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ABSTRACT 

Optimal inventory management is a major issue in many companies and may impact their 

productivity and profitability. Our research targets an electrical energy facility in Iraq to 
find optimal quantities and inventory costs that reduce total inventory costs, including 
ordering, holding, transportation, and inspection. The research compares classical particle 
swarm optimization (CPSO) with modified particle swarm optimization (MPSO). The 
artificial neural network analyzes the relationship between input and output to form a cost 
function. The MPSO technique produced better cost savings than CPSO or traditional 
methods (EOQ). The traditional economic order quantity management system produced 
total costs of $7,486,304.80, but CPSO cut them to $5,414,100 while MPSO lowered them 
to $2,418,000 when controlling 20 electrical items. The results show that MPSO achieves 
better than traditional methods and CPSO in lowering expenses and improving inventory 
handling. Sensitivity analyses are carried out on some important parameters, and the 
changes in the objective function are investigated. Finally, the experimental results verify 
MSPO’s good performance. 
 
Keywords: Artificial neural network, Economic order quantity, Hybrid algorithm, Inventory 
control, Particle swarm optimization. 
 

 

1. INTRODUCTION 
 

Inventory management is essential to operational effectiveness because it makes 
forecasting, acquiring, and maintaining ideal stock levels possible, directly affecting 
profitability and customer satisfaction (Praveen et al., 2020). Maintaining the effectiveness 
and profitability of a business’s operations depends on effective inventory management and 
control, which has grown in importance as a management function. Therefore, 
several investigations tried to create models that might be utilized to limit the amounts of 
excess stock and lower the costs associated with them without sacrificing customer 
demands or operational effectiveness (Aldhaheri, 2019). In an inventory control challenge, 
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the two primary decisions that impact demand are a) when to buy (by creating a purchase 
order) and b) how much to buy (by determining the lot size) (Zipkin, 2000). One approach 
most frequently used to determine the ideal level of raw material inventories required by a 
business to sustain steady operations at an economical cost is the Economic Order 
Quantity (EOQ) technique. This method is popular because it is simple and can give 
businesses the best results. This is demonstrated by the Economic Order Quantity (EOQ) 
method, which calculates the most appropriate time (reorder point) to make a repurchase 
quantity the most efficient inventory for the business. (Abdullah et al., 2020) 
Most of the real-world problems in various scientific and technical fields can be represented 
as optimization problems (Stanovov et al., 2022). The process of choosing the most 
effective or efficient option from a set of possibilities to maximize or minimize one or more 
functions is termed mathematical optimization (Maciel et al., 2020). Metaheuristic 
algorithms may be classified based on either physical laws, swarm intelligence, human 
inspiration, or evolution principles. (Morales-Castañeda et al., 2021) noted that 
“optimization strategies are grouped according to basic concepts about physical and 
biological algorithms. It also comprises a genetic algorithm (GA), Harmony Search Algorithm 
(HAS), Particle Swarm Optimization (PSO), bacterium foraging optimization (BFO), cuckoo 
search algorithm (CSA), bee colony algorithm (BCA), ant colony optimization (ACO), and 
firefly algorithm (FA). The first group comprises biology-inspired algorithms (Ramli et al., 
2015) 
Swarm intelligence-based algorithms are more effective in iterations and computing effort 
than other techniques because of their parametric modification and control (Gad, 2022). 
Kennedy and Eberhart introduced Particle Swarm Optimization (PSO) in 1995 as an 
optimization method based on flocks of birds, schools of fish, and even human social 
behavior. PSO is currently regarded as one of the top swarm intelligence-based algorithms 
(Eberhart and Kennedy, 1995; Kennedy and Eberhart, 1995). Its simplicity, low 
parameter count, global optimal search capabilities, and convergence rate have drawn the 
interest of scholars during the past 10 years (Morales-Castañeda et al., 2023). When PSO 
is modified appropriately, it may effectively control the balance between exploration 
and exploitation (Jain et al., 2022; Shami et al., 2022).  
The exploitation phase concentrates on possible locations, whereas the particles in the 
exploration phase cover a larger area in space. Because of the benefits above make it an 
appropriate choice for optimizing real-world optimization issues (Morales-Castañeda et 
al., 2023). PSO has some limitations, including the potential to produce poor solutions due 
to inaccurate control parameter selection and local minimum stockiness (Miao et al., 2021).  
Numerous research studies have tried to enhance the conventional PSO algorithm using 
various techniques. Weight enhancement has been shown to enhance the searching 
capability of PSO (Karunanithi et al., 2023), such as updating the formula of velocity for 
particle promotion in the direction of optimal solutions (Singhai, 2020), merging with other 
optimization methods by adding a dynamic mutation method from GA to PSO improves its 
convergence performance and optimization efficiency (Zhang et al., 2022). A nonlinear 
programming model is formulated to optimize inventory control and spare part supply 
decisions to minimize overall cost. An improved dynamic migrating particle swarm 
optimization self-adaptive approach has been proposed. It needs to avoid premature 
convergence, and its capacity for local exploitation must balance with the PSO capacity of 
global exploration (Guo et al., 2022). To overcome these deficiencies and devise an 
improved capability of PSO to solve complex optimization problems. 
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An adaptive strategy-based modified PSO termed MPSO is presented (Liu et al., 2020). 
Numerous attempts have been undertaken to address the shortcomings of optimization 
algorithms. Combining two or more separate algorithms is a common technique for 
improved performance (Miao and Wang, 2019). Many researchers have proposed Artificial 
Neural Networks (ANNs) to simulate the relationship between input and output using 
artificial neural networks (ANNs) (Hussien and Al-Shammari, 2021). Choosing incorrect 
parameter values during MPSO optimization will produce unsatisfactory results or slow the 
process. The approach faces an early solution (premature convergence) problem most 
severely in industrial applications with strong non-linearity and multiple solution spaces. 
MPSO’s performance drops when its processing needs grow too high, particularly in sectors 
with limited resources. Adding MPSO needs special technical work to connect everything 
properly. The system requires accurate data feeds to work properly when it receives 
information.  
The system requires spending money plus training staff members to work properly with the 
algorithm. The main problem in this research is the higher inventory costs. A high inventory 
cost burdens the electricity facility and may lead to a shortage or excess storage quantities, 
also considered a problem. This research aims to minimize the total inventory cost of an 
electrical power facility in Iraq for twenty electrical products because the facility faces a 
higher inventory cost problem. In this study, the inventory parameters were optimized, and 
the overall inventory cost was reduced using an ANN-based PSO approach, which involves 
optimization within inventory control by applying a hybrid particle swarm algorithm (ANN-
PSO). A modified MPSO is applied to optimize the total inventory cost. In this work, we use 
ANN to link inputs and outputs. This is combined with classical particle swarm optimization 
(CPSO) to form a hybrid algorithm (ANN-PSO) and another hybrid modified particle swarm 
optimization (ANN-MPSO) ANN type is Feed Forward-Back propagation (FF-BP). 
 
2. METHODOLOGY 
    

The electric power company was selected as a case study in Baghdad, Iraq, is the site of the 
present research. The electricity company is regulated by service. Twenty products are 
considered in this case study. The company is seeking to minimize total inventory costs. Fig. 
1 to clarify the research methodology.      

 

Figure 1. Flow chart of the research process. 
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2.1 Economic Order Quantity (EOQ) 
 

Data were collected for twenty electrical products and spare parts from the inventory of the 
General Directorate of Transmission and Distribution of Electricity in Iraq, which served as 
a case study. This data included product sales, inspection costs, unit prices, and annual 
demand. The Economic Order Quantity (EOQ) model helps reduce stock-outs and optimize 
order quantities while minimizing total costs for each product. The optimal scenario occurs 
when the holding and ordering costs equal the required order quantity (Gonzalez and 
González, 2010). The following mathematical model calculates the twenty products’ cost 
estimates and economic order quantities. 
 
2.1.1 EOQ Mathematical Model 
 

Initially, when calculating the EOQ, it is necessary to find the incoming costs through the 
following assumptions: 
1. Fixed order cost 𝐶𝑓= purchase quantity*unit cost price ($/unit)  

2. The purchase cost per unit is constant throughout the year.  
3. Holding cost assumed = 10% (AK and Raut, 2020). 
4. Unit price for each product. 
5. Demand (D) per year. 
6. Lead time is constant and known = 30 days. 
7. Number of working days per year =250 days 
8. Inspection cost(𝐶𝑖𝑛𝑠𝑝). 

9. Transportation cost(𝐶𝑇) was calculated using Eq. (1) (Al-Ashhab, 2022): 
 
𝐶𝑇 was calculated through Eq. (1) 

𝐶𝑇 = ∑(Nswti.  𝑇𝐶𝑠𝑤𝑖 . 𝐷𝑠𝑤𝑖 ) + ∑( 𝑁𝑤𝑠𝑡𝑖 .  𝑇𝐶𝑤𝑠𝑖 . 𝐷𝑤𝑠𝑖 )           (1) 

Where: 
𝑁𝑠𝑤𝑡𝑖: Number of deliveries per year from supplier to warehouse (units). 
𝑁𝑤𝑠𝑡𝑖: Number of deliveries per year from the warehouse to the station (units). 
𝑇𝐶𝑠𝑤𝑖: Total cost for transported per kilometer ($/Km) from supplier to warehouse 
𝑇𝐶𝑤𝑠𝑖: Total cost to transported per kilometer ($/Km) from the warehouse to the station. 
𝐷𝑠𝑤𝑖: Distance from the supplier to the warehouse (km). 
𝐷𝑤𝑠𝑖: Distance from the warehouse to the station (km).  
𝑖: Number of products. 

 

Table 1 illustrates the parameters included for  𝐶𝑇 . 

Table 1. Parameters of transportation cost (𝐶𝑇) 
 

Parameters Value 
𝑵𝒔𝒘𝒕𝒊 (3) time a year 
𝑵𝒘𝒔𝒕𝒊 times a year 
𝑻𝑪𝒔𝒘𝒊 10 $/km 
𝑻𝑪𝒘𝒔𝒊 58.8 $/km 
𝑫𝒔𝒘𝒊 536.5 km 
𝑫𝒘𝒔𝒊 30 km 

𝒊 20 products 
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The data of products entering the company’s warehouses, including inspection costs, unit 
prices, annual demand, times orders, and lead time, is analyzed by applying EOQ through Eq. 
(2) (Aziz and Yunus, 2023). 

EOQ =√
𝟐∗𝑫∗𝑺

𝒊∗𝑪
 = √

2∗𝐷∗(𝐶𝑓+𝐶𝑇+𝐶𝑖𝑛𝑠𝑝.)

𝑖∗𝐶
               (2) 

Where:  
D = Annual demand. 
i =Inventory percentage or unit stock holding cost per item per year assumed to be 10% per 

annum.  
C = Price per unit.  
H = cost of holding per unit,  
S = total Ordering cost of product independent of Q.  
𝐶𝑓 = Fixed order cost,  

𝐶𝑇 = Transportation cost,  
𝐶𝑖𝑛𝑠𝑝. = Inspection cost. 

 
The Holding Costs (H) were calculated using Eq. (3), where: 

Holding Costs (H)= 𝑖 ∗ 𝐶               (3) 

Annual holding Cost (HC) = 
𝑄

2
⋅ 𝐻               (4) 

Annual ordering Cost (OC) = 
𝐷

𝑄
⋅ 𝑆               (5) 

Number of orders (n*) = 
𝐷

𝑄
  (Fithri et al., 2019)                                                                            (6) 

Q is the EOQ order quantity. 
Based on (Kehinde Busola et al., 2020), the calculated Reorder point (ROP) is by using the 
following equation: 

(ROP) = (
𝐴𝑛𝑛𝑢𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 

𝑛𝑜.𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟 
) ⋅ 𝐿ⅇ𝑎𝑑  𝑇i𝑚e            (7) 

2.1.2 Total Inventory Cost  
 

A primary objective in inventory management is to minimize total inventory costs. The total 
cost is determined by summing the most significant inventory costs, which include purchase, 
ordering, and carrying (holding) inventory costs. The purchase cost is incurred when 
acquiring the inventory. Therefore, the total inventory costs (TIC) can be calculated as 
follows: 

(TIC) = 
𝐷

𝑄
⋅ 𝑆 +

𝑄

2
⋅ 𝐻                (8) 

Table 2 represents these cost calculations and the EOQ, ROP, and inventory Cost. The 
electrical company provided the collected data, which included unit cost per unit demand 
per year, distances between locations for transmission, lead time, annual quantity, and unit 
prices. This data was organized for twenty products to calculate each product’s 
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transportation cost, Economic Order Quantity (EOQ), Reorder Point (ROP), and n*. The CT is 
calculated based on Eq. (1) and the information in Table 1.  
After applying Eq. (2), Table 2 indicates that the EOQ method generates a higher total 
inventory cost of $7,486,304.80, where the calculation of total cost based on Eq. (8) The 
calculations for EOQ yielded equal holding costs Eqs. (3 and 4) and order costs Eq. (5), as the 
EOQ aims to determine the optimal order quantity by minimizing holding and ordering costs. 
As shown in Eq. (7), the ROP indicates that an order should be placed when the product 
quantity falls below a specified level, as detailed in Table 2.  

 

Table 2. EOQ, ROP, and inventory cost 
 

Table 2. EOQ, ROP, and Inventory cost (Continue) 
 

Products 6 7 8 9 10 
Times orders 1 1 1 1 1 
Demand/year 18 84 10 51 24 

Quantity 17 73 44 33 23 
Unit cost price ($) 47798.46 47798.46 26332 5480 4973 

Holding cost 10% 10% 10% 10% 10% 
Fixed order cost ($) 812573.82 3489287.57 1158608 180840 114379 
Transport cost ($) 627.6 146.1 242.5 323.3 463.9 
Inspection cost ($) 1487.1 346.3 574.5 766.1 1099.1 

Lead time(days) 30 30 30 30 30 
EOQ 78.3 350.2 93.8 184 105.7 
R O P 2.1 10 1.2 6.1 2.8 

Optimal orders n* 0.2 0.2 0.1 0.2 0.2 
Holding cost ($) 187207.8 837010 123551.5 504210 26303.9 

Ordering cost ($) 187207.8 837010 123551.5 504210 26303.9 
Total cost ($) 374415.6 1674020 247103 100842 52607.8 

 
 
 
 

Products 1 2 3 4 5 
Times orders 1 1 1 1 1 
Demand/year 6 28 40 20 52 

Quantity 18 29 57 23 50 
Unit cost price ($) 125844.89 329997.14 6228.75 273574.31 328289 

Holding cost 10% 10% 10% 10% 10% 
Fixed order cost ($) 2265208.02 9569917.06 355038.75 6292209.13 16414450 

transport cost ($) 592.7 367.9 187.1 463.9 213.4 
Inspection cost ($) 1404.5 871.7 443.5 1099.1 505.6 

Lead time(days) 30 30 30 30 30 
EOQ 46.49 127.4 213.7 95.9 228 
R O P 0.7 3.3 4.8 2.4 6.2 

Optimal orders n* 0.1 0.2 0.1 0.2 0.2 
Holding cost ($) 292565.9 2102816.2 66563.8 1312179.2 3743152.4 

Ordering cost ($) 292565.9 2102816.2 66563.8 1312179.2 3743152.4 
Total cost ($) 585131.8 4205632.4 133127.6 2624358.4 7486304.8 
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Table 2. EOQ, ROP, and inventory cost (continue) 
 

Products 11 12 13 14 15 
Times orders 1 1 1 1 1 
Demand/year 8 23 47 14 53 

Quantity 26 72 73 22 53 
Unit cost price ($) 29611 5424.5 10841 1207 678 

Holding cost 10% 10% 10% 10% 10% 
Fixed order cost 

($) 
769886 390564 791393 26554 35934 

Transport cost ($) 410.3 148.1 146.1 485 201.3 
Inspection cost ($) 972.3 351 346.3 1149 477.0 

Lead time(days) 30 30 30 30 30 
EOQ 64.5 182.1 262 80.8 239.2 
R O P 0.9 2.7 5.6 1.6 6.3 

Optimal orders n* 0.1 0.1 0.1 0.1 0.2 
Holding cost ($) 95578.3 49391.4 142036.4 4880.1 8110.5 

Ordering cost ($) 95578.3 49391.2 142036.4 4880.1 8110.3 
Total cost ($) 191156.6 98782.8 284072.8 9760.2 16220.6 

Table 2. EOQ, ROP, and Inventory Cost (Continue) 
 

Products 16 17 18 19 20 
Times orders 1 1 1 1 1 
Demand/year 67 75 110 225 112 

Quantity 75 85 104 248 153 
Unit cost price ($) 6330 60132.22 226.01 135 115.99 

Holding cost 10% 10% 10% 10% 10% 
Fixed order cost ($) 474750 5111238.7 23505.04 33480 17746.4 
Transport cost ($) 142.2 125.5 102.5 43.0 69.7 
Inspection cost ($) 337.0 297.4 243.0 101.9 165.2 

Lead time(days) 30 30 30 30 30 
EOQ 317.1 357 481.8 1058.6 589.2 

R O P 8 9 13.2 27 13.4 
Optimal orders n* 0.2 0.2 0.2 0.2 0.1 

Holding cost ($) 100386.6 1073619.2 5444.9 7146.1 3417.5 
Ordering cost ($) 100386.6 1073619.2 5444.9 7146.1 3417.5 

Total cost ($) 200773.2 2147238.4 10889.8 14292.2 6835 

 
By effectively implementing the EOQ method, the electrical company could achieve 
significant cost savings while aiming to reduce total inventory costs. The results were then 
optimized using a hybrid algorithm (ANN-PSO) and a modified PSO and compared with the 
classical PSO and EOQ calculations. 
 
2.2 Classical Particle Swarm Optimization (CPSO) 
 

The social behavior of flocking birds inspires particle swarm optimization (PSO), which can 
be described as an algorithm based on social psychology. Unlike genetic algorithms (GA), 
PSO does not rely on crossover and mutation. Instead, it is a population-based optimization 
technique that begins with a population of random solutions and identifies optimal solutions 
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by updating successive generations (Vanneschi and Silva, 2023). Eberhart and Kennedy 
developed the PSO evolutionary computing method in 1995 (Kennedy and Eberhart, 
1995). An Artificial Neural Network (ANN) models the relationship between input and 
output to determine the cost function (objective function). The ANN is a computational 
model inspired by the human brain (Mahmoud and Fattah, 2023). A neural network is a 
distributed model that processes information across many interconnected nodes or 
neurons, similar to how the human brain operates. This allows for complex problem-solving 
and pattern recognition(Patel et al., 2022). Due to their architecture, ANNs can learn from 
examples, similar to human learning, by modifying their connections in response to 
incoming signals (Devkar and Sharma, 2023). 
The human brain has a remarkable capacity to identify hazy, confusing, and partial facts and 
information and to make independent conclusions. ANN tries to mimic a typical neuron’s 
structure and functions. A single output (a synapse via an axon) and several inputs 
(bifurcations) make up a neuron. Determining the activity of other neurons is the role of 
neuron function, where the input layer serves as a receiver for input values in an ANN design. 
Layers of input and output are separated by a hidden layer, a collection of neurons. These 
strata may be found in one or more locations. The activation function utilized is either the 
step function or the ramp function. The Back Propagation (BP) algorithm is the most widely 
used technique for implementing neural networks (NNs). At this step, the weights and layers 
are modified in response to the difference between the target and acquired outputs (Al-
Waily et al., 2020; Al Saffar et al., 2023). The BP method propagates layers of hidden 
output to the output layer, where the output is estimated, as shown in Fig. 2. This output 
matches what is needed for a certain input (Abdolrasol et al., 2021). Feed-forward 
propagation in backward ANNs has become known for its simple design, in which data flows 
from input to output in a single path. Because of this, it is simpler to use and understand. 
These ANNs can simulate complex interactions between inputs and outputs. This is 
especially helpful in situations like inventory cost-minimizing, where there may be complex 
relationships between several factors that are difficult for traditional methods to determine.  
The backpropagation algorithm allows for efficient training of the network by adjusting 
weights based on the error of the target output compared to the expected result. This 
adaptability is crucial for optimizing the ANN’s performance and minimizing total inventory 
costs, as it can learn from past errors and improve over time. ANN is used in conjunction 
with optimization techniques like PSO. The ability of the Feed-Forward Back Propagation 
ANN to provide a good fit for optimization makes it a suitable choice for this research, as it 
can effectively link inputs and outputs to form an objective function that the optimization 
algorithm can minimize. Applying swarm intelligence to neural networks is an attempt to 
enhance the training and optimization processes, especially when dealing with complex, 
high-dimensional search spaces.  
Many studies on the combination of swarm intelligence techniques, such as particle swarm 
optimization (PSO) and artificial neural networks (ANN), have been conducted in 
several ways. However, as mentioned in this study, the particular method of employing 
modification within PSO could be a unique addition to this sector. The use of ANN to link the 
inputs and the output to form the cost function to minimize total inventory cost by 
transmitting to the PSO algorithm. Although this PSO and ANN combination for cost 
minimization is not entirely novel, the particular approach and improvements suggested in 
this study could provide new insights or improvements. 
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Figure 2. ANN architectures. (Abdolrasol et al., 2021)  
 
This study considers twelve inputs: annual demand, unit cost price, fixed order cost, 
transportation cost, inspection cost, ROP, the optimal number of orders, lead time, EOQ, 
quantity, holding cost, and ordering cost. These inputs are fed into an ANN with the total cost 
as the output. The feed-forward network uses a backpropagation structure with two hidden 
layers. The first hidden layer is trained using the bipolar continuous activation function 
(tansig), as shown in Eq. (9), while the second layer employs a pure linear activation 
function, represented in Eq. (10). The fundamental mathematical equations for both 
activation functions are provided. 
 

𝑓𝑛𝑒𝑡 =
2

1+exp (−𝜆𝑛𝑒𝑡)
− 1     𝜆 > 0            (9) 

𝑓𝑛𝑒𝑡= 𝑛𝑒𝑡 ( 𝑤𝑡. 𝑥𝑖)             (10) 

 
Where 𝑤𝑡 is the weight of inputs and 𝑥𝑖  is the input. 
To complete the optimization and identify the optimal input with the minimum output, the 
trained values from the ANN were submitted to both the PSO and modified PSO algorithms. 
Figs. 3 and 4 depict the structure and performance of the ANN, while Fig. 5 presents its 
training performance using the mean square error (MSE) metric.  
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Figure 3. Structure of ANN. 

 

Figure 4. Performance of ANN. 
 

 

Figure 5. Training of ANN. 
 
The optimal linear regression that links the targets and outputs was displayed to generate 
the regression plot. It illustrates how effectively the neural network’s objective can adapt to 
variations in output (Mahmoud and Fattah, 2023). The regression diagram is shown in Fig. 
6. Measured from zero (no correlation at all) to one (perfect correlation), measures how well 
the neural network’s objective can track variations in the output. 
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Figure 6. Regression plot of the ANN. 

 
The following formula was used to update the particle’s position and velocity (Tang and 
Meng, 2024).  

V(t+1) = w. V(t) + C1. r1. (Pbest − X(t)) + C2. r2. (Gbest − X(t)        (11) 

𝑋(𝑡+1) = 𝑋(𝑡) + 𝑉(𝑡+1)            (12) 

where 𝑋(𝑡) is the particle’s position at the current iteration t, V(t) is the particle’s velocity at 

iteration t, Pbestis the particle’s individual best position and Gbest is the group’s global best 
position. Acceleration coefficients are denoted by C1, C2, r1, and r2 are random numbers [0-
1]. 
In a classical PSO, inertia was treated as a constant, and its value was determined by setting 
it with other constants in Table 3. The performance of PSO is highly sensitive to its 
parameters, such as the acceleration coefficients and the inertia weight. It is crucial for 
balancing the exploration and exploitation of the search space. Poorly chosen parameters 
can lead to ineffective search behavior, causing either slow or premature convergence. 

Table 3. Parameters of classical PSO 
 

Parameter Value 
No. of iteration 100 

Inertia (w) 0.98 
C1 2 
C2 2 

𝐫𝟏, 𝐫𝟐 [0-1] 
Swarm Size 30 

Dimensional space 12 

 
2.3 A Hybrid Modified Optimization MPSO 
 

In this work, the MPSO will enhance particle exploration (finding new locations) and 
exploitation (refining existing high-quality areas) by adjusting the weight during each 
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iteration. As the process advances, reducing the weight increases the likelihood that the 
particles will focus on the best solutions discovered, based on (He and Huang, 2012) 
equation: 

𝑤𝑡 = 𝑤𝑚𝑖𝑛 +
𝑇−𝑡

𝑇−1
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)            (13) 

In this context, wt represents the inertia weight at the current iteration, wmin is the minimum 
weight value (limiting particles' influence based on prior experiences), and wmax is the 
maximum weight value (restricting the effect of previous experiences). T refers to the total 
number of iterations, indicating the duration of the particles’ movement and search for the 
optimal solution. In contrast, t denotes the current iteration, where the values are shown in 
Table 4. 

Table 4. Parameters of modified MPSO 
 

Parameter Value 
Overall number of iterations 100 

W max 2 
W min 1 

C1 2 
C2 2 

𝐫𝟏, 𝐫𝟐 [0-1] 
Swarm Size 30 

Dimensional Space 12 

 
3. SENSITIVITY ANALYSIS 
 

It is a technique used to determine the impact of changes in input variables on the final 
outcomes of the model. The goal is to measure the sensitivity of the results (such as total cost 
or the economic quantity) to changes in different factors (such as demand or holding costs). 
The variables that can change within the system and are believed to significantly impact the 

outcomes are selected. In this case, the key variables are: (1) Demand varies between 160 to 
230 in fixed units, and (2) Holding Cost Rate varies between 5% and 14%.  
 
4. RESULTS AND DISCUSSION 
 

This research uses data on the inventory of twenty products collected from the General 
Directorate for Transmission and Distribution of Electrical Power in Iraq as a case study. 
Initially, EOQ, inventory costs, and ROP calculations were performed for these twenty 
electrical products. The analysis revealed that the total inventory cost for all twenty 
products reached approximately $7,486,304.80. To solve the problem of minimizing the 
total inventory cost, twelve parameters (inputs) were considered for optimization: annual 
demand, purchased quantity, lead time, transportation cost, inspection cost, holding cost, 
ordering cost, fixed order cost, unit price, EOQ, ROP, and n*. These twelve parameters were 
inputs for the ANN network, classical PSO, and modified PSO, with total cost as the output. 
The ANN networks were then applied to perform the cost function for both the modified and 
classical PSO. While the PSO results showed strong convergence, they were more costly 
overall compared to the modified PSO. The total cost from the modified PSO, based on (He 
and Huang, 2012) equation, was lower than the total cost from both the classical PSO and 
EOQ calculations, indicating better performance. Due to the inertia being continuously 
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adjusted during each iteration until the optimal swarm was achieved, as shown in Table 5, 
compare the hybrid classical PSO and the hybrid modified PSO after applying the above 
modified PSO. 

Table 5. Comparison between the hybrid CPSO and the hybrid MPSO 
 

parameters 
The result of the 
parameter(min-max) 

CPSO MPSO 

Demand per year (unit) )6-225) 197.123 99.042 
Unit cost price ($) )115.9-329997.14) 217345.342 29876.505 
Fixed order cost ($) (17746.4-16414450) 12452619.844 818652.970 
Transport Cost ($) (43-627.6) 567.026 275.702 
Inspection cost ($) (101.9-1487.1) 1411.539 873.067 
EOQ )46.9-1058.6) 978.220 212.034 
ROP )0.7-27) 24.461 16.782 
n* )0.1-0.2) 0.186 0.122 
Holding cost ($) (3417.5-3743152.4) 2879498.344 1623815.404 
Ordering cost ($) )3417.5-3743152.4) 2879498.344 1623815.404 
Lead time(days) )30-30) 30 30 
Quantity(unit) (17-248) 198.604 91.099 

 
The modified PSO resulted in a total cost of $2,418,000, compared to $7,486,304.80 for EOQ 
and $5,414,100 for PSO, as shown in Table 6. 
 

Table 6. Result of optimum value of total cost. 
 

Total cost ($) CPSO Modified PSO 
7486304.8 $ 5.4141e+06= (5414100$) 2.4180e+06= (2418000$) 

 

Through its combined MPSO-ANN system, this research delivers better inventory 
management that outperforms classical methods with enhanced cost benefits and reliable 
performance. The approach uses a Modified Particle Swarm Optimization (MPSO) method 
to automatically control the weight factor to balance exploring and exploiting optimum 
solutions. The study connects ANN technology with MPSO to help improve decision-making 
through better cost evaluation and optimization results. ANN is used to link between 
inventory inputs and output (total inventory cost). As shown in Fig. 7, the modified PSO 
demonstrates superior performance, with faster convergence between the number of 
iterations and the objective function. While Fig. 8 shows the change in the objective function 
(total inventory cost) with the number of iterations. 
The researchers apply the methods to actual electrical power sector data by optimizing 20 
product inventories. This research shows that its models perform well under different 
parameter conditions and tests their impact on total cost and EOQ optimization results. Our 
sensitivity tests help us understand how model parameter changes affect the overall cost 
and the EOQ value. This research focuses on electrical energy sector needs and applies the 
technique that handles specific problems with higher costs, changing customer demand 
patterns. This research introduces this industry exclusively so businesses like it can apply 
the results immediately. Our study goes beyond classic inventory systems by creating and 
testing a hybrid MPSO-ANN model that shows better results with actual industry data while 
providing improved cost savings and effective performance against existing methods.  The 
study compares three methods: The research analyzes the approaches of Economic Order 
Quantity (EOQ), Classical Particle Swarm Optimization (CPSO), and Modified Particle Swarm 
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Optimization (MPSO). Determining the economic order quantity, EOQ helps companies 
reduce total inventory costs while managing their ordering and holding expenses. This 
method works best when demand stays stable and lead times stay the same because of its 
basic design. This solution struggles to work with unpredictable real-life demands and costs. 
Through its swarm behavior, CPSO shows improved performance in finding optimal 
solutions for challenging optimization problems. CPSO shows weak performance with early 
stopping patterns and an imbalance between exploration and exploitation. MPSO improves 
CPSO by automatically changing inertia weights across iterations to reach a perfect balance 
between exploration and exploitation. It preserves particle variety during optimization and 
automatically adjusts to changing industrial settings with different requirements. Our 
findings demonstrate how the methods save substantial amounts by lowering total 
inventory expenses were MPSO delivers $2,418,000 in total inventory costs, representing a 
67% savings over EOQ and a 55% savings compared to CPSO. MPSO provides better cost 
savings plus dynamic performance while joining with ANN technology and works across 
many situations. The method shows better inventory cost savings than EOQ and CPSO, 
making it more useful for practical applications with changing market conditions, as shown 
in Table 7. 

 

Figure 7. The convergence of modified PSO 

 
Figure 8. The convergence of Classical PSO. 
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Table 7. Summary of the Comparison. 
 

Method Cost ($) Strengths Weaknesses 
EOQ 7,486,304.80 Simple, easy to implement Inflexible, assumes fixed demand 

and costs 
CPSO 5,414,100.00 Handles non-linear 

problems, adaptable 
Premature convergence, static 
parameters 

MPSO 
(Proposed) 

2,418,000.00 Dynamic, robust, integrates 
with ANN 

Slightly higher computational 
complexity 

 

To evaluate the algorithm, we conducted a comparative analysis using data from (Pang et 
al., 2019) and researcher (Gonzalez and González, 2010). The aim of validation is to 
ensure that the algorithms employed are accurate, reliable, and provide acceptable results 
by comparing these research findings with other experimental results. Two real case studies 
in inventory control in different industries is solved to validate the proposed algorithm 
MPSO. After applying the total inventory cost result for both researchers through the hybrid 
modified PSO, the comparison is shown in Tables 8 and 9. The hybrid-modified PSO 
effectively minimizes the total inventory cost and parameters. The results show excellent 
validations of this research in minimizing total cost, The comparison between data 
demonstrates the superiority of MPSO in performance and reliability. The results suggest 
that MPSO is a highly effective approach for inventory problems where the cost saving of 
(Gonzalez and González, 2010) is ~ 66.99%, and for (Pang et al., 2019) with cost-saving 
~ 69.8%, while for the proposed study~67% cost saving. After applying the sensitivity analysis, 
Table 10 shows the result.  
 

Table 8. Results of validation for the parameters. 
 

Parameters with 
EOQ calculations 

(Gonzalez and 
González, 2010) 

 (Pang et al., 2019) 
Proposed MPSO (This 

study) 

Demand(units) 
From (8.6 -1667.4) to 

864.9713 
From (442.99-

551332.89) to 11864 
From (6-225) to 99.042 

Unit cost price 
($) 

From (0.17-280.07) to 
126.1363 

From (0.81-85.58) to 
5.67 

From (115.9-329997.14) to 
29876.505 

Fixed order cost 
($) 

From (12.19 -304.71) 
to 106.9074 

From (12846.71-
446579.6) to 115.047 

From ((17746.4-16414450) 
818652.970 

Lead time(days) From (4-14) to 4.6896 From (15-25) to 18.902 From (30-30) to 30 

EOQ 
From (5.7-1070) to 

728.3822 
From (162.84-35298.9) 

to 14903.06 
From (46.9-1058.6) to 

212.034 

ROP 
From (0.2-45.9) to 

31.8502 
From (78.46-82972.2) 

to 22704.461 
From (0.7-27) to 16.782 

Number of 
orders n* 

From (0.8-2.9) to 
1.1745 

From (2.72-15.62) to 
3.592 

From (0.1-0.2) to 0.122 

Holding cost ($) 
From (16.48-474.83) 

to 392.2809 
From (1025.31-

15529.89) to 4055.660 
From (3417.5-3743152.4) 

to 1623815.404 

Ordering cost ($) 
From (16.48-474.83) 

to 342.6963 

From (1025.31-
15529.89) to 

4055.660 

From (3417.5-3743152.4) 
to 1623815.404 
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Table 9. The result of the validation for the total cost. 
 

Results of references Total cost before applying MPSO With MPSO (Proposed) 
(Gonzalez and González, 2010). 949.65$ 313.4366$ 

(Pang et al., 2019) 465639.38$ 140278.601$ 
Proposed 7486304.8 $ 2418000$ 

 
Table 10. Sensitivity analysis results 

 

Demand Holding Cost rate EOQ Total Cost 
160.0 0.05 178.89 894.43 
160.0 0.06 163.3 979.8 
160.0 0.07 151.19 1058.3 
160.0 0.08 141.42 1131.37 
160.0 0.09 133.33 1200.0 
160.0 0.1 126.49 1264.91 
160.0 0.11 120.6 1326.65 
160.0 0.12 115.47 1385.64 
160.0 0.13 110.94 1442.22 
160.0 0.14 106.9 1496.66 
170.0 0.05 184.39 921.95 
170.0 0.06 168.33 1009.95 
170.0 0.07 155.84 1090.87 
170.0 0.08 145.77 1166.19 
170.0 0.09 137.44 1236.93 
170.0 0.1 130.38 1303.84 
170.0 0.11 124.32 1367.48 
170.0 0.12 119.02 1428.29 
170.0 0.13 114.35 1486.61 
170.0 0.14 110.19 1542.72 
180.0 0.05 189.74 948.68 
180.0 0.06 173.21 1039.23 
180.0 0.07 160.36 1122.5 
180.0 0.08 150.0 1200.0 
180.0 0.09 141.42 1272.79 
180.0 0.1 134.16 1341.64 
180.0 0.11 127.92 1407.12 
180.0 0.12 122.47 1469.69 
180.0 0.13 117.67 1529.71 
180.0 0.14 113.39 1587.45 
190.0 0.05 194.94 974.68 
190.0 0.06 177.95 1067.71 
190.0 0.07 164.75 1153.26 
190.0 0.08 154.11 1232.88 
190.0 0.09 145.3 1307.67 
190.0 0.1 137.84 1378.4 
190.0 0.11 131.43 1445.68 
190.0 0.12 125.83 1509.97 
190.0 0.13 120.89 1571.62 
190.0 0.14 116.5 1630.95 
200.0 0.05 200.0 1000.0 
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200.0 0.06 182.57 1095.45 
200.0 0.07 169.03 1183.22 
200.0 0.08 158.11 1264.91 
200.0 0.09 149.07 1341.64 
200.0 0.1 141.42 1414.21 
200.0 0.11 134.84 1483.24 
200.0 0.12 129.1 1549.19 
200.0 0.13 124.03 1612.45 
200.0 0.14 119.52 1673.32 
210.0 0.05 204.94 1024.7 
210.0 0.06 187.08 1122.5 
210.0 0.07 173.21 1212.44 
210.0 0.08 162.02 1296.15 
210.0 0.09 152.75 1374.77 
210.0 0.1 144.91 1449.14 
210.0 0.11 138.17 1519.87 
210.0 0.12 132.29 1587.45 
210.0 0.13 127.1 1652.27 
210.0 0.14 122.47 1714.64 
220.0 0.05 209.76 1048.81 
220.0 0.06 191.49 1148.91 
220.0 0.07 177.28 1240.97 
220.0 0.08 165.83 1326.65 
220.0 0.09 156.35 1407.12 
220.0 0.1 148.32 1483.24 
220.0 0.11 141.42 1555.63 
220.0 0.12 135.4 1624.81 
220.0 0.13 130.09 1691.15 
220.0 0.14 125.36 1754.99 
230.0 0.05 214.48 1072.38 
230.0 0.06 195.79 1174.73 
230.0 0.07 181.27 1268.86 
230.0 0.08 169.56 1356.47 
230.0 0.09 159.86 1438.75 
230.0 0.1 151.66 1516.58 
230.0 0.11 144.6 1590.6 
230.0 0.12 138.44 1661.32 
230.0 0.13 133.01 1729.16 
230.0 0.14 128.17 1794.44 

 
The fixed settings for the simulation runs previously shown in Table 2 were subjected to a 
sensitivity analysis. Only the holding cost and the demand were altered. All other parameters 
remained unchanged. When demand increases from 160 to 230 (a gradual increase of 10), 
the Total Cost increases significantly. Also, when the holding cost rate increases from 5% to 
14%, the Total Cost increases, but differently. The table displays the key variables and their 
impact on the Total Cost as the analysis output. The sensitivity analysis results have been 
shared in Table 10 and visualized through two plots. Fig. 9 shows how the total inventory 
cost changes with varying demand levels for holding cost rates. Moreover, Fig. 10 illustrates 
the relationship between EOQ and holding cost rates for different demand levels. When the 
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holding cost increases, the EOQ reduces while the total cost increases. These figures can 
guide adjustments to inventory policies under varying conditions.   
 

 
Figure 9. Total Cost vs Demand for different Holding Cost rates 

 

 
Figure 10. EOQ vs Holding Cost Rate 

  
5. CONCLUSIONS 
 

This research presents a hybrid algorithm that combines Artificial Neural Networks (ANN) 
with Particle Swarm Optimization (PSO). Using the PSO approach, the modification method 
effectively applies the inertia adjustment equation during each solution update. The findings 
clearly compare the results of the classical CPSO and the modified MPSO. The MPSO-ANN 
algorithm demonstrates improved convergence and achieves better total inventory cost 
outcomes compared to both classical PSO and EOQ calculations. Implementing modified PSO 
can lead to substantial cost savings in inventory management, and the findings highlight the 
effectiveness of modified algorithms in minimizing inventory costs for electrical products. It 
can be applied to industries facing similar inventory challenges, as seen in other studies 
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emphasizing the importance of effective inventory control models. The electrical facility 
should be using this hybrid model to enhance their system instead of depending on Excel, 
which could help them reduce the total cost. The MPSO algorithm is recommended for use 
in solving inventory optimization problems in the electrical industry. Minimizing inventory 
costs directly reduces operational expenses. By optimizing inventory management, 
electrical facilities can reduce the need for excessive storage space, lower holding costs, and 
minimize losses due to obsolete or overstocked parts. This leads to improved profitability 
for the business. The findings of this research can offer the industry significant cost-saving 
opportunities. The performance of PSO is highly sensitive to its parameters, such as the 
cognitive and social coefficients and the inertia weight. Poorly chosen parameters can lead 
to ineffective search behavior, causing slow or premature convergence. 
Some recommendations for future work are to extend the intelligent order management 
system to incorporate dynamic pricing strategies based on real-time market conditions and 
customer demand signals by using other artificial intelligence algorithms and involve 
demand forecasting to eliminate the variability in the demand for the future. The model 
(PSO-ANN) should aim for the usual forecast and target series fitness. The model may 
automatically decide the forecasting targets, such as the actual rate, percentage of changes, 
etc. The model should use a trading strategy to recommend the trading rules based on the 
expectation of returns and risk. In my opinion, for future work, the best solution would not 
be an optimization model but a compromise solution. Such a solution could be, for example, 
a model that allows calculating a level of stock by a given level of customer service and then 
calculating the total costs, which will be effective in future work. 
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:  تنفيذ ذكاء خوارزمية سرب الطيور في السيطرة على الخزين في قطاع المواد الكهربائية 
 دراسة حالة 

 يمان قاسم الصفار *، احمدانآيات ضياء 

 

 قسم الهندسة الميكانيكية، كلية الهندسة، جامعة بغداد، بغداد، العراق.
 

 الخلاصة
إدارة المخزون المثلى هي قضية مهمة في العديد من الشركات وقد تؤثر على إنتاجيتها وربحيتها. يستهدف بحثنا منشأة للطاقة 

الكميات المثلى وتكاليف المخزون التي تقلل من إجمالي تكلفة المخزون بما في ذلك التوريد،  الكهربائية في العراق للعثور على  
 وتحسين سرب الجسيمات المعدل (CPSO) والتخزين، والنقل، والتفتيش. يقارن البحث بين تحسين سرب الجسيمات التقليدي

(MPSO).   بين العلاقة  لربط  الاصطناعية  العصبية  الشبكة  استخدام  أنتجت يتم  تكلفة.  دالة  لتشكيل  والمخرجات  المدخلات 
أنتج نظام كمية الطلب   .(EOQ) أو الطرق التقليدية CPSO توفيرًا أفضل في التكاليف مقارنةً بكل من MPSO استراتيجية

 دولار، بينما خفضتها  5414100خفضها إلى   CPSO دولارًا، ولكن  7486304,8الاقتصادية التقليدي تكاليف إجمالية قدرها  
MPSO   عنصرًا كهربائيًا. تظهر النتيجة أن  20دولار عند التحكم في    2418000إلى MPSO   يحقق نتائج أفضل من الطرق
عندما يتعلق الأمر بتخفيض كلف الخزين. تم إجراء تحليل الحساسية لبعض المدخلات المهمة، وتم التحقيق   CPSOالتقليدية و

حل دراستين حالتين في السيطرة على المخزون في صناعات مختلفة للتحقق من صحة    في التغيرات في دالة الهدف. أخيرًا، تم
 .الخوارزمية المقترحة والنتائج التجريبية

 
خوارزمية    ،التحكم في المخزون   ،الخوارزمية الهجينة  ،كمية الطلب الاقتصادية  ،الشبكة العصبية الاصطناعية  الكلمات المفتاحية:

 .سرب الطيور
 

 


