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ABSTRACT 

 

Atterberg limits play a crucial role in soil investigations due to their ability to provide 

fundamental insights into the mechanical behavior of soils. The primary objective of this 
study was to derive empirical equations for determining the liquid limit (LL) and plastic limit 
(PL) of soils using only soil particle size distribution data. Microsoft Excel was used for 
statistical analysis, applying 10 different methodologies. The methodology integrated the 
clay fraction (CF) (<0.002 mm) as the main independent factor in all models. The only 
independent variable in model M1 is CF, while model M2 includes sand and silt, in addition 
to clay fractions, as independent factors. In the analytical process, the number of 
independent variables progressively increased from model M1 to model M10, systematically 
enhancing the predictive capacity of the models. Using this methodology, two robust 
equations were developed in model M6, which are capable of determining LL and PL, with 
R-squared values reaching the value 1.0 and an RMSE of approximately zero; however, it is 
important to note that while an RMSE of zero does indicate an R-squared of 1.0, an R-squared 
of 1.0 does not necessarily imply a zero RMSE.  The results of this study show that full grain 
size analysis data alone may effectively predict LL and PL, negating the need for additional 
physical or chemical characteristics of the soil.  
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1. INTRODUCTION 
 

The liquid limit (LL) and plastic limit (PL) are fundamental to engineering classification 
systems that define fine soils and play significant roles in distinguishing silt (M) and clay 
(CF). Furthermore, LL, PL, and plasticity index (PI) of soils are widely utilized, either 
independently or in conjunction with other soil properties, to correlate with engineering 
performance according to (ASTM D4318, 2017).  
All portions of soil particles affect soil properties because the rocks become the origins of 
soil particles, and all the processes, including the origin of soils, weathering, transportation, 
and deposition, make different types of soil in terms of grain size, shape, mineral 
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composition, etc., and the grain decrease in size (Ishibashi and Hazarika, 2015). In soil 
mechanics, LL and PL are basic properties of fine-grained soils, and the GSD curve directly 
provides information on the distribution of particle sizes within the soil sample, including 
the percentages of Gravel(G), Sand(S), Silt (M), and Clay Fraction (CF). Soil plasticity and GSD 
are essential factors in classifying soils based on standard classification systems, such as the 
Unified Soil Classification System (USCS) or the AASHTO system, which are based on the 
particle size distribution, according to (ASTM D2487, 2017; AASHTO M145, 2024). 
The literature review highlights two key analytical areas: the first focuses on deriving 
Atterberg limits, namely, LL and PL, based on soil grading parameters and particle size 
distribution. The second area critically assesses the predictive strength and capabilities of 
GSD in modeling diverse geotechnical soil behaviors, emphasizing its empirical correlations 
with fundamental engineering properties such as shear strength, compressibility, and 
hydraulic conductivity.  
Several studies have focused on methods for estimating the liquid limit (LL) and plastic limit 
PL) based on soil grading parameters and particle size distribution. For example (Jong et al., 
1990) used the stepwise linear regression method and demonstrated that the LL, PL, and 
plasticity index (PI) of the samples were most strongly associated with clay fraction (CF) 
content. Sand (S) and silt (M) were not utilized because sand was closely linked to the clay 
fraction, and both sand and silt exhibited no significant correlation with Atterberg 
properties (Jong et al., 1990). Additionally, analyses using an Artificial Neural Network 
(ANN) by (Borowiec and Wilk, 2017) with two input elements (CF and S) and two output 
elements indicated an enhancement in the prediction of soil parameters LL and PL. Further 
research (Deng et al., 2017) examined the relationship between individual parameters, 
where individual nonlinear regression analysis revealed a significant positive correlation 
between soil LL and PL with CF, organic matter, cation exchange capacity (CEC), and free 
iron oxide, and a notably negative correlation with sand (S).  
The prediction process for LL and PL by (Sherzoy, 2017) found that using the Support 
Vector Machine (SVM) or Adaptive Neuro-Fuzzy Inference System (ANFIS) model for 
predictions with three inputs (S, M, and CF) yielded results closer to the true value than to 
the analysis using only two inputs (M and CF). According to (Nini, 2014) both M and CF 
should be used together for LL measurement, and another study by Sen and Pal (Sen and 
Pal, 2014) concluded that the plasticity of soil increases as the finer fraction (M+CF) 
increases. Based on ANN analysis by (Zolfaghari et al., 2015), the CF and calcium carbonate 
equivalent are the primary factors predicting the limits of Atterberg. In addition to CF, the 
type of clay and size of the particles have considerable effects on the Atterberg limits. In 
another study, a higher correlation was found between CF content and LL than with PL when 
Atterberg limits were individually correlated with CF, M, and S contents (Knadel et al., 
2021), neither the Atterberg limits nor the PI were significantly correlated with the M 
content. Another study found strong positive correlations between CF and all Atterberg 
limits (Van Tol et al., 2016), and significant negative correlations exist between S content 
and all Atterberg limits. 
Other studies have established a relationship between plasticity limits and CF. One study 
(Polidori, 2007) revealed that CF is directly proportional to LL, PL, and PI, with only LL and 
CF showing a regression line with a zero intercept value. Additionally, another study 
(Rehman et al., 2019) correlated clay type and CF to LL and PL using visible–near-infrared 
spectroscopy (VisNIR) and found a strong relationship between them. Furthermore, 
(Moradi and Ebrahimi, 2013) indicated that both LL and PL are influenced by the quantity 
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and type of CF in the soil and that high CF content leads to high LL and PL. Another study 
(Polidori, 2003) found a nonlinear regression relationship between LL and PL with the CF 
content. 
Further investigations by (Kayabali, 2011) were conducted to examine the impact of the 
grain size of material passing sieve #200 (0.075 mm) versus sieve #40 (0.425 mm) on LL 
and PL; It was discovered that the LL and PL of the material passing through a #200 sieve 
were approximately 10 to 20 percent higher than those of the material passing through a 
#40 sieve for the same soil, resulting in higher LL and PL values owing to the increase in the 
specific surface caused by the decrease in grain size. Attempts were made by (Seybold et 
al., 2008) to relate the plasticity limits with CF and other soil parameters such as CEC, bulk 
density, free iron oxide, linear extensibility percent, and organic carbon, the results revealed 
that CF and CEC were the most highly correlated and important independent variables in 
predicting both LL and PI, compared to the other remaining variables. 
Another study (Dolinar and Škrabl, 2013) explored how soil composition influences LL 
and PL and found that the Atterberg limits are mainly dependent on the size and proportion 
of (CF) clay minerals. In a separate study conducted by Khalaf and Issa (Khalaf and Issa, 
2021), which focused on five selected soil sites in Babylon, Iraq, the researchers aimed to 
explore the relationship between the soil's physical properties. They emphasized that 
particle size distribution is a key factor affecting physical characteristics such as plasticity 
and forms the essential foundation for understanding the link between these properties. 
In a recent study conducted by (Nawaz et al., 2022), a computational model leveraging 
artificial intelligence (AI) methodologies was developed to systematically integrate 
parameters S, CF, and M to more accurately model the consistency characteristics of fine-
grained soils. The investigation revealed that the liquid limit (LL), a critical index property 
of soil plasticity, is predominantly influenced by particle-size distribution, particularly the 
proportional contributions of silt, clay fraction, and sand within the soil matrix. Grain Size 
Distribution (GSD) and particle arrangement play a crucial role in determining soil 
properties such as porosity, permeability, shear strength, compressibility, and bearing 
capacity. The impacts of the GSD and particle arrangement on the porosity and pore size 
distribution, which in turn affect permeability, (Ubani et al., 2018) predicted and found a 
strong positive association between permeability and grain size data and distribution, also 
another study by (Díaz et al., 2022) demonstrated that the permeability decreases with 
decreasing porosity in compacting aggregates, and the Kozeny equation was modified by 
taking the grain size grading into account. 
GSD significantly affects other soil properties. For example, cohesion and the friction angle 
of the soil, which are influenced by the distribution of particle sizes, are essential for 
determining slope stability and foundation construction. The results of the study by 
(Basson, 2023) demonstrate that shear strength increases with particle size range; (Van 
Hoa et al., 2021) show that strength parameters increase as soil grain size increases; 
(Ahmad and Uchimura, 2023) demonstrate that soil moisture content, dry density, and 
grain size, influence soil shear strength; and (Abdou, 2008) proved that the angle of internal 
friction increases as each type of (S) particle size (fine, medium, or coarse) increases. 
Soil with a high proportion of fine grains is highly compressible, whereas soil with a high 
proportion of coarse grains is less compressible. The compressibility of a material is 
influenced by the GSD and can be accurately modeled using a GSD index (Sun et al., 2015). 
Additionally, (Yong et al., 2017) highlights the crucial role of GSD in the behavior of soils 
and granular media. Furthermore, (He et al., 2021) confirms that the characteristics of 
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gradation, including the shape of the GSD curve, have a significant impact on the deformation 
properties of materials with varying particle sizes. 
The GSD of a soil can provide useful information about its California Bearing Ratio (CBR) 
value. Generally, soils with a well-graded GSD, meaning they contain a wide range of particle 
sizes from coarse to fine, tend to have higher CBR values compared to poorly-graded soils 
with a more uniform particle size distribution have lower CBR values. In geotechnical 
engineering, artificial intelligence (AI) approaches have been used by (Taskiran, 2010) to 
evaluate the (CBR) of soils using grain gradation (including CF + M, S, and G fractions), 
plasticity values, and compaction factors as input data. These procedures have proven to be 
capable of properly predicting the CBR of soils. Furthermore (Duque et al., 2020) 
discovered a substantial correlation between granular soils' CBR and their GSD. Using 
conventional laboratory data on the GSD of compacted soil, a method has been devised by 
(Stephenson et al., 1976) to predict the strength characteristics of the soil. However, the 
various characteristics present in natural soils, such as grain size, shape, and surface texture, 
all of which have a significant impact on the strength of the soil, are mostly responsible for 
the scatter in the recorded CBR values around the regression line. The natural fluctuations 
in soil qualities that occur also add to the observed uncertainty in the relationship between 
CBR and GSD. 
A study by (Abdullah, 2024) found that Both Maximum dry density (MDD) and optimum 
moisture content (OMC) are based only on GSD data without any other chemical or physical 
properties of soil, with R2 approximately about 1.0 in this case. Fig. 1, based on Abdullah's 
equations (Abdullah, 2024), depicts the MDD and OMC in relation to typical GSD curves of 
soil. The novelty of the present study lies in its comprehensive approach to modeling the 
relationship between detailed GSD parameters-including clay fraction, sand and silt 
fractions, and specific passing diameters-and Atterberg limits using advanced regression 
techniques. By incorporating a broader range of predictors and refining the model structure, 
this research aims to improve prediction accuracy and provide a more robust tool for soil 
behavior characterization, addressing limitations in existing literature. 
This study explores the correlation between soil fractions and soil plasticity, utilizing Grain 
Size Distribution (GSD) curves of soil obtained from sieve and hydrometer analyses to 
estimate and gain a better understanding of the soil plasticity. 
MES is particularly suitable for geotechnical engineering applications because of its user-
friendly environment, which allows for efficient data entry, manipulation, and visualization 
through built-in functions and customizable spreadsheets. This accessibility not only 
streamlines the analysis process but also enables rapid computation and graphical 
representation of complex soil parameters, directly from laboratory or field data. 
Furthermore, MES facilitates the minimization of the sums of squares of differences and 
maximization of the Pearson correlation coefficient (R²) for specific datasets, making it 
highly effective for determining relationships between retaining fractions and 
corresponding soil consistency limits. Its widespread use in geotechnical practice and 
education further supports its reliability and versatility for such analyses. In this study, the 
Microsoft Excel Software (MES) was used to prepare and analyze the data with an easy-to-
use interface without having to write code. 
To derive the theoretical model equation for determining the LL and PL from the grain size 
data, more than 10 models were analyzed by MES using a generalized reduced gradient 
(GRG), and the model with the highest R2 value and the smallest RMSE value was selected in 
the final step. While previous studies have explored the correlation between grain size 
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distribution (GSD) and Atterberg limits, most have relied on limited GSD parameters or 
simple linear models, often resulting in moderate predictive accuracy. 
 

 

 
Figure 1. MDD and OMC in relation to typical GSD curves for different soils, after 

Abdullah's equations (Abdullah, 2024). 

 Moreover, the complex interactions between different grain size fractions and soil plasticity 
remain inadequately quantified, especially across diverse soil types. This gap restricts the 
reliable use of GSD data alone for precise soil classification and engineering assessments . 
Previous studies have attempted to model the correlation between grain size distribution 
(GSD) and Atterberg limits, with varying degrees of success. GSD parameters such as clay 
fraction (CF), sand and silt fractions (S, M), or specific grain size passing diameters have been 
used as predictors in regression models to estimate Atterberg limits like liquid limit (LL) and 
plastic limit (PL). These studies indicate that the correlation between GSD and Atterberg 
limits reflects the influence of soil texture on soil plasticity and related characteristics. 
However, these efforts also highlight the complexity of accurately predicting soil consistency 
parameters from grain size data alone. Building on this foundation, the present study aims 
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to develop regression models that better capture the relationship between GSD and soil 
plasticity, thereby improving classification accuracy and engineering assessments. 

 

2.  MATERIALS AND EXPERIMENTAL WORKS 
 

Soil samples were collected from various locations in Mosul City, Iraq. Twenty samples were 
taken from a depth of 1.00 meters below the ground surface in the following Mosul city 
sectors: Qadisiyah 1, Qadisiyah 2, Yarmouk, Wahda, Hadbaa, Hawi Kanisa, and Shuhada. This 
selection ensures that the study captures spatial variability in soil properties, thereby 
providing a comprehensive understanding of the conditions relevant to geotechnical 
engineering applications in the city. Soil samples were subjected to specific gravity (Gs), 
particle-size analysis (gradation), and Atterberg limit tests in accordance with ASTM 
Specification guidelines. The specific gravity of the soil particles was determined using a 
pycnometer, which allows for accurate measurement of the mass and volume of soil solids. 
Particle-size distribution was assessed through sieve analysis for coarse fractions, utilizing 
a standard set of sieves and a mechanical shaker, and by hydrometer analysis for finer 
particles, which measures the rate of sedimentation in a suspension. The Atterberg limits, 
including the liquid limit (LL) and plastic limit (PL), were determined using the Casagrande 
apparatus for the percussion-cup (liquid limit) test and the rolling method for the plastic 
limit. These standardized laboratory procedures and apparatus ensure the reliability and 
reproducibility of the soil characterization results, providing essential data for geotechnical 
analysis and engineering design. The soil samples collected from the study area exhibit a 
wide range of geotechnical properties, as summarized in Table 1. The Liquid Limit (LL) 
values vary from 0.0% to 101.0%, with an average of 45.8%, while the Plastic Limit (PL) 
ranges from 0.0% to 50.0%, averaging 22.1%. The Plasticity Index (PI), which is a key 
indicator of soil plasticity and behavior, ranges from 0.0% to 51.0%, with an average value 
of 23.8%. Based on the PI values, the soils can be categorized into low plasticity (PI < 10%), 
medium plasticity (PI between 20% and 40%), and very high plasticity (PI > 40%) groups 
(Das, 2013).  
 

Table 1. Statistical properties of soil samples 
 

 LL% PL% PI% Gs P#4 P#40 P#200 CF5 CF2 
Min. limit 0.0 0.0 0.0 2.50 97 90.0 65.0 20.0 6.2 
Max. limit 101.0 50.0 51.0 2.74 100 100 96.0 72.0 65.0 

Median 50.5 22.5 25.0 2.71 100 96.8 89.5 56.0 40.5 
Average 45.8 22.1 23.8 2.70 99.8 95.5 86.5 52.3 36.2 
St. dev. 19.6 9.8 11.5 0.1 0.7 3.1 8.3 14.1 15.5 
VAR.P 385.7 95.6 131.8 0.0 0.5 9.5 69.6 197.5 240.9 

 
The majority of samples fall within the moderate plasticity range, indicating soils with 
moderate plastic behavior. Additional parameters such as specific gravity (Gs), particle size 
distribution-where P#4, P#40, and P#200 indicate the percentage passing each sieve-and 
clay fractions (CF5 and CF2 denote clay fractions with particle sizes less than 0.005 mm and 
0.002 mm, respectively) further characterize the soil texture and structure, supporting a 
comprehensive understanding of the soil conditions in the study area. 
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3. STATISTICAL METRICS AND MODEL 
 

In this research, the GRG Nonlinear engine is selected to find the solver for models. This 
Solving method alone, like virtually all nonlinear optimization algorithms, can find a locally 
optimal solution. In the “GRG,” when it is making very slow progress Solver stops before 
finding a locally optimal solution, and their objective function is changing from one trial 
solution to another. This is similar to the principle of trial and error; therefore, the GRG 
usually needs more than one attempt to find the optimal solution. 
The GRG (Generalized Reduced Gradient) algorithm in Excel Solver is used to solve smooth 
nonlinear optimization problems by iteratively adjusting variables to find a local optimum 
while satisfying constraints. It was chosen because it efficiently handles continuous 
variables and nonlinear relationships, offering faster convergence than the Evolutionary 
algorithm and greater suitability than the Simplex method, which is limited to linear 
problems. Overall, GRG provides an effective balance of accuracy and computational speed 
for this study’s optimization needs. The GRG algorithm has several limitations. First, it 
requires a feasible starting point, which can be challenging to identify complex problems. 
The algorithm primarily handles smooth, differentiable nonlinear functions and may 
struggle or fail with non-differentiable or highly non-convex problems. It can also converge 
to local optima rather than the global optimum, especially in problems with multiple local 
minima. 
The model's reliability was checked by both R2 and root mean squared error (RMSE) metrics 
to evaluate the equation's performance. It is noted that a coefficient of determination 
(Likhith et al., 2022) with R2=1 does not indicate zero RMSE, whereas zero RMSE does 
indicate R2 = 1.0.  
There is always a risk of error when estimating for more situations, so it is better to use a 
mathematical approach that removes the risk of bias. One of the Mathematical 
determinations of regression lines is the method of least squares, which is the most popular 
and used one (Smith, 1986). 
 
4. METHODOLOGY 
 

In this paper, the master strategy is implemented by ten models (M1 to M10), all relying on 
the clay fraction (CF < 0.002 mm) as the main variable parameter, along with parameters 
obtained from sieve and hydrometer analyses. The models employ multiple linear 
regression to establish predictive equations relating Liquid Limit (LL) and Plastic Limit (PL) 
to grain size distribution (GSD) data and soil retention percentages. This approach allows 
quantifying the relationship between Atterberg limits and soil particle size characteristics. 
The model strategy involves increasing the number of independent input parameters from 
model M1 to M10. Model M1 (with 1 input parameter) relied solely on the clay fraction (CF), 
which represents the percentage of soil particles smaller than 0.002 mm. Model M2 (with 3 
input parameters) incorporated soil portion percentages defined as Sand (S), Silt (M), and 
Clay Fraction (CF). Specifically, S (Sand) refers to the coarse fraction of soil particles typically 
ranging from 0.075 mm to 4.75 mm, M (Silt) represents the fine fraction with particle sizes 
between 0.002 mm and 0.075 mm, and CF (Clay Fraction) denotes the finest particles less 
than 0.002 mm in diameter. Models M3 and M4 were based on six sieve sizes (#4, #8, #16, 
#40, #50, and #200) in addition to hydrometer parameters, which provide detailed particle 
size distribution data. Models M5 to M9 expanded the input to eight sieve sizes (#4, #8, #16, 
#30, #40, #50, #100, and #200) alongside hydrometer measurements for increased 
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resolution. Finally, Model M10 utilized twelve sieve sizes (#4, #8, #10, #16, #20, #30, #40, 
#50, #60, #100, #140, and #200), representing a comprehensive set of sieves tailored to 
capture the full range of grain sizes present in the soil samples. 
In addition to increasing the number of sieve points in the ten models, another strategy 
involves gradually increasing the number of independent parameters obtained from 
hydrometer analysis to fifteen points in the final model (0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 
0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, and 0.002). All input parameter points 
from both sieve and hydrometer analyses are displayed and analyzed across the ten models 
using MES. Table 2. shows the total number of parameters used for each model, and the 
Initial RMSE of LL and PL at the first start before the solver run from MES. 

 
Table 2. Details of number parameters for main models. 

 
Sub-Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Number of Parameters 1 3 14 16 18 20 21 22 24 29 

Initial RMSE of LL 50 50 48 48 48 48 48 48 48 48 

Initial RMSE of PL 24 24 23 23 23 23 23 23 23 23 

 
5. RESULTS AND DISCUSSIONS 
 

The initial model (M1) was formulated to derive empirical correlations for estimating the LL 
and PL using clay fraction (CF <0.002 mm) as the sole input parameter. Two regression 
equations were established under this framework: Eq. (1) for LL prediction yielded R² of 
0.72 and RMSE of 10.75, while Eq. (2) for PL prediction produced an R² of 0.60 and an RMSE 
of 6.44. The modest predictive capacity of these equations, evidenced by the limited R² 
values and elevated RMSE magnitudes, reflects the inherent constraints of a single-
parameter regression approach. This methodological limitation underscores the restricted 
explanatory power of CF alone in capturing the full variability of Atterberg limits, 
necessitating the inclusion of additional granulometric parameters to enhance model 
robustness. 
 

𝐿𝐿𝑝% = 12360.8 ∗ 10−4 ∗ 𝐶𝐹2                R2=0.719,       M1                                                                           (1) 
𝑃𝐿𝑝% = 5906.3 ∗ 10−4 ∗ 𝐶𝐹2                 R2=0.598 ,      M1                                                                          (2) 
 
Similarly, the correlation coefficient R2 in M2 (3 input parameters S, M, and CF) very slightly 
improves in Eq. (3) to Eq. (4). The dependence of these equations on only three soil portions, 
S, M, and CF, limits the equation's ability to accurately forecast LL and PL. 
 

𝐿𝐿𝑝% = (58.0𝑆 + 1036.3 𝑀 + 11250.9 𝐶𝐹2) ∗ 10−4               R2=0.722,    M2                             (3) 
𝑃𝐿𝑝% = (698.5𝑆 + 885.5 𝑀 + 5107.7 𝐶𝐹2) ∗ 10−4                 R2=0.605,    M2                             (4) 
 
Fig. 2 displays the M2 equation results as well as the degree of accuracy in the relationship 
between the actual and predicted values of LL and PL. The distribution of points around the 
y=x line is random, suggesting that LL and PL cannot be strongly predicted using only the 
primary soil portions (S, M, CF). This is very clear from high values of RMSE=10.35 and 6.14 
for LL and PL, respectively. This implies that other input parameters from GSD data should 
be taken into account and examined according to the research methodology of this paper. 
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Figure 2.  Model 2, Actual versus predicted LL, PL values from Eq. (3) and Eq. (4) 

R2 was utilized to assess the degree of correctness of the 10 main models. As the number of 
variable input points is increased from 1 to 29, the findings clearly show an improvement in 
regression, with the R2 increasing and RMSE decreasing (see Fig. 3). Additionally, Fig. 4 
shows how adding more input points affects the R2 coefficient's augmentation and RMSE 
decrease. Eq. (5) and Eq. (6) from model M6 predict LL and PL using twenty independent 
variables, alongside, inserted as ‘’a’’ factor and ‘’b’’ factor, respectively. These equations 
depend on the retaining (Rt) percent on each corresponding “j” Index indicating a size where 
the point of retaining is taken, where; 𝑅𝑡𝑗 = 𝑃𝑖+1 − 𝑃𝑖    and (P) is the passing from gran size 

distribution data. Table 3 presents the calibrated coefficients (a-factors and b-factors) 
corresponding to the grain size fractions used in Eq. (5) and (6) for predicting LL and PL, 
respectively, within Model M6. A positive a-factor indicates that an increase in the retained 
percentage of the corresponding particle size fraction contributes to an increase in the 
predicted LL value. Conversely, a negative a-factor suggests a reducing effect on LL. 
Similarly, the b-factors represent the influence of each grain size fraction on PL. Notably, the 
trends of a-factors and b-factors are generally consistent in sign and magnitude, reflecting 
that the same particle size fractions tend to influence LL and PL similarly, although the 
magnitude of their effects varies 
Also, Table 3 breakdown highlights how the entire grain size distribution influences soil 
plasticity characteristics, emphasizing the importance of considering multiple size fractions 
rather than relying solely on one or three soil fractions, as referred to in models M1 and M2. 
 

𝐿𝐿𝑝% = [ 𝑎0 𝐶𝐹2 +  ∑ 𝑎𝑖𝑅𝑡𝑗
19
𝑖=1 ] ∗ 10−2                    𝑎0 = 221.0               M6                                   (5) 

𝑃𝐿𝑝% = [ 𝑏0 𝐶𝐹2 +  ∑ 𝑏𝑖𝑅𝑡𝑗
19
𝑖=1 ] ∗ 10−2                     𝑏0 = 129.7                M6                                     (6) 

 
Eq. (5) and Eq. (6) demonstrate a functional relationship between LL, PL, respectively, and 
their GSD Besides, increasing R2 up to 1.000 as the number of input points increases to 20 in 
the model M6. It has been observed that the relationships are more accurate due to RMSE 
decreases to 0.0064 and 0.0016 for LL and PL, respectively, referring to Figs. 3 and 4 for a 
comparison between the 10 main models.  
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Figure 3. R2 and RMSE values versus models. 

From the 10 models in this study, it can be concluded that the LL and PL can be efficiently 
predicted from particle size analysis tests alone, without relying on any other chemical or 
physical property of the soil. This aligns exactly with the research findings (Abdullah, 
2024), which identified both MDD and OMC based solely on GSD data. 
Fig. 5 illustrates the accuracy of Model M6 in predicting the LL directly from detailed GSD 
data using Eq. (5). By incorporating 20 input points, including the CF and retained 
percentages across 19 this model captures the complex influence of the entire soil gradation 
on plasticity, achieving a near-perfect correlation (R² = 1.000) and very low RMSE values 
(0.0064 for LL). This demonstrates that soil plasticity is governed not only by clay content 
but also by the full gradation profile, highlighting the importance of high-resolution GSD data 
for precise LL estimation. Compared to simpler models relying on fewer parameters as M1 
(1 input parameters) and M2 (3 input parameters), Model M6 offers a significant 
improvement, enabling rapid and highly reliable LL predictions that can streamline 
geotechnical design processes, especially for projects requiring detailed soil 
characterization. 
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Figure 4. R2 and RMSE values versus the total number of input Parameters. 

The forecast outcomes of LL and PL from M6 by regression equations are compared to 
measured data from experimental tests in Fig. 6. The strength of Eq. (5) and (6) is indicated 
by the R2 coefficient and RMSE, showing that the obtained results are very similar to the 
original data (experimental results). 
As shown in Fig. 6, the proposed M6 model demonstrates an exceptional agreement between 
the measured and predicted values for both Liquid Limit (LL) and Plastic Limit (PL). The 
regression equations (Eq. 5 and Eq. 6) capture the functional relationship between soil grain 
size distribution (GSD) and soil consistency limits. Specifically, the LL and PL are modeled as 
functions of the clay fraction (CF2) and the retention percentages (Rtj) across various grain 
sizes, reflecting the comprehensive influence of the entire soil gradation on consistency 
limits 
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Figure 5. LLp relative to typical GSD curves for various soils, Eq. (5). 

  
 

Figure 6. A comparison between the measured values and predicted values using M6 (Eq. 
5 and Eq. 6). 
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. 
Table 3. (i)th element of Eq. (5) and Eq. (6) from model M6. 

Index Diameter Index LLp PLp 

J (D )mm i a-factor b-factor 

#4 4.75 1 -3687.4 -4003.6 
#8 2.36 2 4519.0 6136.5 

#16 1.18 3 304.4 1020.2 
#30 0.60 4 -1970.5 -1839.4 
#40 0.425 5 4979.7 7447.1 
#50 0.300 6 -4958.6 -7211.5 

#100 0.150 7 -3.7 -1200.4 
#200 0.075 8 975.4 1633.8 
0.06 0.06 9 -3142.4 -3492.4 
0.05 0.05 10 697.9 588.3 
0.04 0.04 11 1303.0 1644.7 
0.02 0.02 12 568.5 813.1 
0.01 0.01 13 -571.1 -898.9 

0.009 0.009 14 3393.7 2960.9 
0.008 0.008 15 -2577.1 -1954.4 
0.006 0.006 16 -2404.7 -1920.6 
0.005 0.005 17 1904.1 1811.0 
0.004 0.004 18 856.7 555.5 
0.002 0.002 19 -115.0 -96.9 

 
Sieve No. 40 (0.425 mm) is used in preparing the soil for LL and PL tests and is referenced 
in major standard soil testing methods, including AASHTO T89 and T90 (AASHTO T89, 
2022; ASTM D4318, 2017; BS 1377-2, 1990; IS 2720-5, 1985). This sieve fraction 
excludes coarser sand-sized particles that do not exhibit plasticity, thereby focusing the tests 
on the fines that govern soil behavior related to plasticity. To investigate the effect of using 
only the material passing through the No. 40 sieve on model M6, this study modified model 
M6 to create a new model, named M#40, and analyzed by using MES and a GRG solver. 
Models M#40LL and M#40PL were prepared and examined  to predict LLp and PLp, 
respectively, and both R2 and RMSE were determined. Fig. 7 below shows the regression 
correlation between the actual and predicted values of LL and PL.  
The RMSE of M#40LL and M#40PL was equal to 49 and 23, respectively, before running GRG 
in MES After running the solver tool, the RMSE of LL was equal to 6.1630. And this value 
comparison with RMSE (0.0064) in M6 is considered a very high value also, the R2 decreases 
to 0.9016, less than R2=1.0000 in M6, and to be more clear and more organized, see Table 
4. for a comparison between model M6 vs M#40LL and M#40PL.  
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Figure 7. A comparison between the measured and predicted LL and PL values M#40. 

Table 4. Comparison between two models. 

Limit LLp  Limit PLp 
Model M6 M#40LL  Model M6 M#40PL 

R2 1.0000 0.9016  R2 1.0000 0.8036 
RMSE 0.0064 6.1630  RMSE 0.0016 4.3336 

Minimum DLL -0.011 -14.853  Minimum DPL -0.003 -6.565 
Maximum DLL +0.020 +18.905  Maximum DPL +0.003 +10.826 

 
The statistical performance of the M6 model is outstanding, with R² values of 1.0000 for both 
LL and PL, and extremely low RMSE values (0.0064 for LL and 0.0016 for PL). The minimum 
and maximum differences between the measured and predicted values (DLL and DPL) are 
also very small, indicating high prediction accuracy and minimal bias. 
From Table 4, it is clear that model M#40LL gives R2 =0.90, which is a relatively high value 
but M#40LL cannot be relied upon due to the high value of RMSE=6.1630, the model gives a 
difference between actual and predicted LL (DLL=LLactual-LLpredict) about (-14.8% to +18.9%) 
and this is the very high difference which cannot accept, and this conclusion fully applies to 
the model M#40PL (for predicting PL), also see Table 4, (DPL=PLactual-PLpredict). The M#40PL 
models perform worse because they show a lower R² (0.8036 vs. 1.0000) and much higher 
RMSE (4.3336 vs. 0.0016), indicating less accuracy and greater error. The wider range of 
DPL values (from -6.565 to +10.826) also suggests more variability and less reliable 
predictions compared to the M6 model. The M#40LL model performs worse due to its lower 
R² (0.9016 vs. 1.0000) and much higher RMSE (6.1630 vs. 0.0064), indicating less accuracy. 
The large range of DLL values (from -14.853 to +18.905) shows greater prediction variability 
compared to the M6 model. This likely results from the inclusion of coarser particles in the 
No. 40 fraction, which reduces the model's precision. 
From the literature, several methods and models reporting R² and/or RMSE values are used 
for predicting LL and PL based on inputs such as clay fraction (CF), sand (S), and silt (M). The 
methods include : 
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a) Simple Linear Regression (SLR), used by (Jong et al., 1990), which showed a strong 
correlation for LL prediction with an R² of 0.84 but excluded sand and silt due to low 
correlation. 

b) Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM), 
applied by (Sherzoy, 2017), where ANFIS achieved very high accuracy (R² up to 0.987 
for LL), outperforming SVM in both LL and PL predictions . 

c) Visible and Near-Infrared Spectroscopy (VisNIR), used by (Rehman et al., 2019), which 
reported strong correlations for both LL and PL, though exact R² and RMSE values were 
not specified . 

d) Correlation and Regression analysis by (Seybold et al., 2008), which yielded an R² of 
approximately 0.79 for LL . 

 
Other studies in the literature did not report R² or RMSE values for their methods and 
models, often due to the specific focus or nature of their research. For example, Borowiec 
and Wilk (Borowiec and Wilk, 2017) concentrated on an artificial neural network (ANN) 
model architecture rather than detailed statistical metrics, which is common in some ANN 
studies. Similarly, the researchers in (Deng et al., 2017; Knadel et al., 2021) performed 
correlation and spectroscopy-based analyses that emphasized correlation coefficients or 
qualitative relationships without explicitly reporting R² or RMSE. Empirical studies such as 
those by (Nini, 2014; Sen and Pal, 2014; Moradi and Ebrahimi, 2013; Khalaf and Issa, 
2021) often focused on observed trends and recommendations rather than formal 
predictive model performance metrics. Additionally, pedotransfer function studies (Van Tol 
et al., 2016; Zolfaghari et al., 2015) and regression analyses (Polidori, 2003; 2007) 
sometimes omitted detailed fit statistics in summaries or abstracts. Other works, including 
(Kayabali, 2011; Dolinar and Škrabl, 2013), prioritized experimental comparisons or 
qualitative soil composition relationships over formal regression statistics. Lastly, (Nawaz 
et al., 2022) developed AI computational models but did not explicitly report R² and RMSE 
in their study summary. Overall, the absence of R² and RMSE reporting often reflects a focus 
on model development, qualitative analysis, or empirical observations rather than formal 
predictive model validation. 
From previous results and Table 4, if the model depends on full GSD data only without 
taking any other physical or chemical properties as the independent variable, and the GSD 
data should be all taken and not missing any part of the curve data, then we can say the GSD 
curve looks like the DNA of a human because it is loaded by all soil properties. 
The outcomes of this study confirmed a significant and strong correlation between both 
LL/PL and GSD curve data.  
 
6. CONCLUSIONS   
 

There is a functional relationship between soil grain size distribution (GSD) and soil 
consistency limits, such as the Liquid Limit (LL) and Plastic Limit (PL), which largely depend 
on the full soil gradation. Equations in model M6 effectively capture this relationship by 
expressing LL and PL as functions of the clay fraction (CF2) and the retention percentages 
(Rtj) across different grain sizes, highlighting the importance of incorporating full soil 
gradation in predictive modeling of soil consistency limits. These equations model the 
dependence of LL and PL on both the finest soil fraction and the distribution of particle sizes, 
thereby providing a comprehensive representation of soil consistency based on grain size 
data. 
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1. The model equations express the relationship between the Atterberg limits and the soil's 
grain size distribution GSD in excellent agreement because the R2 Value is high and the 
RMSE is very low as the number of independent parameters increases. 

2. The research models indicate that 20 parameters from sieve analysis and hydrometer 
analysis are enough to represent the optimal model, achieving a high R² value and a very 
low RMSE. 

3. Using the complete grain size data of any soil, we can accurately predict the liquid limit 
(LL) and plastic limit (PL) without requiring any extra chemical or physical details. 

4. Soil characteristics are greatly influenced by the distribution of grain sizes. The grain size 
distribution GSD curve is akin to the DNA of humans, storing all information about soil 
properties. 

5. The models based solely on clay fraction (CF) or combined with sand (S) and silt (M) 
fractions (Models M1 and M2) show limited predictive accuracy for liquid limit (LL) and 
plastic limit (PL), with R² values below 0.73 and relatively high RMSE values. In 
comparison, models incorporating the full grain size distribution (GSD) provide 
significantly better predictions, as they capture the influence of all particle size fractions 
rather than just three broad categories. This demonstrates that relying only on CF, S, and 
M fractions restricts the model’s ability to accurately forecast LL and PL, highlighting the 
importance of detailed GSD data for improved soil plasticity prediction. 
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التنبؤ الإحصائي لِـ حدود أتربرغ، بالاعتماد فقط على توزيع الحجمي لحبيبات التربة،  
 باستخدام أداة )سولڤر( في برنامج الإكسل 

 

 محمد ياسين عبدالل 

 

 الكلية التقنية الهندسية، جامعة دهوك التقنية، دهوك، العراق 
 

 الخلاصة

 

تلعب حدود أتر بيرج دورًا مركزيًا في دراسات التربة نظرًا لقدرتها على تقديم رؤى أساسية حول السلوك الميكانيكي للتربة. الهدف 
( للتربة اعتمادًا فقط على  PL( وحد البلاستيك )LLالرئيسي من هذه الدراسة هو صياغة معادلات تجريبية لتحديد حد السائل )

مناهج مختلفة.   10بيانات توزيع حجم حبيبات التربة. تم استخدام برنامج مايكروسوفت إكسل للتحليل الإحصائي، مع تطبيق  
، كان جزء  M1جميع النماذج. في النموذج    في رئيسيمم( كعامل مستقل    0.002)>  (CF)شملت المنهجية دمج جزء الطين  

الرمل والغرين وجزء الطين كعوامل مستقلة. في العملية التحليلية،    M2الطين هو المتغير المستقل الوحيد، بينما شمل النموذج  
، مما أدى إلى تحسين القدرة التنبؤية للنماذج  M10إلى النموذج    M1تم زيادة عدد المتغيرات المستقلة تدريجيًا من النموذج  

تم تطوير المنهجية،  باستخدام هذه  النموذج    بشكل منهجي.  في  قويّتين  السائل وحد  M6معادلتين  على تحديد حد  قادرتين   ،
( تقارب الصفر؛ ومع ذلك، من المهم  RMSEوقيمة خطأ الجذر التربيعي الوسيط ) 1.0البلاستيك بقيم معامل تحديد تصل إلى 

  RMSEلا يعني بالضرورة أن    1.0، فإن معامل التحديد  1.0بقيمة صفر إلى معامل تحديد    RMSEالإشارة إلى أنه بينما يشير  
يساوي صفرًا. تظهر نتائج هذه الدراسة أن بيانات تحليل حجم الحبيبات الكامل وحدها كافية وفعالة في التنبؤ بحد السائل وحد  

 البلاستيك، مما يلغي الحاجة إلى خصائص فيزيائية أو كيميائية إضافية للتربة. 
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