University of Baghdad
College of Engineering

Journal of Engineering
JEI/ journal homepage: www.jcoeng.edu.iq
A_dA\

JOURNAL OF ENGINEERING

Volume 31 Number 6  June 2025

A Half Decade Reviews and Controller Design for the Bergman Diabetic
Patient Model

Khulood E. Dagher 1%, Joseh Haggege 2

1Biomedical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad,
Iraq
ZNational Engineering School of Tunis (ENIT), University of Tunis EL MANAR, Tunis, Tunisia

ABSTRACT

With an emphasis on individuals with Type 1 diabetes, this study reviews blood glucose
management techniques during the last five years. A brief introduction is provided to show
how this biological issue turns out to be a control system issue in terms of plasma blood
glucose management. This paper discusses new research on automated insulin delivery
using the Bergman mathematical model. An attempt has been made to undertake a
systematic review of the research that has been done so far in the development of artificial
pancreas systems. The conclusion describes the development of a cognitive glucose-insulin
controller and provides a fundamental grasp of how the nonlinear Bergman model for
blood glucose regulation can be used to establish a control system for this biomedical
control challenge. When compared to other current methods, the proposed cognitive
controller shows a quicker response in terms of blood glucose maintenance. Additionally,
the comparison results demonstrated that the suggested cognitive glucose-insulin control
algorithm improved the time to reach a normal physiological blood glucose level for the
first patient by 10% compared to the fuzzy logic and the fractional-order PID control
algorithms, by 25% compared to the type-2 fuzzy control algorithm.

Keywords: Control strategy, Diabetes mellitus, Insulin action, Plasma blood glucose.

1. INTRODUCTION

One of the most important and common chronic diseases in the world is diabetes, sometimes
referred to as diabetes mellitus, which is mostly brought on by elevated blood glucose levels.
Diabetes can be fatal or significantly impair a person's quality of life, regardless of gender.
Diabetes is a chronic illness that only develops when blood glucose levels are too high. The
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body uses glucose as an energy source, and the hormone insulin, which is released by the
pancreas, regulates the amount of glucose that cells may use as fuel (Chinnababu and
Jayachandra, 2024). Diabetes mellitus (DM) is becoming more and more common
worldwide; by 2045, there will likely be over 783 million cases, mostly in low- and middle-
income nations (Gudifio-Ochoa et al., 2024). About 90% of cases are Type 2 diabetes
mellitus (T2DM), with the remaining instances being Type 1 diabetes mellitus (T1DM) and
gestational diabetes mellitus (GDM). Serious side effects include nerve damage,
cardiovascular problems, and an elevated risk of dying young are linked to these disorders.
Thus, accurate, timely, and cost-effective blood glucose monitoring and control are essential
for those individuals. Experts are specifically studying the diabetes sufferers with type 1
diabetes mellitus (T1DM) in great depth. Because of this, a lot of research has been done to
develop a number of the diabetes sufferer mathematical models of insulin and glucose that,
to a certain degree, accurately depict the physiological behavior of the human body
(Kalaimani and Jeyakumar, 2024).

The first generally recognized classification was released by the WHO in 1980 (Rivai and
Kurniawan, 2023). IDDM (Type I) and NIDDM (Type II) were proposed as the two main
classifications of diabetes mellitus. Because patients were categorized based on treatment
rather than pathophysiology, it was suggested that the names "insulin-dependent diabetes
mellitus” and "non-insulin-dependent diabetes mellitus" be dropped. The cases were
referred to as Type I and Type II, with the former mostly originating from the death of
pancreatic islet beta-cells and the latter from the common primary form of diabetes caused
by abnormalities in insulin secretion (Rivai and Kurniawan, 2023). Even though type I
diabetes only makes up 5-10% of all cases, its incidence is rising globally and it has major
short- and long-term effects. According to the definition, diagnosis, and classification of
diabetes mellitus and its complications (Engell et al., 2021), type I denotes the process of
beta-cell destruction in the pancreas that may eventually result in diabetes mellitus, where
"insulin is required for survival" to avoid the development of ketoacidosis, coma, and death.
For Type I diabetes, which requires constant attention to several areas such insulin delivery,
blood glucose monitoring, meal planning, and diabetes-related problem screening, a
multidisciplinary health team is the best setting. These effects, which include microvascular
and macrovascular disease, are the main cause of morbidity and mortality associated with
Type I diabetes (Qteat and Awad, 2021). The most prevalent type of diabetes is type II.
Type Il diabetes has been identified in millions of people worldwide, and many more are still
undiagnosed. If diabetes is not identified or is not adequately managed, people with the
condition are more likely to get heart attacks and strokes. They also have a higher chance of
losing their sight, having their feet and legs amputated because of damage to their blood
vessels and nerves, and developing renal failure that necessitates dialysis or a transplant
(Hettiarachchi et al., 2024). When blood glucose levels are higher than normal but not
high enough to be considered diabetes, people almost invariably have "prediabetes"” before
developing Type II diabetes. Recent research suggests that prediabetes may already be
permanently damaging the body, especially the heart and circulatory system (Liu, 2019).
Insulin is either ignored by the cells or the body does not make enough of it in Type II
diabetes. For the body to be able to use glucose as fuel, insulin is required. The body converts
all sugars and starches into glucose, the fundamental fuel for cells, when food is consumed.
Blood sugar is transported into the cells by insulin. Diabetes problems may arise when
glucose accumulates in the circulation rather than entering the cells. The purpose of this
work is to demonstrate how the diabetes sufferers with type 1 diabetes, whose bodies
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cannot properly utilize the insulin they produce, need insulin injections in order to survive.
Many studies have been conducted to develop a number of mathematical glucose-insulin
control models that determine the prompt and optimal insulin-infusion control action value
in order to improve the performance of the plasma blood glucose level in the diabetes
sufferer model with regard to regulation and stabilization of the plasma blood glucose at the
normal physiological level within a suitable time to avoid the hyperglycemia and
hypoglycemia states. People with diabetes have a challenging disease that essentially
involves regulating plasma blood glucose levels to prevent both hyperglycemia and
hypoglycemia, according to the study's description of the issue. Furthermore, determining
the amount of insulin-infusion level is essential for controlling and stabilizing the blood
glucose level to the normal physiological level in the shortest amount of time.

2. THE NONLINEAR DIABETIC PATIENT MODEL

Generally speaking, the intestine, where carbs are absorbed from digested food, and the liver
are the two places where glucose enters the plasma blood (Benzian, 2021). The pancreas
produces the hormones insulin and glucagon, which have opposing effects and are necessary
for the body to maintain a steady blood glucose level, as shown in Fig. 1 (Benzian, 2021)
and (Chinnababu and Jayachandra, 2024).
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Figure 1. The general diagram of the insulin-glucagon system (Benzian, 2021;
Chinnababu and Jayachandra, 2024).

The beta cells of the pancreatic islets, which are tiny islands of endocrine cells in the
pancreas, produce and secrete insulin. The pancreatic islets' alpha cells produce and excrete
glucose. Glycogen is stored by the liver, which then transforms it back into glucose and
delivers it into the bloodstream. By secreting insulin, the pancreas helps cells absorb blood
glucose. According to (Benzian et al., 2021; Chinnababu and Jayachandra, 2024), this
reduces blood glucose levels. A normal blood glucose level is required for the organs to
function properly because glucose is the cell's primary fuel. Diabetes is a metabolic disease
in which the body either produces insufficient insulin or develops resistant to its effects,
resulting in abnormally high blood glucose levels. Two widely used tests, the oral tolerance
3
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test (OGTT) and the intravenous glucose tolerance test (IVGTT), can identify the abnormally
elevated blood glucose levels associated with diabetes (Benzian, 2021; Chinnababu and
Jayachandra, 2024).

In our work, a model of the glucose-insulin system based on the Bergman glucose insulin
minimum model has been taken. In particular, the three important compartments in this
model are shown in Fig. 2, which describes the relationship among the concentration level of
the distant insulin compartment Ins(k) in (mU/L), the level of the plasma blood glucose
compartment Gp(k) in (mg/dl), and Xp(k) is the variable which describes the insulin effect
on net glucose disappearance and the unit of Xp(k) is (1/min). Blood glucose, a hormone, and
insulin were thought to be stored in two separate compartments and to interact with each
other. In this context, several research works used the Bergman glucose-insulin basic model,
which lacks the biological complexity shown in (Chinnababu and Jayachandra, 2024), to
study the distribution of insulin and the regulation of blood glucose (Bergman et al., 1981).

. P, Remu.te
degradation Insulin
Xpdy

Figure 2. The compartments of the Bergman glucose insulin minimal model.

The following is a description of this model, which is based on nonlinear ordinary differential
equations (Pujol-Vazquez et al., 2023; Kacar et al., 2020; Yazdani and Moghaddam,
2021; Nath et al., 2018; Alkahtani et al., 2018):

Gp(k) = —P,[Gp(k) — Gp] — Xp(k)Gp(k) + Food (k) (1)
Xp(k) = —P,Xp(k) + P3Ins(k) (2)
Ins(k) = —n[Ins(k) — I,] + Y[Gp(k) — h]* t + Fbiysylin (k) (3)
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Since diabetic people are unable to regulate their blood sugar levels, this factor
Y[Gp(k) — h]* t =0 will not be taken into account while developing the transfer function.
Instead, a given parameter will be derived based on the assumption of a steady-state
condition, as given below (Pujol-Vazquez et al., 2023; Kacar et al., 2020; Yazdani and
Moghaddam, 2021):

IflS(k) = —Tl[ITlS(k) - Ib] + Fblnsulin(k) (4)
Table 1 displays the parameters of the nonlinear Bergman model equations that describe
the normal individual and three models of people with diabetes. (Incremona et al., 2018;

Pujol-Vazquez et al., 2023; Bergman et al., 1981; Abadi et al., 2014).

Table 1. The diabetes sufferers' parameters of the nonlinear Bergman model (Bergman et al.,
1981; Incremona et al., 2018; Pujol-Vazquez et al., 2023; Abadi et al., 2014).

Parameters Units | Normal Person | Patient #1 Patient #2 Patient #3
Py (1/min) 0.031 0 0 0
Pz (1/min) 0.012 0.011 0.007 0.014
P;3 (L/mUmin?) 4.92x10-6 5.3x10-6 2.16x10-6 9.94x10-6
Y(mU/mg.min2) 0.0039 0.0042 0.0038 0.0046
h (mg/dl) 79.035 80.2 77.578 82.937
n (min-) 0.265 0.26 0.246 0.281
Gy (mg/dl) 70 70 70 70
Iy (mU/L) 7 7 7 7
G, (mg/dl) 280 230 220 210
I, (mU/L) 364.8 50 55 60
S1=P3/P> 492x10-6 481x10-6 308x10-6 710x10-6

where Xp(k) is the effect of active insulin in the distant compartment variable 1/min, and
Gp(k) is the blood glucose concentration variable mg/dl. Food(k) is the meal disturbance
input variable mg/dl.min-1, Fby,cuin(k) is the controlled insulin-infusion rate variable,
mU/L.min"1, and Ins(k) is the blood-insulin concentration variable mU/L.

P; is the glucose effectiveness factor, Pz and Pz are the fractional transfer coefficients of
insulin into and out of the remote compartment where insulin action is expressed, Gb is the
basal concentration of the plasma blood glucose, I» is the basal concentration of the plasma
blood-insulin, n denotes to the first-order decay rate of plasma insulin, h denotes the glucose
threshold value above which the pancreatic (3-cells release insulin, and Y is the rate of the
pancreatic [-cells' release of insulin following the glucose injection with glucose
concentration. Insulin sensitivity Si is calculated as P3/P-.

To check the nonlinear diabetic patient model based on the Bergman minimal model is stable
in each patient's parameters as in Table 1, the Lyapunov function (Ogata, 2010) is proposed
as follows:

V(xq, X2, %x3) > 0.5x1(t)% + 0.5x,(t)% + 0.5x5(t)? (5)
Clearly, V > 0 if all states (x4, x, x3) = 0, the function is positive definite in all values of the

states.
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The nonlinear Bergman minimal mode can be expressed as in Eq. (6) based on the Eq. (1),
Eq. (2), Eq. (3), and Eq. (4).

Xy “P1 X1 0][*
X21=10 —P2  p3||*2 (6)
5C3 0 0 x3

-n
where, x4, x, X3 are Gp, Xp, and Ins, respectively. The time derivative of Eq. (5) becomes:

V(xy, X2, %3) < x1%1 + X%5 + X3X3 (7)

Substituting Eq. (6) in Eq. (7), the derivative state vector becomes as follows:

V(x1, x5, %3) < x1(—Pp1xy — X1%3) + X2 (—P2Xz — P3X3) + x3(—nx3) (8)
V(xl,xz,x3) < —P1X1X1 — X1X1 X3 — P2X2Xp — P3XpX3 — NX3X3 (9)
V(x1, %2, X3) < —p1X% — DoX5 — NX5 — X7 — P3XyXs (10)

Clearly, if all states (x;,x, x3) = 0,V = 0, and if all states (x;, x, x3) > 0,V < 0, the function
V is negative definite in all values of the states, and the system is globally asymptotically
stable with four weighting parameters (p4, p,, n, p3)of the normal person model. But, when
the parameter p, is equal to the zero value of the Bergman patient model, V (x, x,, x3) is
expressed as in Eq. (11) as follows:

V(x1, %2, X3) < —PaX5 — NX5 — X,X7 — P3XaX3 (11)

The effect of x,in Eq. (11) is still appears, so V is negative definite in all values of the states,
and the system is globally asymptotically stable with three weighting parameters (p,, n, p3)
of the different types of patient models.

3. HALF DECADE STUDIES

In a half decade, in the artificial pancreas, numerous kinds of glucose-insulin controllers
were created to maintain the patient's blood glucose levels within the normal range of 80-
100-120 mg/dl. Using a PSO algorithm to adjust the gain parameters in continuous time
rather than discrete time with a small search space and the design and implementation of a
digital PID controller based on the Xilinx system generator for regulating the T1D patient's
blood glucose level were detailed by (Benzian et al.,, 2019). Different controllers are
obtained as a result of these variations in the control gain parameters. Sorensen created a
single MPC for dual model infusion of insulin and glucagon with an unmeasured disturbance
at a random moment in (Dias et al., 2020), a thorough physiological model. The suggested
controller's efficacy is evaluated using average tracking error (ATE), which gives the average
blood glucose deviation from the threshold. While the set point is believed to be 90 mg/d],
the usual limit, where the blood glucose can deviate for optimal performance, is 14.4 mg/dl.
This approach offers a better and more effective way to control blood sugar levels. Moreover,
(Benzian et al., 2021) used a fractional-order-PID (FOPID)controller and a fuzzy-logic (FL)
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controller to control a T1D patient's blood glucose level. They also used a variety of meta-
heuristic methods to adjust the FOPID's control gain parameters. This work's drawback is
that the controllers were only developed for a single patient and the linear Bergman model,
and they only employed five rules for the membership function. They also utilized a trial-
and-error approach to determine the input-output fuzzy logic controller's gain. As a result,
the controller produces an insulin control action value that is too quick and suboptimal,
which causes the blood glucose level to respond too quickly. In (Babar et al., 2021)
designed a control glucose-insulin system using a sliding mode-back-stepping controller
with three control gain parameters that were adjusted by trial-error method to achieve
quick response and reduced chattering in a T1DM patient model for an intravenous glucose
tolerance test.

Additionally, an artificial pancreas system was developed by the authors (Patra and Nanda,
2021) that automatically releases insulin and maintains the patient's blood glucose level by
suggesting a model predictive controller for TIDM patients with insulin pumps that uses a
Laguerre function and a linearized structure. However, a digital PID controller for diabetes
patients' blood glucose levels using a linear Bergman model was introduced by (Sharma et
al.,, 2022). Because the Ziegler-Nichols (Z-N) tuning method is not appropriate for
investigating and utilizing the global extreme solution of the issue, they used it to determine
the control settings, which resulted in an overshoot in the patient's blood glucose response.
An intelligent controller using a radial basis function neural network for an automated
insulin delivery system for a virtual the diabetes sufferer model was described in (Barbosa
de Farias et al.,, 2022) for monitoring and regulating the plasma blood glucose level in a
matter of days.

The estimation of the T1D patient model was demonstrated in (Khaqan et al., 2022) using
a UVA/Padova metabolic simulator. For the linear third-order diabetes sufferer model,
control algorithms that managed the blood glucose level were designed using an intelligent
predictive control model with linear and nonlinear controllers. A physiological system was
created in (Homayounzade, 2022) utilizing an observer-based bbackstepping controller
for an intravenous glucose tolerance test, the diabetes sufferer model with type 1 diabetes
using an expanded Bergman model to estimate the plasma level and insulin concentration.
The controller then uses these estimates as feedback to maintain the patient's blood glucose
levels within a typical physiological range. A generalized type-2 (GT2) fuzzy-logic system
(FLSs) controller was created in (Yan et al., 2022) specifically for the first diabetes sufferer
model and the linear diabetes sufferer Bergman model. To get the four control gains in the
control law, it employs the trial-and-error technique. Because the controller generates a
quick and less-than-ideal value of the insulin control action, this causes a slight oscillation in
the plasma blood glucose level response. The optimal interval type-2 fuzzy (IT2F) controller
was suggested by (Sayed et al., 2023) for the nonlinear Bergman model in patients with
type 1 diabetes. The eight control gains in the control law are obtained using the grey wolf
optimization (GWO) technique. This results in a minor oscillation in the blood glucose level
response as the controller produces a rapid and suboptimal value of the insulin control
action. Futhermore, a fractional-order-PID (FOPID) controller was utilized to improve the
tracking plasma blood glucose error and control the diabetes sufferer's blood glucose level,
while a complex-order PID (COPID) controller was suggested for higher blood glucose levels
in a T1D diabetes sufferer model in (Saleem and Igbal, 2023). However, these controllers
have two drawbacks: the control parameters are modified by numerical optimization, and
the beginning settings are dependent on the designer's experience. Additionally, the
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adaptive Tilt Integral-Derivative Filter controller was developed in (Patra and Panigrahi,
2023) using a Romora optimization technique. Its four controller gains parameters are
adjusted for the blood glucose levels of patients with type 1 diabetes mellitus. The precision,
consistency, robustness, noise reduction, and enhanced uncertainty handling of the
proposed patient model with RO-TIDF are evaluated. But in the Lehman-Based Diabetic
Patient Model (LBDPM). (Kalaimani and Jeyakumar, 2024) created and investigated
adaptive controllers to control blood sugar levels through insulin administration. This work
utilizes the ANYA fuzzy rule-based system, an online adaptive type controller that uses the
N-BEATS algorithm, for the application of diabetes. Normal blood glucose levels are
monitored by the model using the suggested controller, even in the event of unanticipated
external disturbances. Using data from simulated diabetic patient models, the primary goal
in type 1 diabetes research is to increase the accuracy of a deep learning system. The linear
blood glucose-insulin model in type 1 diabetes was enhanced by (Shenbagam et al., 2024),
who also proposed a fractional-order PID (FOPID) controller with a genetic algorithm to
modify the five control parameters. This improved the tracking plasma blood glucose error
and aided the plasma blood glucose levels of the diabetes sufferer model.The previous works
related to the glucose-insulin control algorithm can be summarized in Table 2, in terms of
the algorithms used, the simulation results, and the drawbacks in their research works.

Table 2. The previous works related to the glucose-insulin control algorithm

Author Names Algorithms Simulation Results Drawback
(Benzian et al.,, | PID controller with |High overshoot response of| Small search space for the
2019) PSO plasma blood glucose level gain parameters
(Dias et al., Single MPC Blood glucose level was Trial-error method for
2020) good performance tuning parameters

(Benzian et al.,

Fractional order
PID controller and

Overshoot in the
response of the blood

The linear Bergman model
and they used only five rules
for the membership

2021) the fuzzy logic glucose level function, with a trial-and-
controller
error method
Back-stepping- Quick response and less Trial-error method for
(Babar et al.,, 1 . . .
2021) sliding mode chattering in an tuning three control gain
controller intravenous glucose level parameters
Paraand | wodeipreicve | Seblsthebiond | Linerimtion odel o
Nanda, 2021) controller & &

diabetes sufferer

sufferer model

(Sharma et al.,

Using Ziegler-Nichols
(Z-N) tuning, a digital

Overshooting, the
response of the blood

The optimized algorithm

2022) PID controller alucose lacked intelligence.
Intelligent controller . .
(Barbosa de with a radial basis | Blood glucose level was Tbe automated lnsulln_
Farias et al,, . delivery system was a big
2022) function neural good performance value
network
(Khagan et al Intelligent bslt)aob(;l;ﬁig;g II; lj;n;sr Linearization model of
2022) predictive control the diabetes sufferer Bergman diabetes
model sufferer

model
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Observer-based

Linearization model of

controller with GWO

control action

(Hom;zglzlglzade, back-stepping Fastrg:;l;lc(())rslielevel Bergman diabetes
controller p sufferer
Generalized type-2 The slight oscillation in Linear patient Bergman
(Yan etal,, 2022) (GT2) fuzzy-logic the blood glucose level model.
v system (FLSs) It uses the trial-and-error
controller response. method
(Sayed et al., tO ptl_r;ufzed mtf,lfg ;l Qul?k an;lt;uboptllmal The tuning algorithm has
2023) ype-2 fuzzy ( ) value ot the Insuiin many iterations

(Saleem and

Complex-order PID

The blood glucose
tracking error was a

Tuning the control
parameters using

a genetic algorithm

Igbal, 2023) controller . Lo
small value numerical optimization
(Patra and C(?ntro_l ler for Quick response to the The tuning algorithm has
Panigrahi, 2023) Adaptive Tilt Integral- glucose level of the many iterations
’ Derivative Filters diabetes sufferer model
(Kalaimani and . Track the diabetes Deep learning algorithm
Adaptive Fuzzy . . .
Jeyakumar, Controller sufferer model's normal | has along time for tuning
2024) blood glucose levels. parameters.
Fractional-order .Quldf response of the' Linearization model of the
(Shenbagam et . diabetic patient model's .
PID controller with diabetes sufferer
al,, 2024) plasma blood glucose

Bergman model

level

4. PROPOSED CONTROLLER

The general structure of the proposed cognitive plasma blood glucose-insulin control

strategy is shown in Fig. 3, which demonstrates the three layers for achieving the optimal

insulin-infusion level for the nonlinear diabetic patient model to avoid the hyperglycemia
and hypoglycemia states and to stablize the plasma blood glucose level of the diabetes
sufferer in the desired normal state.

This three-layer structure consists of:

e Layer #1: The cognitive dataset that represents the attributes of the control system, and
it depends on three different types of diabetic patients, such as the first patient has high
insulin sensitivity. The second patient has low insulin sensitivity, and the third patient
has very high insulin sensitivity.

e Layer #2: The neural network identifier patient model that represents the different types
of nonlinear diabetic patients with different types of meal disturbances.

e Layer #3: The feedback neural network controller based on the radial basis function
neural network model to find the optimal insulin-infusion value and to keep the plasma
blood glucose level for the diabetes sufferer in the normal state.

The identifier model is based on the NARMA-L2 neural network model that will represent
the different types of the nonlinear diabetic patient model. Three different types of the
nonlinear Bergman glucose-insulin model are used with the input-output dataset, including
insulin Ins(k) in (mU/L) and glucose Gp(k) in (mg/dl), as well as the dataset in layer #1 to
build the proposed nonlinear identifier neural network glucose-insulin model. Therefore,
the modelling of the nonlinear glucose-insulin is the primary aim of the proposed cognitive
blood glucose-insulin control strategy, which is utilized to provide the preconditions for
analysis and will be used in the third layer of the control design.
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Figure 3. Cognitive plasma blood glucose-insulin control strategy for the nonlinear diabetic patient
model.

In fact, the purpose of the nonlinear glucose-insulin identification is to find a mathematical
model of the different types of the nonlinear Bergman glucose-insulin model whose output
corresponds to the output of the nonlinear diabetic patient models. In this regard, neural
networks are mathematical models with excellent fault tolerance, adaptiveness, and
associative memory capacities that can process data concurrently. In order to establish the
neural network glucose-insulin model, the identifier model of the nonlinear diabetic patient
model is constructed using the NARMA-L2 neural network model, as seen in Fig. 4.

For the proposed identification, the NARMA-LZ model was selected among several
traditional neural networks due to its unique advantages. More specifically, strong
robustness performance, no output oscillation, high dynamic representation, and an
increasing degree of the nonlinear glucose-insulin model performance are provided by the
two networks of FH/[-] and GH[-], which are raised in the order of the hidden units. The
cognitive attributes input is represented in Eq. (12), therefore, the number of input to each
network is equal to 7 thatlead to the number of neurons in each network is equal to 15 based
on equation 2n+1 (Narendra and Parthasarthy, 1990; Al-Araji et al, 2019) where n is the
number of inputs.

Bi(k) = [Go(k) I,(k) Food(k) Inax(k) Gp(k) Xp(k) Ins(k—1)] (12)

The proposed NARMA-L2 model of the nonlinear glucose-insulin model can be described in
Eq. (13).

Gn(k +1) = FH[Gp(k),Xp(k),Ins(k — 1), Food(k),I,(k), Go(k), e (K)] +
GH[Gp(k),Xp(k),Ins(k — 1), Food(k),I,(k), Go(k), Lnax (k)] X Ins(k) (13)

The FH[—] and GH [-] network weights can be represented as follows: FV.i represents the
weight matrix of FH[—] in the hidden layer, FWy represents the weight matrix of FH[—] in
the output layer, GVai represents the weight matrix of GH [-] in the hidden layer, and GW»
represents the weight matrix of GH [-] in the output layer.

10
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Figure 4. FH[—] and GH[-] neural network structure.

To illustrate the calculations in the hidden layer based on the fifteen neurons, firstly, we will
sum the net of the weights of FVsi and GVai using Eq. (14) and Eq. (15).

FHnet, = Y"'" FH,; x B, (14)
GHnet, = Y"9" GH,; x B, (15)

Where nfh and ngh represent the hidden nodes’ number, which is equal to fifteen nodes.
Secondly, the neuron outputs of both FHs; and GHq are calculated as a continuous unipolar
sigmoid activation function of the FHnets and GHnet,, as illustrated in Eq. (16) and Eq. (17),
respectively.

FH, = _tr (16)

T {t+e-FHnetq

GH, = ———— (17)

T {+e-GHnetq
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Thirdly, to calculate the weighted sum Fnet, and Gnet, of the output layers, Eq. (18) and Eq.
(19) are used, respectively.

Fnet, = Y/" Fw, x FH, (18)
Gnet, = Yr9" GW, x GH, (19)

The one linear neuron passes the sum of both (Fnetfo) and (Gnetgo) through a linear function
of slope 1, as shown in Eq. (20) and Eq. (21).

FO = Linear(Fnet,) (20)

GO = Linear(Gnet,) (21)
The neural network output is the glucose level of the modelling Gm(k) that can be expressed
as given in Eq. (22):

Gm(k) = FO + GO x Ins(k) (22)

The identifier model based on NRMA-L2 will produce the same actual response of the
glucose level after using the neural network's training procedure.

The mean square error is used as the cost function to evaluate each solution in the GWO
algorithm:

MSE = Zi{me[= 2, (Gp (D) — 6m(D)) 2)] (23)
where ITmax is the maximum number of iterations and K denotes the maximum number of
samples.

The NARMA-L2 neural network model serves as the foundation for the feedforward neural
network controller, which calculates the maximum insulin-infusion amount Umax for each
meal as shown in Fig. 5.

The control law that indicates the maximum insulin-infusion level for every meal is provided
by the Jacobian, which is also known as the GH[-] neural network. This law will be utilized in
the closed loop control system's multi-objective function to lower the value of the feedback-
insulin control action.

Desired

glucose
(@Y, |

B; (k)

1/GH[-]

Uma

Figure 5. The structure of the feedforward neural network controller.
12
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It has the sign definite in the nonlinear Bergman glucose-insulin model operation region to
ensure the uniqueness of the model inverse at that operating region, which can be expressed
in Eq. (24) and Eq. (25) based on Eq. (22) and Eq. (13).

Gd—FH[-]

Umax =
GH[-]

(24)

Umax(k + 1) = (Gd(k + 1) — FH[Gp(k), Xp(k),Ins(k — 1), Food(k),I,(k),Go(k), Lyax(K)])/
GH[Gp(k),Xp(k),Ins(k — 1),Food(k),1,(k), Go(k), nax (k)] (25)

Where, Gd(k + 1): denotes the desired blood glucose level.

The GWO algorithm is a clever algorithm that is based on grey wolf predation. Similar to
other intelligent algorithms, each grey wolf's position indicates a feasible response, and the
prey indicates the optimal one. Grey wolves are ranked according to the value of their fitness
function in an effort to identify the best solution (Gao et al., 2022). With three different
kinds of grey wolf groups, hierarchical commands can be created. The grey wolves with the
highest fitness function value make up the leader group, often known as the alpha (a) group.
The alphas are in charge of making judgments about hunting, waking times, sleeping spots,
and other things. Ironically, despite not being the strongest person in the group, the alpha
must be the best pack manager. The beta () group, the second echelon of leadership, is
frequently called co-leaders since they assist the alpha in pack activities and decision-
making. The delta (A) groups come after them. The probable prey is located nearer the
wolves a, 3, and A (Kraiem et al., 2021). Figure 6 illustrates the hierarchy of gray wolves
during predation, which is one distinctive feature of GWO. The three primary phases of
hunting, finding the prey, encircling the prey, and attacking the prey, are carried out to
optimize efficiency.

After a groups lead gray wolves to encircle their victim, § and A groups assault the prey, and
the prey is eventually taken. This process results in a method with few parameters, no
special search parameters, and good convergence performance (Almazini and Ku-
Mahamud, 2021). It is very easy to design. At the beginning of the process, a fixed number
of grey wolves are used, and their locations are selected at random.

Responsibility for decision-making and
not always the pack's strongest member.

Assist the a in making decisions,
serve as the pack's disciplinary
leader, and advise the a.

Be the scapegoat and always
give in to the strong wolves.

Figure 6. The hierarchy of gray wolves.
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Each group in the pack will encircle the others according to the following mathematical
equations (Almazini et al., 2023; Almazini and Ku-Mahamud, 2021):

D = |C x X, (iter) — X (iter)| (26)
X(iter + 1) = |X,(iter) — A x D| (27)

where Eq. (26) represents the distance between the grey wolf individual and its prey. Eq.
(27) contains the formula for the gray wolf's position update, where iter represents the
current iteration, A and C are coefficient vectors, and Xp and X are the position vectors of the
prey and the grey wolf, respectively (Almazini and Ku-Mahamud, 2021; Almazini et al,,
2023). The formulas used to determine A and C are as follows:

A=2aXr —a (28)
a=2Xx(1-iter/lIty.y) (29)
C=2Xnm (30)

The basic steps of the GWO methodology for figuring out and modifying the weights of the
FH[-] and GH[-] neural networks are shown in Fig. 7.

The convergence factor serves as its representation, and the random vectors rl and r2 are
chosen at random from the interval (0,1). The total number of iterations is called [tMax. The
following equations (Gao et al., 2022; Kraiem et al., 2021; Almazini and Ku-Mahamud,
2021; Almazini et al.,, 2023) state that the prey position Xp (iter + 1) update is calculated
by averaging the grey wolflocations «, 3, and A (the three temporarily ideal solutions), with
the remaining locations being discarded for position update:

X1+X,+X3

Xp(iter +1) = 3 (31)
Where:

X, (iter) = X, (iter) — Ay X D,

X5 (iter) = X (iter) — Az X Dy

and:

D, = |C; X X, (iter) — X(iter)|

Dg = |C, x Xg(iter) — X(iter)| (33)

Dp = |C3 X Xp(iter) — X(iter)|

The random vectors C1, C2, and C3 characterize the final positions of people, whereas Da,
DB, and DA in Eq. (26), respectively, indicate the distances between «, 3, and A and other
individuals. Furthermore, their beginning and finishing positions are specified by Eq. (27).
When the victim eventually stops moving, the grey wolf attacks to put an end to the search
(Gao et al,, 2022; Kraiem et al., 2021; Almazini and Ku-Mahamud, 2021; Almazini et
al,, 2023). By gradually decreasing the value of an, the range of A's fluctuations is reduced.
This is the fundamental method for creating a process model. Put another way, the analogous
value of A changes in the interval (-a, b) during the iterative process in a way that is
comparable to the linear decrease of an in the interval (2, 0).
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5. SIMULATION RESULTS

In this work, the numerical fourth-order Runge-Kutta (4RK) method based on the MATLAB
package with a half-minute sampling time was utilized for implementing the cognitive blood
glucose-insulin control strategy for the nonlinear diabetic patient model in Fig. 3. This
control strategy will achieve the optimal insulin-infusion level for the different types of
nonlinear diabetic patient models to avoid the hyperglycemia level and hypoglycemia level
and to keep the plasma blood glucose level of the diabetes sufferer in the desired normal
state. Specifically, five steps are implemented, as illustrated below:

The first step is to determine the cognitive attributes dataset, with the blood glucose level of
the patient Gp(k), the blood-insulin concentration level Ins(k), and the active insulin in the
remote compartment performs Xp(k), as an open-loop patient model for a healthy individual
as well as for three distinct categories of the diabetes sufferers (NP, P#1, P#2, and P#3) who
are dependent on the glucose starting levels (Go) of (280, 230, 220, and 210) mg/d]l,
respectively. Fig. 8 demonstrates the plasma blood glucose level of different types of three
patients (Gpi(k), Gpz(k), and Gps(k)), with the same initial glucose levels Go. However, the
disturbance meal at breakfast is equal to 15 mg/dl.min-1 blood glucose level.

400

- ---Besirecli Level
350 ormal
- — Patient #1
g — Patient #2
£ 3001 Patient #3
= Upper Level
E 250 Lower Level
8
S 200
=
]
- 150
o
o
@ 100
________________ —mems e e ———————— e e
| | |
B0 e o e o
0O 50 100 150 200 250 300
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Figure 8. The diabetes sufferers (P#1, P#2, and P#3) and a normal person (NP) of the plasma
glucose level responses in the breakfast-meal state.

Fig. 9 demonstrates the dynamic behaviour of the Bergman glucose insulin minimum model
for the three different types of diabetic patients, representing the blood glucose level with the
same initial glucose levels Go, but the disturbance meal at lunch is equal to 20 mg/dl.min-1
blood glucose level.

Fig. 10 demonstrates another dataset, which includes adding the disturbance meal at dinner
with a blood glucose level equal to 5 mg/dl.min-! for the three different types of diabetic
patients with the same initial glucose levels Go.

In step two, the nonlinear glucose-insulin the diabetes sufferer model is displayed in Fig. 3
using the structure of the NARMA-L2 neural network (Dagher, 2018). Accordingly, the
suggested number of nodes in each of the networks, which have three layers, including the
input layer, the hidden layer, and the output layer, is as follows: [7: 15: 1], respectively
(Narendra and Parthasarthy, 1990; Al-Araji et al., 2019).
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Figure 9. The diabetes sufferers (P#1, P#2, and P#3) and a normal person (NP) of the
plasma glucose level responses in the lunch-meal state.

300

===Desired Level
Normal
— .

— Patient #1
~ 250 1 } } } — Patient #2
!;’ | | | Patient #3
£ ‘ | Upper Level
;g’ 200 Lower Level ||
5]
p
[}
g
S 150
O]
©
3
® 100

1 1
[ IS S SR | | N
0 50 100 150 200 250 300

Time (Minute)

Figure 10. The diabetes sufferers (P#1, P#2, and P#3) and a normal person (NP) of the
plasma glucose level responses in the dinner-meal state.

The number of nodes in the hidden layer is equal to twice the number of nodes in the input
layer plus one. The third step involves learning the identifier model of the nonlinear glucose-
insulin the diabetes sufferer using the GWO off-line algorithm and then tuning the models
online. Signals entering or exiting the neural network (NN) have been considered to lie
between (-1) and (+1) in order to solve numerical issues pertaining to actual values (Al-
Araji et al., 2019; Dagher, 2018). As a result, the neural network terminals' first and last
layers (input-output) require the application of scaling functions, respectively, such that the
ranges of these inputs are as follows: Gp(k)=(50 to 500) mg/dl; Xp(k)=(0 to 0.05) 1/min;
Ins(k)=(0to 700) mU/L; Food(k)=(5 to 25) mg/dl.min"1; Io(k)=(50 to 60) mU/L; Go(k)=(210
to 280) mg/dl; and Imax(k)=(0 to 70) U/min.

In the learning mode, the responses of the different types of the nonlinear neural network
glucose-insulin the diabetes sufferer models (Gm1, Gmz, and Gms) are shown in Figs. 11-a,
b, c for three models with two cases the breakfast and the lunch meals learning dataset.
These models have a very small error value in the modelling between the Bergman glucose
level and the diabetic patient neural network model (Gm1, Gmz, and Gms) for 600 patterns
as a learning set, and they have good responsiveness of the identifier models with a very

17



Kh. E. Dagher and ]. Haggege Journal of Engineering, 2025, 31(6)

good dynamical behaviour during the different cases of disturbance meal inputs (breakfast
meal and lunch meal) for the three different types of the nonlinear glucose-insulin patient
models. The performance of the best convergence curve is depicted in Fig. 12.
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Figure 11. The response of the different types of the nonlinear neural network glucose-insulin
patient models for the breakfast meal learning set and the lunch meal learning set, a) The first
diabetes sufferer model Gmj, b) The second diabetes sufferer model Gmy,, c) The third diabetes
sufferer model Gms.
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Itis based on the off-line GWO algorithm for three different types of patient models with 500
iterations and with an agents’ number equal to 32 for the neural networks. In addition, the
number of weights is 272. Specifically, the best alpha convergence curve for the optimal
updated weights of the identifier neural network is presented in Fig. 12.
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Figure 12. The best alpha convergence curve response of the different types of nonlinear neural
network glucose-insulin patient models.

The mean square error response for the optimal updated weights of the identifier neural
network patients in the learning mode are presented in Figs. 13-a, b, c. To verify that these
neural network models have remarkable learning, the testing mode in our work is
essentially for the nonlinear glucose-insulin patient models to prove that these neural
models have been learned in all the excitation and active regions of the real models and
eliminated the overlearning problem. This problem means that the network learns on a part
of the region and forgets other regions during the learning mode. However, the meta-
heuristic GWO algorithm learning cycle was excellent because this algorithm is ideal for
investigating and taking advantage of the problems' global extreme solutions. Figs. 14-a, b,
¢ demonstrate the dynamical behaviour of the nonlinear glucose-insulin patient models
during the testing mode using dinner meal. To verify that these neural network models have
remarkable learning, the testing mode in our work is essentially for the nonlinear glucose-
insulin patient models to prove that these neural models have been learned in all the
excitation and active regions of the real models and eliminated the overlearning problem.
This problem means that the network learns on a part of the region and forgets other regions
during the learning mode. However, the meta-heuristic GWO algorithm learning cycle was
excellent because this algorithm is ideal for investigating and taking advantage of the
problems' global extreme solutions. Figs. 15-a, b, ¢ demonstrate the dynamical behaviour
of the nonlinear glucose-insulin patient models during the testing mode using dinner meal.
The mean square error response of the different types of nonlinear neural network glucose-insulin
patient models, a) The first diabetes sufferer model Gmy, b) The second diabetes sufferer model Gmp,
c) The third diabetes sufferer model Gms. The fourth step involves representing the closed-loop
control system for the nonlinear Bergman model based on the proposed NN controller with
the GWO meta-heuristic method using the objective function (Al-Bayati et al., 2020). This
function will reduce the error between the desired glucose level and the patient’s glucose
level, and at the same time, it will reduce the value of the insulin control action for each
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solution of the control gain parameters for the NN controller to find the best value of the
insulin-infusion control action in the transient and the steady-state regions.
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Figure 13. The mean square error response of the different types of nonlinear neural network
glucose-insulin patient models, a) The first diabetes sufferer model Gmj, b) The second diabetes
sufferer model Gmgy, c) The third diabetes sufferer model Gms.
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Figure 14. The response of the different types of the nonlinear neural network glucose-insulin
patient models for the dinner meal testing set, a) The first diabetes sufferer model Gm1, b) The
second diabetes sufferer model Gm;, c) The third diabetes sufferer model Gms.

The fourth step involves representing the closed-loop control system for the nonlinear
Bergman model based on the proposed NN controller with the GWO meta-heuristic method
using the objective function (Al-Bayati et al., 2020). This function will reduce the error
between the desired glucose level and the patient’s glucose level, and at the same time, it will
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reduce the value of the insulin control action for each solution of the control gain parameters
for the NN controller to find the best value of the insulin-infusion control action in the
transient and the steady-state regions. Fig. 15 displays the response of the proposed closed-
loop insulin-infusion neural network controller, when the Bergman diabetic patient model
adds the breakfast meal as a disturbance. It is important to note that at 200 minutes, the
plasma blood glucose levels of the first diabetes sufferer model and second diabetes sufferer
model did not precisely reach 80 mg/dl at steady state. They remain at their typical
physiological level.
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Figure 15. The plasma blood glucose responses for each Bergman diabetes sufferer model

based on the closed-loop cognitive NN controller with the breakfast disturbance.
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Figure 16. The insulin action of the proposed controller for the three different types of
Bergman models with the breakfast disturbance.

The output response of the insulin-infusion NN controller during the first ten samples is
displayed in Fig. 16 when the blood glucose level abruptly rises. The NN efficiently and
rapidly determines the insulin action value for each of the three diabetes sufferer model to
track the sudden increase in the blood glucose levels.

To determine the optimal control gain settings of the NN controller, Fig. 17 shows the
response of the best alpha convergence for the three diabetes sufferers.

The lunch disturbance effect was introduced for a duration of ten samples for each patient
to show the effectiveness of the insulin-infusion control action. In particular, 20 mg/dl.min-!
is the suggested lunch disturbance value. The following points indicate that the suggested

22



Kh. E. Dagher and ]. Haggege Journal of Engineering, 2025, 31(6)

overall controller improves the diabetes sufferer's glucose level response as shown in Fig.
18.
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Figure 17. The best alpha fitness curve response of the NN controller for the diabetes sufferers
models (P#1, P#2, and P#3) of Bergman patient models with the breakfast distubance.
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Figure 18. The plasma blood glucose responses for each Bergman diabetes sufferer model based
on the closed-loop cognitive NN controller with the lunch disturbance.
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Figure 19. The plasma blood glucose responses for each Bergman diabetes sufferer model based
on the closed-loop cognitive NN controller with the dinner disturbance.

The suggested closed-loop insulin-infusion cognitive controller's response to the addition of
dinner as a perturbation in the Bergman diabetic patient model is shown in Fig. 19.
Specifically, the recommended dinner disturbance value is 5 mg/dl.min-1.
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To confirm the effectiveness of the optimization algorithm (GWO) for modifying the
parameters of the NN controller in this work, the simulation results of the proposed
cognitive neural controller are compared with the results of other controller types that have
taken from (Benzian et al., 2021; Yan et al., 2022). The results are shown in Table 3.

Table 3. Simulation results contrasting alternative architectures with the proposed controller.

Steady- State Error Enhance the time
Type of control algorithm Tuning Overshoot 0S(%) to reach the blood
algorithm Time to reach normal glucose level at
physyological level 100 mg/dl
Fractional order PID and Fuzzy
logic controllers (Benzian et GA, ACO, No oscillation Ess=0 10% for patient#1
al,, 2021) for 20 mg/dl lunch- BAT, IWO T=100 min T=90 min
meal disturbance
Type-2 Fuzzy controller (Yan Trial and Small oscillation 25% for patient#1
etal, 2022) for 20 mg/dl Error Ess=0 T=90 min
lunch-meal disturbance T=120 min
The proposed cognitive neural GWO No oscillation Ee,=0
networks controller

The fractional-order PID (FOPID) and fuzzy-logic (FL) controllers in (Benzian et al., 2021)
were built for the linear Bergman model and only for the first the diabetes sufferer (P#1),
using only five rules for the membership function and the trial-and-error method to
determine the gain in the input-output fuzzy logic controller. As a result, the controller
produces an insulin control action value that is too quick and suboptimal, which causes the
plasma blood glucose level to respond too quickly. The suggested controller, on the other
hand, employs the nonlinear Bergman model, the feedback NN with the GWO heuristic
method. Based on the optimum parameters identified by the optimization algorithm, the
controller has generated optimal or nearly optimal insulin control action, resulting in the
reduction of blood glucose levels to a normal physiological level without overshooting or
response oscillation. In contrast to fuzzy-logic controller algorithms and fractional-order-
PID algorithms, the comparison findings demonstrated that the NN with the GWO algorithm
improved the time to attain the blood glucose level in a normal condition for patient #1 by
10% (Benzian et al., 2021).

In (Yan et al,, 2022), the type-2 fuzzy controller was created only for the first diabetes
sufferer (P#1) using the linear patient Bergman model. Trial and error is how the four
control gains in the control law are acquired, which results in a minor oscillation in the blood
glucose level response as the controller produces a rapid and suboptimal value of the insulin
control action. The proposed cognitive neural controller, which consists of the feedback NN
controller with the heuristic GWO method, works with a nonlinear patient Bergman model.
The controller produces an ideal or nearly optimal insulin control action based on the best
parameters found by the optimization algorithms, bringing the blood glucose level to a
physiologically normal level without fluctuating or overshooting. When compared to the
type-2 fuzzy controller algorithm, the comparison findings demonstrated that the NN with
the GWO algorithm improved the time to attain the blood glucose level in normal conditions
for patient #1 by 25% (Yan et al., 2022).

The simulation's findings demonstrate that the optimal insulin control action can be
achieved by the suggested cognitive neural network glucose-insulin controller using the
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=

GWO algorithm. This makes it possible for the nonlinear diabetes sufferer Bergman model
to track the necessary plasma blood glucose level with the least degree of tracking error and
to attain optimal performance without oscillation in the output blood glucose levels of the
different diabetes sufferer types.

Furthermore, to show the effectiveness of the proposed cognitive glucose-insulin controller,
we will take another parameter of the minimal glucose model, especially to show the effect
of the glucose effectiveness factor P1, which is the rate constant for the glucose uptake in
muscles and liver, which is not equal to zero. In the Bergman minimal model, the parameter
P1 also known as glucose effectiveness (S_G), quantifies glucose's ability to facilitate its own
uptake and suppress its production, independent of insulin action. A number of factors,
including model simplifications, individual variability in insulin secretion and sensitivity,
and underlying physiological conditions impacting glucose metabolism, can cause variations
in the estimated values of P1, including zero or extremely tiny. The impacts of P1 zero versus
small values on a few features are displayed in Table 4.

Table 4. The effects of P zero vs small value.

Feature P1 =0 (No Glucose Py = Small (Minimal Glucose
Effectiveness) Effectiveness)
Muscle Glucose Fullv dependent on insulin A very small amount occurs
Uptake y daep independently
Liver Glucpse No suppression without Slight suppression, but still needs insulin
Suppression insulin
Impact on Blood Extreme glucose instability Slightly better glu.cose. clea_rance, but still
Sugar requires insulin

Table 5 demonstrates the parameters of the minimal glucose model for the fourth patient
(Xavier et al., 2022). The response of the suggested closed-loop insulin-infusion proposed
controller is shown in Fig. 20 based on the Bergman diabetic patient model parameters as
in Table 5. In particular, Go is equal to 200 mg/dl value in the blood at beginning, the insulin-
infusion action stabilizes patient #4's glucose level, as indicated by the red-colour line, which
drops from 200 mg/dl to 80 mg/dl (the normal physiological level) and takes up 42 minutes.
While the open loop response of patient #4 as indicated by the purple-colour line, decreases
from 200 mg/dl to 120 mg/dl during 100 minutes, then remains at a level of 120 mg/dl blood
glucose to 300 minutes.

Table 5. The parameters’ values of the minimal model for the fourth patient (Xavier et al., 2022).

Parameters Units Patient #4
P1 (1/min) 0.028735
Pz (1/min) 0.028344
P3 (L/mUmin?) 5.0353x10-¢
n (min) 0.1
Gy (mg/dl) 120
I, (mU/L) 10
G, (mg/dl) 200
I, (mU/L) 10
Si=P3/P; 177.65x106
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To monitor the abrupt rise in blood glucose levels as shown in Fig. 21, the proposed neural
networks quickly and effectively calculate the insulin action value for the initial blood
glucose level, Go. The maximum insulin-infusion control action value of 34.5 mU/L.min-1,
then the rating insulin action is 8 mU/L.min-1.
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Figure 20. The glucose responses for patient #4 model based on the closed-loop cognitive
controller with the p1 effect.
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Figure 21. The insulin action of the proposed controller for the fourth patient with the p1
effect.

6. CONCLUSIONS

The cognitive blood glucose-insulin control technique is presented in this work, which uses
three layers in the controller's structure to monitor and control the plasma blood glucose
levels of various diabetic patients’ types. The first layer was the cognitive dataset that
represented the attributes of the control system. The second layer was the identifier neural
network model that represented the different types of nonlinear Bergman diabetic patient
models. The third layer was the feedback NN controller based on the radial basis function
neural network model to find the optimal insulin-infusion value and to maintain a normal
level of blood glucose. The grey wolf optimization (GWO) meta-heuristic technique was used
to train this controller. Due to its rapid processing speed and capacity to detect multiple
invasions, GWO has been widely used in both data estimation and training. The following
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problems can be effectively resolved by using the glucose-insulin management technique

based on the suggested three layers:

e The blood glucose level is effectively tracked and kept steady at the target level of 80
mg/dl, which is within the normal physiological range of 60-120 mg/dl.

¢ An ideal or almost ideal smooth value of the insulin-infusion control action was generated

in order to enhance the blood glucose level response in diabetes patients without reaching
saturation.

e The suggested controller, which is based on the NN controller with the GWO algorithm,
attains a high level of tracking accuracy for the plasma blood glucose level that is observed.
Its offline and online tuning control settings offer smooth insulin action without a
significant spike and no saturation state.

¢ At intervals longer than 220 minutes, the maximum tracking error level for plasma blood
glucose monitoring gets closer to zero.

e The suggested controller improved the time by 10% to bring the blood glucose level back
to a normal physiological level with the lunch disturbance as compared to the fractional-
order PID controller method. Furthermore, the suggested controller improved the time by
25% in comparison to the type-2 fuzzy control algorithm to get the plasma blood glucose
level to a physiologically normal level with the lunch disturbance.

To create an artificial pancreas, the suggested glucose-insulin control strategy based on

offline and online neural network controller with the GWO algorithm will be experimentally
implemented in the future utilizing an FPGA development board with an insulin pump
device.
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