding light on 
effective treatment strategies and highlighting the critical role of precise dosing and timing 
in chemotherapy. The theoretical insights are further validated by numerical simulations, 
which illustrate the robustness of the model and its potential to guide practical decision-
making in cancer treatment. Importantly, the model underscores the value of mathematical 
frameworks in unraveling the complexities of tumor-therapy interactions, paving the way 
for more personalized and effective treatment approaches. Future research could expand 
this model to include additional biological complexities, such as the role of the immune 
response, tumor heterogeneity, and the effects of angiogenesis. Furthermore, the 
incorporation of multi-drug therapies and combination treatments could enhance the 
model’s relevance to clinical oncology, providing a foundation for optimizing combination 
regimens. These extensions could also allow for the integration of patient-specific data, 
advancing the potential for precision medicine in cancer care. Overall, this work highlights 
the transformative potential of mathematical modeling in advancing our understanding and 
management of cancer chemotherapy. 
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 علاج الكيميائي للأورام عن طريق الحقن المستمر للدواء باستخدام النمو الأسي
   حيدر مجيد عباس*،  سكينة صباح

 
بغداد، العراق قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد،   

 

 الخلاصة
مينتن لنمذجة التفاعل بين كثافة الورم وتركيز الدواء المقدم  -نقدم إطارًا نظريًا يجمع بين ديناميكيات النمو الأسي وحركية مايكلز

عبر مضخة التسريب. يأخذ النموذج في الاعتبار تشبع تثبيط نمو الورم عند تركيزات عالية من الدواء، مما يعكس تأثيرات التشبع  
سليط الضوء على العلاج الكيميائي بالتسريب المستمر كطريقة توصيل متفوقة، حيث يحافظ على مستويات ثابتة  البيولوجي. يتم ت

التقليدية. يوفر الإطار أداة تنبؤية لتحديد  من الدواء في موقع الورم مع تقليل الآثار الجانبية الجهازية مقارنة بأساليب الحقن 
لمطلوبة للقضاء على الورم مع تقليل الآثار الضارة. يحدد تحليل الاستقرار، بناءً على حل  تركيزات الدواء الحرجة وكثافات الورم ا

المعادلات غير الخطية، نقاط التوازن التي تمثل حالات ثابتة لكثافة الورم وتركيز الدواء. يتم فحص استقرار هذه النقاط لتقييم  
الطويل. توضح   المدى  الكيميائي على  أنظمة العلاج  التوضيحية كيف تؤثر الاختلافات في معدلات فعالية  الرقمية  المحاكاة 

توصيل الدواء وخصائص الورم والمعلمات الحركية على النتائج العلاجية. يتم تحديد العوامل الرئيسية مثل الحد الأدنى لتركيز 
يل الحساسية أيضًا عن كيفية تأثير  الدواء اللازم لقمع نمو الورم والظروف اللازمة لاستئصال الورم أو إعادة نموه. يكشف تحل

تغييرات المعلمات على استقرار النظام والنتائج، مما يوفر رؤى لتحسين استراتيجيات الجرعات. يربط هذا الإطار بين النمذجة 
يات العلاج.  النظرية والتحديات العملية في العلاج الكيميائي للسرطان، مما يوفر أداة متعددة الاستخدامات لفهم وتحسين استراتيج

في   السرطان  الشخصي وأبحاث علاج  الطب  في  التقدم  يدعم  العلاج، مما  الأورام وطرق  أنواع مختلفة من  تكييفه مع  يمكن 
 المستقبل. 
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