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ABSTRACT 

Clustering high-dimensional data remains challenging because traditional k-means is 
sensitive to noise, outliers, and high dimensionality, often leading to unstable performance. 
The research presents a robust clustering system which combines the Fully Corrective 
Frank-Wolfe (FCFW) algorithm with k-means objective that uses Frobenius norm 
regularization. The addition of Frobenius norm regularization in the model produces more 
stable clusters while preventing overfitting and promoting cluster compactness. The 
proposed method uses probabilistic cluster assignments to enable each data point to join 
multiple clusters at different membership levels, thus supporting clusters with overlapping 
boundaries. The Kruskal-Wallis test functions as a feature selection method to identify 
crucial genes, which then guide the clustering operation toward important features in high-
dimensional datasets. The FCFW-regularized k-means outperforms traditional k-means in 
all experiments performed on synthetic and real gene expression datasets. On a breast 
cancer gene expression dataset (GSE10797), it achieved an Accuracy of 89.39%, compared 
to 58% for traditional 𝑘-means. Moreover, it surpassed a recent deep subspace clustering 
method (scPEDSSC) in Adjusted Rand Index by 8.3% on the Goolam single-cell dataset 
(0.968 vs. 0.885) and 7.2% on the Deng dataset (0.801 vs. 0.729). Overall, the proposed 
approach attained the highest ARI and Normalized Mutual Information (NMI) scores across 
five benchmark datasets. These results confirm that the FCFW-regularized 𝑘-means yields 
more accurate and stable clustering results, demonstrating robust performance on high-
dimensional data. 

 

Keywords: Clustering, Regularized k-means, Fully corrective Frank-Wolfe. 
 

1. INTRODUCTION  
 

Clustering is an unsupervised learning technique used to discover structure in datasets by 
grouping similar data points (Raeisi and Sesay, 2022). Among clustering algorithms, the 𝑘-

http://www.jcoeng.edu.iq/
http://creativecommons.org/licenses/by/4.0/


Journal of Engineering, 2025, 31(8) 
 

A. Y. Yousif and B. Al-Sarray  

 

179 

means method is particularly popular due to its simplicity and efficiency. However, 𝑘-means 
is notoriously sensitive to noise, outliers, and the curse of dimensionality. In high-
dimensional data, such as gene expression profiles, every point is forced into a cluster even 
if many features are irrelevant, often leading to unstable or spurious results (Gao et al., 
2023; Yousif and Sarray, 2024). To address these issues, recent work has incorporated 
regularization into k-means to improve robustness. For example, 𝑙1-norm penalties induce 
sparsity in cluster centers (Raymaekers and Zamar, 2022) adaptive feature-weighting 
schemes improve multi-view clustering, and entropy-based penalties reduce sensitivity to 
outliers (Wu and Wu, 2020). The development of fuzzy c-means based on morphological 
reconstruction and membership filtering (Lei et al., 2018). A data partitioning method that 
includes an object-weighting step to assign higher weights to outliers and objects that cause 
cluster overlap, described by (Gondeau et al., 2019). (Yang et al., 2024) used the anchor 
graph regularization constrained k-means, which effectively learn the membership matrix 
of data points and the membership matrix of anchors. (Jiang et al., 2025) proposed an 
entropy-regularized k-means clustering algorithm and added a weight value to the 
optimization function to ignore out-of-bounds data. Several other clustering methods have 
been developed behind the 𝑘-means clustering algorithms. (Shiltagh and Hussein, 2015) 
proposed a new data aggregation technique for wireless sensor networks (WSNs) based on 
a modified Voronoi fuzzy clustering algorithm (VFCA) to improve network lifetime and 
reduce energy consumption. (Mahdi and Mahmood, 2014) present an enhanced fuzzy c-
means clustering algorithm that incorporates spatial information for MRI brain image 
segmentation, demonstrating improved noise resistance and region homogeneity. The 
DBScan algorithm receives dynamic parameter optimization to improve cluster quality and 
noise resistance according to (Ghathwan and Mohammed, 2022). Spectral clustering with 
an affinity matrix that includes various constraints has been applied in some applications, 
such as wireless data processing, to improve clustering accuracy (Blanza, 2021). Spatial 
clustering techniques have been effectively utilized in the analysis of gene expression data 
from high-dimensional biomedical datasets, and hybrid optimization methods have been 
employed to enhance clustering performance (Salman and Hussain, 2023). 
Recent studies in engineering and environmental sciences have successfully implemented 
clustering techniques. (AL-Kordy and Khudair, 2021) used cluster analysis to evaluate 
treatment efficiency trends by classifying wastewater parameters in their study of effluent 
quality assessment for sewage treatment plants. (Ahmed and Al-Haleem, 2024) utilizes 
well logs and core data from cored wells to predict permeability for uncored wells and 
intervals, uses an approach integrating rock typing by cluster analysis techniques. This 
reflects the importance of clustering techniques on applications in scientific and engineering 
research. 
The fully corrective Frank-Wolfe (FCFW) algorithm (Lacoste-Julien and Jaggi, 2015) adds 
an active-set re-optimization step to the classical Frank-Wolfe method, accelerating 
convergence and improving solution quality. The classical Frank-Wolfe (FW) algorithm 
(Canon and Cullum, 1968) is premised on being able to easily solve (at each iteration) 
linear optimization problems over the feasible region of interest. applied to the dual 
structural support vector machine (SVM) objective (Lacoste-Julien et al., 2013). The FCFW 
updates all weights are reoptimized at each iteration, further enhancing convergence 
(Lacoste-Julien and Jaggi, 2015). Two new variants of the FW algorithms for stochastic 
finite-sum minimization have the best convergence of existing stochastic FW approaches for 
both convex and non-convex objective are introduced by (Beznosikov et al., 2023). 
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Despite these advances, several challenges remain in clustering high-dimensional data. First, 
it is a variant of the K-means algorithm that is less sensitive to noise and outliers because it 
uses medoids as cluster centers instead of means that are easily influenced by extreme 
values (Sun et al., 2012; Jamail and Moussa, 2020) and uses binary cluster assignments, 
which cannot capture overlapping data (Liu et al., 2023).  A common limitation of most 
existing clustering approaches is to assume that genes are separated into disjoint clusters. 
As genes often have multiple functions and thus can belong to more than one functional 
cluster, the disjoint clustering results can be unsatisfactory. In addition, due to the small 
sample sizes of genetic profiling studies and other factors, there may not be sufficient 
evidence to confirm the specific functions of some genes and cluster them definitively into 
disjoint clusters (Teran Hidalgo et al., 2018; Saha et al., 2023).  
To address these gaps, this work proposes a regularized variant of the k-means clustering 
model tailored for high-dimensional data. The k-means objective is reformulated with a 
convex Frobenius-norm penalty on the cluster centroids to control model complexity and 
prevent overfitting to noisy features. The resulting optimization problem, though convex in 
the continuous assignment space, is large-scale; hence, a fully corrective Frank–Wolfe 
algorithm (a gradient-based iterative method) is applied to solve it efficiently. Additionally, 
a feature selection strategy (using a Kruskal–Wallis statistical filter) is incorporated to 
identify the most discriminative feature subsets for clustering. This approach effectively 
reduces noise influence and improves interpretability by highlighting which variables drive 
the cluster distinctions. 
The main contributions of this work are summarized as follows: 
1. Introduces the use of the FCFW algorithm to optimize a regularized 𝑘-means clustering 

objective, accelerating convergence, and improving solution quality. 
2. Employs a Kruskal-Wallis test for statistical feature selection, seamlessly integrating gene 

selection into the clustering process to handle the high dimensionality of gene expression 
datasets. 

3. Demonstrates superior clustering performance on five benchmark gene expression 
datasets.  

The remainder of the paper is organized as follows. Section 2 defines the regularized 𝑘-
means clustering problem formulation. Section 3 describes the FW optimization approach, 
including the fully corrective variant used in our algorithm. Section 4 presents the feature 
selection procedure based on the Kruskal-Wallis test. Section 5 details the datasets and 
experimental setup. Section 6 reports the experimental results and compares the proposed 
method with other clustering approaches. Section 7 discusses the findings and their 
implications. Finally, Section 8 concludes the paper and outlines directions for future 
research. 
 
2. MATHEMATICAL PROBLEM FORMULATION 
 

One of the most classical centroid-based clustering algorithms is the 𝑘-means clustering (Li 
et al., 2021), which assigns each point 𝑥𝑖  to the corresponding cluster a 𝐶j  so that every 

point in each cluster is at a minimal squared Euclidean distance from its center. According 
to that, the 𝑗th  cluster of 𝑥𝑖  is located at its cluster center, represented by a 𝑐j  vector of 𝑑 

elements, where 𝑘 represents the total number of clusters in the dataset. 
 

𝑑(𝑥𝑖 , 𝐶𝑗) = min
1≤𝑗≤𝑘

 ∥∥𝑥𝑖 − 𝐶𝑗∥∥
2

                                                                                                                       (1) 
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The 𝑘-means clustering problem aims to minimize the sum of distances between the data 
points and their cluster centers. K-means is an NP-hard optimization problem in general 
(Adams, 2018) due to the combinatorial nature of assignments. The function in Eq. (1) is 
non-convex because of the discrete assignment variables 𝑐(𝑖). Even for 𝑘 = 2 clusters, 
finding the global minimum is NP-hard.  The classical k-means objective can be written as: 
 

min𝐹(𝑐1, 𝑐2, … , 𝑐𝑘) = ∑  𝑛
𝑖=1 min

1≤𝑗≤𝑘
 ∥∥𝑥𝑖 − 𝑐𝑗∥∥

2
                                                                                          (2) 

 
In practice, the k-means is used to find a local minimum. The algorithm alternates between 
assigning each point to the nearest centroid and recomputing each centroid as the mean of 
its assigned points. This coordinate descent approach is guaranteed to decrease the 
objective at each step, but it can converge to a suboptimal partition (a local minimum of Eq. 
(1)). As discussed, poor initial centroid placement can lead to bad local optima. Moreover, 
the classic k-means objective lacks any regularization, so it will always reduce the objective 
by splitting outliers into their own cluster or by using noisy features if those reduce within-
cluster variance, even if such clusters or features are not meaningful (Oyelade et al., 2016; 
Zhang et al., 2020). To address these problems, regularized 𝑘-means it includes a sparsity-
inducing regularization penalty on the cluster centers to increase stability and robustness.  
Let 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ ℝ𝑝 be 𝑛 data points in a 𝑝-dimensional feature space. 𝑘-means clustering 
seeks to partition these 𝑛 points into 𝑘 clusters while regularization of 𝑘-means clustering, 
it is useful to introduce soft (probabilistic) cluster assignments. Instead of fixed integer 
labels 𝑐(𝑖), each data point is assigned a distribution over 𝑘 clusters.  
The objective of regularized 𝑘-means minimizing the cost function: 
 

min𝐶,𝑋  
1

𝑛
∑𝑖=1

𝑛  ∥∥𝑧𝑖 − ∑𝑗=1
𝑘  𝑋𝑖𝑗𝐶𝑗∥∥

2
+ 𝜆 ∥ 𝐶 ∥𝐹

2                                                                                          (3) 

 
Here, 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘} ⊂ ℝ𝑘×𝑑 , with 𝐶𝑗 ∈ ℝ𝑑 , are the 𝑘-cluster centers, and 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ {1,2, … , 𝑘}𝑛 is the cluster assignment matrix.  
The optimization is subject to the constraints that each data point is assigned 
probabilistically to clusters: 
 
∑𝑗=1

𝑘  𝑋𝑖𝑗 = 1,  𝑋𝑖𝑗 ≥ 0,  ∀𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ {1, … , 𝑘}.                                                                            (4) 

 

The term, 
1

𝑛
∑𝑖=1

𝑛  ∥∥𝑧𝑖 − ∑𝑗=1
𝑘  𝑋𝑖𝑗𝐶𝑗∥∥

2
, captures the squared Euclidean distance from each point 

𝑧𝑖 to the assigned cluster center. 𝑋𝑖𝑗 ∈ [0,1] denote the membership of point 𝑖 in cluster 𝑗, 

with the constraint ∑  𝑘
𝑗=1 𝑋𝑖𝑗 = 1 for each 𝑖 (so each point’s membership weights form a 

probability vector over clusters). In matrix form, 𝑋 is an 𝑛 × 𝑘 assignment matrix where row 
𝑖 (denoted 𝑋𝑖, :  ) lies in the (𝑘 − 1) simplex. In the special case of classical k-means, 𝑋𝑖𝑗 are 

binary indicators: 𝑋𝑖𝑗 = 1 if 𝑐(𝑖) = 𝑗 and 0 otherwise. The regularization term is defined as 

𝜆 ∥ 𝐶 ∥𝐹
2  where ∥ 𝐶 ∥𝐹

2  is the Frobenius norm of the cluster center matrix 𝐶 to prevent large 
values in 𝐶. This favors more stable and smoother cluster centers and prevents overfitting 
of the cluster centers to have excessively large magnitudes. The regularization parameter 
𝜆 ≥ 0 is to balance the accuracy of clustering and regularization. 
The notion 𝐶𝑥𝑖 = ∑𝑗=1

𝑘  𝑋𝑖𝑗𝐶𝑗  is the cluster center assigned to 𝑧𝑖 in a probabilistic approach, 

to avoid evaluating a large number of possible assignments.  



Journal of Engineering, 2025, 31(8) 
 

A. Y. Yousif and B. Al-Sarray  

 

182 

Regularized 𝑘-means clustering refines the standard 𝑘-means algorithm by introducing soft 
cluster assignments and regularization on cluster centers. This helps avoid overfitting and 
improves the robustness of clustering solutions. 
 
3. THE FRANK-WOLFE ALGORITHM AND ITS FULLY CORRECTIVE VARIANT 
 

The FW algorithm (Frank and Wolfe, 1956; Sarray et al., 2017), also known as the 
conditional gradient method, is a first-order optimization technique that provides a 
projection-free approach to solving constrained convex optimization problems. Unlike other 
methods that produce iterates requiring projection back onto the constraint region, the FW 
algorithm generates feasible solutions by leveraging the compact and convex nature of the 
constraint set. For more details, see (Lacoste-Julien and Jaggi, 2015; Wirth et al., 2024). 
Given a smooth convex objective function 𝑓(𝑥) and a convex feasible region 𝐶 ⊆ ℝ𝑛, the 
optimization problem addressed by the FW algorithm is formulated as follows: 
 
min
𝑥∈𝐶

 𝑓(𝑥)                                                                                                                                                          (5) 

 
The Frank-Wolfe algorithm is introduced (also known as the conditional gradient method) 
and then describes the Fully Corrective Frank-Wolfe variant. It will be shown how FCFW can 
be applied to solve for the optimal assignment matrix 𝑋 in a way that is efficient and yields 
additional theoretical guarantees (like sparse solutions and sometimes faster convergence). 
The Frank-Wolfe algorithm is a projection-free first-order method for solving constrained 
convex optimization problems. Given a convex, differentiable function 𝑓(𝑥) to minimize over 
a compact convex set 𝐶, a Frank-Wolfe iteration avoids direct gradient descent (which would 
require projecting onto 𝐶 ) and instead linearizes the objective at the current point and 
moves toward the minimizer of that linear approximation (Cherfaoui et al., 2018). This 
method is summarized in the following Algorithm:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These steps are repeated until convergence. One key feature of Frank-Wolfe is that the 
iterates remain in 𝐶 without any projection. 

Algorithm 1. Frank-Wolfe Algorithm 

Input: Initial point 𝑥0 ∈ 𝐶. and step-size strategy 𝛾𝑡 ∈ [0,1] 

Output: Approximate solution  𝑥∗ = 𝑥𝑘  for minimizing 𝑓(𝑥) within 𝐶. 

Process: Begin  
Steps 1: Initialize 𝑥0 ∈ 𝐶, set iteration counter 𝑘 = 0. 

Steps 2: Repeat until convergence or maximum iterations 𝑇 are reached: 

• Step 2.1: Compute the gradient ∇𝑓(𝑥𝑘). 
• Step 2.2: Solve the linearized subproblem: 

𝑣𝑡 = arg min
𝑣∈𝐶

 ⟨∇𝑓(𝑥𝑡), 𝑣⟩ 

• Step 2.3: Compute the step size 𝛾𝑡 use 𝛾𝑘 =
2

𝑘+2
. 

• Step 2.4: Update the solution: 
𝑥𝑡+1 = (1 − 𝛾𝑡)𝑥𝑡 + 𝛾𝑡𝑣𝑡 

• Step 2.5: Check for convergence (e.g., ∥∥𝑥𝑘+1 − 𝑥𝑘∥∥ < 𝜖). 
End 
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Frank-Wolfe often zig-zags when the optimum lies at a boundary of 𝐶. This zig-zagging is 
because the algorithm always moves along edges of the feasible polytope (Holloway, 1974). 
The fully corrective step ensures that all previously chosen directions are used in the best 
possible way at each iteration, not just the last added one. In contrast, standard FW would 
only adjust the combination gradually via line searches over many iterations. FCFW usually 
reduces the objective more per iteration, at the cost of solving the small subproblem. In many 
cases (like quadratic objectives), the corrective step is computationally cheap because it’s 
just solving linear equations. Empirically, FCFW tends to need far fewer iterations to reach 
high accuracy and avoids the zig-zagging behavior by immediately readjusting weights on 
previous atoms. This algorithm is described as: 
 

 
  
4. FULLY CORRECTIVE FRANK-WOLFE ALGORITHM FOR REGULARIZED K-MEANS 
CLUSTERING 
 

The Fully Corrective Frank-Wolfe (FCFW) algorithm aims to iteratively refine the active set 
to find the optimal solution. Unlike the standard Frank-Wolfe algorithm, FCFW performs a 
full correction over the active set at each iteration, which increases the computational cost 
per iteration but significantly accelerates convergence overall.  
Moreover, FCFW effectively handles sparse problems by removing unnecessary points from 
the solution vector, making it suitable for high-dimensional optimization where the solution 
is expected to lie on a low-dimensional face of the feasible region. In the context of 
Regularized 𝑘-means clustering, FCFW combines gradient-based optimization with active 
set corrections, enhancing both clustering accuracy and convergence speed.  

Algorithm 2. Fully Corrective Frank-Wolfe Algorithm 

Input: Initial point 𝑥0 ∈ 𝒞. 

Output: 𝑥∗ = 𝑥𝑡 , the approximate solution 

Process: Begin  
Steps 1: Initialize starting point 𝑥0 ∈ 𝒞 ,active set 𝑆0 = {𝑥0} and set 𝑡 = 0. 

Steps 2: Repeat until convergence or maximum iterations 𝑇 : 

• Step 2.1: Compute the gradient of the objective function: 
∇𝑓(𝑥𝑡) 

• Step 2.2: Solve the linearized subproblem to find the descent direction: 
𝑣𝑡 = arg min

𝑣∈𝒞
 ⟨∇𝑓(𝑥𝑡), 𝑣⟩ 

• Step 2.3: Add the new vertex 𝑣𝑡  to the active set: 
𝑆𝑡+1 = 𝑆𝑡 ∪ {𝑣𝑡} 

• Step 2.4: Re-optimize over the convex hull of the active set to compute the 
next iterate: 

𝑥𝑡+1 = arg min
𝑥∈conv (𝑆𝑡+1)

 𝑓(𝑥) 

where conv (𝑆𝑡+1) is the convex hull of the active set 𝑆𝑡+1. 

• Step 2.5: The objective function value 𝑓(𝑥𝑡+1) improves by less than a 
threshold by convergence, such as: 

∥∥𝑥𝑡+1 − 𝑥𝑡∥∥ < 𝜖. 

End 
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The general steps of the FCFW algorithm for Regularized 𝑘-means are as follows: 
 

Algorithm 3. Fully Corrective Frank-Wolfe Algorithm for Regularized K-Means 
Input: Z matrix, 𝑘 number of clusters, 𝜆 regularization parameter. 
Output: 𝐶opt cluster centers and  𝑋opt  final cluster matrix. 

Process: Begin  
Steps 1: Initialization centers 𝐶0 using k-means++ (Daoudi et al., 2021). 
Steps 2: Repeat for 𝑡 = 1,2, …, maxIter: 

Step 2.1: Assign points to nearest cluster centers: 

𝑋𝑡(𝑖, 𝑗) = {
1,  if 𝑗 = arg min

𝑗′
 ∥∥𝑍(𝑖, ∶) − 𝐶𝑡(𝑗′, : )∥∥

2

0,  otherwise 
 

Step 2.2: Compute the gradient with respect to 𝐶𝑡 : 

∇𝑓(𝐶𝑡) = −
2

𝑛
𝑋𝑡

⊤(𝑍 − 𝑋𝑡𝐶𝑡) + 2𝜆𝐶𝑡 

Step 2.3: Fully corrective step by solve the quadratic program: 

𝐶𝑡+1 = arg min
𝐶

  {
1

𝑛
∥∥𝑍 − 𝑋𝑡𝐶∥∥2 + 𝜆 ∥ 𝐶 ∥𝐹

2 } 

Use the precomputed gradient and Hessian. 

𝐶𝑡+1 = (
1

𝑛
𝑋𝑡

⊤𝑋𝑡 + 𝜆𝐼)
−1

(
1

𝑛
𝑋𝑡

⊤𝑍). 

Step 2.4: Compute the objective function value: 

 O𝑡 =
1

𝑛
∥∥𝑍 − 𝑋𝑡𝐶𝑡+1∥∥2 + 𝜆∥∥𝐶𝑡+1∥∥𝐹

2  

Step 2.5: Check convergence: 
|𝑂𝑡 − 𝑂𝑡−1| < tol, stop the iteration. 

Step 2.6: Return Results: 
𝐶opt = 𝐶𝑡+1, 𝑋opt = 𝑋𝑡. 

End 
 
5. STATISTICAL ANALYSIS USING THE KRUSKAL-WALLIS TEST 
 

This section briefly reviews the main statistical technique used in the feature selection 
process for clustering gene expression data. The Kruskal-Wallis (Grisci et al., 2019; 
Meléndez Surmay et al., 2024) test was utilized to identify the most relevant features 
(genes) for distinguishing between classes in a high-dimensional dataset. This non-
parametric statistical test compares the median values across multiple independent groups 
and is particularly effective when the assumption of normality, required by parametric 
methods like ANOVA, is unrealistic. 
The null hypothesis for the Kruskal-Wallis test states that the distributions of gene 
expression levels are identical across all groups, (𝐻0), while the alternative hypothesis 
asserts that at least one group differs in median gene expression (𝐻1). Formally, the 
hypotheses can be written as: 
𝐻0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘  vs  𝐻1: Not all 𝜇𝑗  are equal.   

The test is based on ranking all observations within each group. The rank sum for group 𝑔, 
denoted as 𝑆𝑔, is defined as: 

𝑆𝑔 = ∑  
𝑚𝑔

𝑖=1
rank𝑖,𝑔                                                                                                                                        (6) 
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where rank 𝑘𝑖,𝑔 represents the rank of the 𝑖-th observation in group 𝑔, and 𝑚𝑔 is the size of 

group 𝑔. The average rank for each group is then computed as: 
 

𝑆‾𝑔 =
𝑆𝑔

𝑚𝑔
,  𝑔 = 1,2, … , 𝑘                                                                                                                               (7) 

 
The Kruskal-Wallis statistic, 𝐻, is calculated as: 
 

𝐻 =
12

𝑀(𝑀+1)
∑  𝑘

𝑔=1 𝑚𝑔 (𝑆‾𝑔 −
𝑀+1

2
)

2

                                                                                                          (8) 

 
where 𝑀 = ∑𝑔=1

𝑘  𝑚𝑔 is the total number of observations. At a given significance level 𝛼, 𝐻0 is 

rejected if 𝐻 ≥ 𝜒𝑘−1,𝛼′
2 , where 𝜒𝑘−1,𝛼

2  is the critical value of the chi-square distribution with 

𝑘 − 1 degrees of freedom. 
Clustering high-dimensional gene expression data is challenging due to the large number of 
features (tens of thousands of genes) relative to sample size and the presence of many 
irrelevant or noisy genes. To address this, the main statistical preprocessing step in our 
framework is a feature selection procedure that dramatically reduces dimensionality before 
clustering. In particular, a non-parametric Kruskal–Wallis (KW) test is employed to identify 
and retain only the most informative genes. The KW test is a rank-based statistical test that 
compares the expression levels of a gene across multiple groups (e.g., different cell types) to 
determine if any group differs significantly from the others. It outputs a 𝑝-value for each 
gene, testing the null hypothesis that all samples have come from the same distribution for 
that gene (i.e., no differential expression across groups). Genes with low 𝑝-values are thus 
informative, indicating significant expression differences among the groups, whereas high 
𝑝-values suggest non-informative genes that do not vary meaningfully between conditions. 
In essence, the clustering algorithm only needs to consider a few hundred dimensions 
instead of tens of thousands, significantly cutting down on distance calculations and model 
parameters. This kind of feature selection is known to improve efficiency and scalability in 
high-dimensional learning tasks by removing irrelevant features. 
 
6. SYNTHETIC AND GENE EXPRESSION DATA 
 

This section presents several experimental results. The proposed algorithm is tested on 
synthetic datasets and real-world high-dimensional gene expression datasets to evaluate its 
effectiveness across different clustering scenarios. The experiments were conducted on a 
system with an Intel Core i5 processor and 16 GB RAM using MATLAB 2024a. 
 
6.1 Datasets and Preprocessing 
 

To improve the accuracy  of the proposed regularized 𝑘-means algorithm, the following steps 
were applied according to the type of data (see Fig. 1). Firstly, 𝑍-score normalization was 
used to standardize gene expression data, ensuring all features had a zero mean and unit 
standard deviation. For a given feature 𝑥𝑖 , the normalized value 𝑥𝑖

′ is calculated as: 
 

𝑥𝑖
′ =

𝑥𝑖−𝜇

𝜏
                                                                                                                                                         (9) 

where μ is the mean and 𝜏 is the standard deviation of the feature. This step eliminates 
scaling biases, enabling fair comparisons during clustering. Secondly, the Kruskal-Wallis test 
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was utilized to select the top significant features by determining their statistical significance 
concerning the target classes. In our approach, every gene in each dataset is ranked by its 
KW test 𝑝-value (reflecting its discriminative ability). Only the top-ranking genes-those most 
likely to differentiate between sample groups-are selected for clustering. For example, in 
breast cancer, we retained the top 200 genes with the smallest 𝑝-values per dataset, 
significantly reducing the original feature spaces (e.g., 54,676 genes in the GSE42568 dataset 
and 22,278 in the GSE10797 dataset). In the single-cell RNA-seq datasets, we retained the 
top 500 genes with the smallest 𝑝-values per dataset, a drastic reduction from the original 
feature spaces (e.g., 40,315 genes in the Goolam dataset and 12,548 in the Deng dataset). 
After this feature selection step, the reduced gene expression data (containing only the 
informative genes) is passed into the proposed FCFW-regularized 𝑘-means clustering 
algorithm. Integrating the Kruskal-Wallis gene filtering with the FCFW optimized 𝑘-means 
forms a two-stage framework: first, dimensionality is curtailed by removing non-informative 
genes, and second, clustering is performed on the compact, information-rich feature set. 
For synthetic datasets with non-linear structures, a Gaussian kernel transformation was 
employed to improve cluster separability.  
The kernel matrix 𝐾 is computed as (He and Zheng, 2018): 
 

𝐾𝑖𝑗 = exp (−
∥∥𝑧𝑖−𝑧𝑗∥∥

2

2𝜎2
)                                                                                                                               (10) 

 
with 𝜎 controlling the kernel width.  
Lastly, the performance of the regularized 𝑘-means the algorithm was fine-tuned by 
adjusting the regularization parameter 𝜆, which governs cluster compactness and 
separation. 

 
Figure 1. Preprocessing for regularized 𝑘-means. 

 
6.2 Synthetic Data Description and Results 
 

The regularized 𝑘-means algorithms’ effectiveness was tested using four datasets: compact 
blobs, linear clusters, with slope, two concentric circles, and two moons. These datasets 
posed various clustering difficulties, ranging from easily separable clusters to intricate 
nonlinear structures. 
In the Compact Blobs dataset, 600 points were equally distributed among 3 Gaussian 
clusters, each with a standard deviation of 1. Using a regularization parameter, 𝜆 =  0.005, 
the algorithm was able to identify the clusters and converge in 3 iterations (see Fig. 2). 
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Figure 2. Clustering results for the compact blobs dataset. 

 
The Linear Clusters dataset had 600 points arranged in 3 linear clusters, some randomness 
was introduced through Gaussian noise with a standard deviation of 0.5 with 𝜆 =  0.001, the 
algorithm worked well to distinguish between the clusters and reached convergence in 8 
iterations (see Fig. 3). 
 

 
Figure 3. Clustering results for linear clusters with slope. 

 
The two concentric circles dataset uses 400 points randomly distributed in two circles, with 
additional Gaussian noise of level 0.09. Since the data was nonlinear, a Gaussian kernel 
transformation with 𝜎 =  0.3 was used to transform the data into a higher-dimensional 
space where the clusters could be separated by a linear classifier. With 
𝜆 =  0.3, the algorithm was able to identify the clusters correctly, and it converged in 12 
iterations (Fig. 4). 
In the two moons dataset, 400 points were arranged in two crescent-shaped clusters with 
boundaries that overlap. More complexity was introduced by the Gaussian noise with a 
standard deviation of 0.1. When kernel transformation with 𝜎 = 0.5 was used the 
separability of the clusters was improved, such that the algorithm was able to correctly 
cluster the data with 𝜆 = 0.01. Convergence was reached in just 4 iterations (Fig. 5). 
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Figure 4. Clustering results for the two concentric circles dataset. 

 
Figure 5. Clustering results for the two moons dataset. 

 
Therefore, the results of the presented method have shown the flexibility and robustness of 
the regularized 𝑘-means an algorithm for a variety of clustering scenarios, starting from 
simple linear structures and ending with complex nonlinear patterns. 𝜆 and 𝜎 were crucial 
to select for best performance, and the fast convergence of the objective function in all 
experiments indicates the method’s computational stability. This is a solid basis to further 
extend the algorithm to more complex, real-world datasets. 
 
6.3 Breast Cancer Gene Expression Data: Analysis and Comparison 
 

The breast cancer gene expression data was used to assess the efficacy of the regularized 𝑘-
means algorithm on high-dimensional real-world datasets. In this section, regularized 𝑘-
means is compared with different classification methods, and the datasets (GSE42568, 
GSE45827, and GSE10797) are examined based on their characteristics, clustering 
performance, and statistical metrics (Table 1). 
For the high dimensionality, the Kruskal-Wallis test was employed to select 200 statistically 
significant features. This feature reduction maintains low computational cost and retains the 
most significant information for clustering. 
After feature selection, regularized 𝑘-means was applied to each dataset. The performance 
of the algorithm was optimized by tuning the regularization parameter (𝜆) and choosing the 
one that produced the lowest objective value. 
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Table 1. Dataset breast cancer characteristics. 
 

Dataset Samples Genes Classes Platform Description 
GSE42568 116 54,676 2 GPL570 Breast tissue samples, including normal 

and cancer subtypes. 
GSE10797 66 22,278 3 GPL571 Breast tissue samples were classified into 

normal, stromal, and epithelial classes. 

GSE45827 151 54,676 6 GPL570 Breast cancer samples were categorized 
into HER2+, Basal, Luminal A, Luminal B, 
normal-like, and cancer epithelial cell lines. 

 
Table 2 shows the Precision and F1-score metrics for each class across datasets. Regularized 
𝑘-means was compared to 𝑘-means and other classification methods, such as support vector 
machines (SVM), random forest (RF), and others from (Feltes et al., 2019; Grisci et al., 
2019). The comparison of accuracy across these methods is presented in Table 3. As shown 
in Figs. 6 to 8, the clustering results and the objective function convergence for the datasets 
with respect to a number of iterations. 
 

Table 2. Precision and F1-score for each dataset. 
 

Metric Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Dataset 
Precision 1.0000 0.9902 - - - - Breast_GSE42568 
Precision 0.8621 0.8889 1.0000 - - - Breast_GSE10797 
Precision 0.9762 1.0000 1.0000 0.8750 0.9655 0.9655 Breast_GSE45827 
F1-Score 0.9655 0.9951 - - - - Breast_GSE42568 
F1-Score 0.8772 0.8727 1.0000 - - - Breast_GSE10797 
F1-Score 0.9880 0.9831 1.0000 0.9333 0.9655 0.9492 Breast_GSE45827 

 
Table 3. Accuracy comparison of regularized 𝑘-means and other classification methods. 

 

Dataset 
Regularized 

𝒌-means 
𝒌-

means 
SVM 

Random 
Forest 

ZeroR HC NB DT KNN MLP 

GSE42568 99.14% 62% 99% 97% 87% 88% 99% 94% 98% 99% 
GSE10797 89.39% 58% 82% 65% 41% 44% 67% 65% 55% 53% 
GSE45827 97.35% 70% 94% 95% 27% 34% 93% 80% 80% 58% 

 
Figure 6. Clustering results for dataset GSE42568, the data was clustered into two groups 

with a regularization parameter of 𝜆 = 0.001. 
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Figure 7. Clustering results for dataset GSE10797, the data was clustered into two groups 

with a regularization parameter of 𝜆 = 0.005. 

 
Figure 8. Clustering results for dataset GSE45827, the data was clustered into two groups 

with a regularization parameter of 𝜆 = 0.009. 
 

6.4 Comparative Performance Assessment on scRNA-seq Datasets 
 

This experiment aims to evaluate the proposed FCFW-regularized 𝑘-means an algorithm on 
challenging single-cell RNA sequencing (scRNA-seq) clustering tasks and compares its 
performance against existing state-of-the-art methods. Two well-known scRNA-seq 
benchmark datasets were utilized, as summarized in Table 4. 
The Deng dataset contains single-cell gene expression profiles from mouse embryonic 
development that were first described by (Deng et al., 2014). The dataset includes 7 distinct 
cell types, which represent different stages of embryonic development starting from zygote 
through 2-cell, 4-cell, 8-cell, morula, and blastocyst. The Goolam dataset (Goolam et al., 
2016) contains mouse embryo cells at 5 cell-type stages from 2-cell to 16-cell stage with a 
total of 124 single cells. 
For each dataset, the top 500 genes with the highest KW significance (lowest 𝑝-values) were 
selected as features for clustering. After feature selection, the FCFW-regularized 𝑘-means a 
clustering algorithm was applied to each scRNA-seq dataset. In this method, 𝑘-means 
clustering is enhanced with a Frobenius-norm regularization term and optimized using the 
Fully Corrective Frank–Wolfe (FCFW) iterative procedure. 
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Table 4. Dataset Goolam and Deng characteristics. 
 

Dataset Samples Genes Classes Description 
Goolam 124 40,315 5 Mouse embryonic cells at different developmental 

stages from oocyte to blastocyst. 
Deng 135 12,548 7 Mouse preimplantation embryos covering multiple 

stages, focusing on gene expression dynamics and allele-
specific patterns. 

 
The evaluation of clustering results used multiple established metrics to assess the predicted 
cluster labels against the actual cell type labels, used Normalized Mutual Information (NMI) 
(Strehl and Ghosh, 2002) and Adjusted Rand Index (ARI) (Meilă, 2007) to measure 
between clustering results and truth clustering. The clustering accuracy, which values 
between 0 and 1, where 1.0 represents a complete recovery of true classes. The class-wise 
metrics presented in Table 5 for each dataset show how the clustering performance 
distributes across different classes. 
 

Table 5. Precision and F1-score of regularized 𝑘-means for the Goolam and Deng dataset. 
 

Metric Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Dataset 
Precision 1.0000 0.9846 1.0000 0.6667 0.6667 - - Goolam 
Precision 0.6667 0.4737 0.5263 0.9333 0.9189 0.9583 0.3333 Deng 
F1-Score 0.9677 0.9922 1.0000 0.6667 0.6667 - - Goolam 
F1-Score 0.5714 0.4865 0.5128 0.9655 0.9315 0.9388 0.4000 Deng 

 
To contextualize the performance of FCFW-regularized 𝑘-means we compared it against 
nine existing clustering methods relevant to scRNA-seq data analysis. These include classical 
methods and recent specialized algorithms: NMF (non-negative matrix factorization-based 
clustering), SIMLR (a multi-kernel learning method for single-cell clustering), and several 
dedicated single-cell clustering techniques (scCCL, scBKAP, scMCKC, scDCC, scDSSC, SSRE) 
(Wei et al., 2025).  
The FCFW-regularized 𝑘-means was reported to achieve superior performance on 
numerous scRNA-seq datasets, making it a strong competitor for our evaluation. Table 6 
presents the clustering accuracy results for all methods on the Deng and Goolam datasets, in 
terms of NMI and ARI, we visualized the clustering assignments and convergence trends for 
each dataset (Figs. 9 and 10). 
 

Table 6. Comparative clustering performance of FCFW-regularized 𝑘-means. 
 

Method NMI Deng ARI Deng NMI Goolam ARI Goolam 
NMF 0.605 0.356 0.572 0.404 

SIMLR 0.639 0.384 0.731 0.608 
scCCL 0.766 0.589 0.742 0.790 

scBKAP 0.743 0.477 0.683 0.517 
scMCKC 0.717 0.524 0.789 0.644 
scDCC 0.726 0.525 0.661 0.440 
scDSSC 0.637 0.379 0.601 0.559 

SSRE 0.813 0.650 0.829 0.668 
scPEDSSC 0.785 0.729 0.878 0.885 

Regularized 𝒌-means 0.819 0.801 0.922 0.968 
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Figure 9. Clustering results for dataset Goolam, the data was clustered into two groups 

with a regularization parameter of 𝜆 = 0.013459. 
 

 
Figure 10. Clustering results for the dataset were clustered into five groups with a 

regularization parameter of 𝜆 = 0.019442. 
 

7. RESULTS AND DISCUSSION 
 

The proposed FCFW-regularized 𝑘-means approach was evaluated on five gene expression 
datasets—three bulk gene expression sets (GSE42568, GSE10797, GSE45827) and two 
single-cell RNA-seq sets (Deng and Goolam). Across all datasets, the method demonstrated 
fast convergence and accurate clustering, as evidenced by the visualization of cluster 
assignments alongside objective function values. In each case, the objective function 
dropped sharply in the first few iterations and quickly reached a stable minimum, indicating 
efficient optimization. For example, in the GSE42568 dataset, the algorithm converging to a 
final objective value 8.36 × 103 after only four iterations, successfully separating the 
samples into two distinct clusters. Likewise, in the GSE10797 dataset, the objective value fell 
to 7.63 × 103 within seven iterations, and the resulting three clusters aligned with the 
known tissue categories. Even for the more complex GSE45827 breast cancer dataset, the 
method required only about four iterations to converge 7.98 × 103 and produced six clear 
clusters corresponding to distinct tumor subtypes. These results highlight not only the 
effectiveness of the FCFW optimizer, which rapidly minimizes the 𝑘-means objective, but 
also the value of the Kruskal-Wallis feature selection in preprocessing. By selecting the top 
200 most informative genes for each microarray dataset, the algorithm focused on relevant 
features, leading to well-differentiated clusters of the expected classes (e.g., separating 
normal vs. tumoral samples or distinguishing different cancer subpopulations) and avoiding 
noise from thousands of irrelevant genes. 
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For the single-cell datasets, Deng and Goolam, the proposed method similarly achieved 
strong performance in clustering cells into their known developmental stages while 
maintaining fast convergence. In the Goolam dataset, the objective function value steadily 
decreased and stabilized after roughly 13 iterations, with the algorithm converged to a final 
objective value 18.460 × 103, despite the high dimensionality, indicating that the FCFW-
based optimization efficiently handled the large feature space. In the Deng dataset, the 
method also performed well, grouping cells into seven clusters that align with the expected 
embryonic stages. The objective function converged extremely quickly to 11.816 × 103 after 
just 3 iterations, remaining stable thereafter, underscoring the efficiency of the algorithm 
even as the number of clusters grows. Fig. 11 presents the 𝑝-values of differences in the 
expression levels between sample types. Figs. 12 and 13 shows the boxplots of the gene 
expression levels for three datasets. 
 

 
Figure 11. Cumulative distribution function (CDF) of 𝑝-values for GSE datasets 

 
Figure 12. Boxplots of the expression of the gene across the different sample types in the 
datasets GSE42568, GSE10797, and GSE45827. The x-axis is the sample types, and the y-

axis is the expression levels.  
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Figure 13. Boxplots of the expression of the gene across the different sample types in the 
datasets Deng and Goolam. The x-axis is the sample types, and the y-axis is the expression 

levels. 
  

8. CONCLUSION 
 

The paper introduces the FCFW algorithm that enhances the regularized k-means clustering 
framework, especially for high-dimensional data. The proposed regularization method using 
Frobenius norm maintains an appropriate balance between cluster compactness and 
separation, and the probabilistic assignment of data points provides robustness against 
noise while allowing for overlapping clusters. The FCFW algorithm accelerates convergence 
speed through active solution re-optimization that reduces redundancy and improves 
stability. The experiments on synthetic datasets demonstrate how kernel transformations 
improve cluster separability. The proposed algorithm achieves better performance than 
traditional k-means and other classification methods when applied to real-world expression 
data. The algorithm's robustness becomes evident through extensive preprocessing 
techniques, which include Z-score normalization and feature selection through the Kruskal-
Wallis test and optimization of the regularization parameter (λ) for multi-class and 
imbalanced datasets. The algorithm demonstrates its practicality for real-world applications 
through its improved accuracy, F1-score, NMI and ARI performance in high-dimensional 
data analysis. The research demonstrates that FCFW-regularized k-means functions as an 
efficient and robust clustering framework suitable for various high-dimensional datasets, 
especially in biomedical applications. The future research direction involves optimizing the 
algorithm for extensive datasets and merging it with deep learning approaches to boost 
performance in complex clustering operations. 
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NOMENCLATURE 
 

Symbol Description  Symbol Description 
𝑍 Dataset matrix of size 𝑛 × 𝑑 𝐶 Cluster centers matrix of size 𝑘 × 𝑑 
𝑋 Cluster assignment matrix 𝑘 Number of clusters 
𝑛 Number of data points 𝑑 Data dimension (number of features) 
𝜆 Regularization parameter ∥ 𝐶 ∥𝐹

2  Frobenius norm of the cluster centers matrix 
∇𝑓(𝐶) Gradient of the objective function 𝑣𝑡 Descent direction in the Frank-Wolfe method 
𝑆𝑡 Active set of cluster centers in FCFW 𝛾𝑡 Step size parameter 

𝐻 Kruskal-Wallis test statistic 𝐾𝑖𝑗 Gaussian kernel function 

𝑂𝑡 Objective function value at iteration 𝑡 𝜎, 𝜏 Standard deviation 

ℝ𝑑 𝑑-dimensional real space 𝐶𝑗 Cluster center 𝑗 

𝑧𝑖  Data point 𝑖 in 𝑑-dimensional space ∑𝑗=1
𝑘  𝑋𝑖𝑗 

Sum of assignments for data point 𝑖 across 
all clusters 

𝑋𝑖𝑗  Assignment of data point 𝑖 to cluster 𝑗 min𝐶,𝑋   
Optimization problem in regularized 𝑘-
means 
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 وولف التصحيحي الكامل  -المنتظم عبر تحسين فرانك k-meansتجميع البيانات باستخدام 
 

 3 السراي *, بسعاد علي 1،2أحمد يعقوب يوسف 

 
 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق  ¹ 

 العلوم التطبيقية، الجامعة التكنولوجية، بغداد، العراق   قسم ²

 علوم الحاسوب ، كلية العلوم، جامعة بغداد، بغداد، العراق  قسم ³
 

 الخلاصة
التقليدية للضوضاء والقيم الشاذة    k-meansلا يزال تجميع البيانات عالية الأبعاد يمثل تحديًا كبيرًا، نظرًا لحساسية خوارزمية  

بين خوارزمية   يجمع  قوي  تجميع  نظام  البحث  هذا  يعرض  غير مستقر.  أداء  إلى  غالبًا  يؤدي  مما  الأبعاد،   Fullyوارتفاع 

Corrective Frank-Wolfe (FCFW)    مع هدفk-means   المدعوم بتنظيم يعتمد على معيار فروبينيوس. يسهم إدراج
تنظيم معيار فروبينيوس في النموذج في إنتاج مجموعات أكثر استقرارًا، مع تقليل احتمالية الإفراط في التكيف وتعزيز تماسك  

نقطة بيانات بالانتماء إلى عدة مجموعات  التجمعات. يعتمد الأسلوب المقترح على تخصيص احتمالي للبيانات، مما يسمح لكل
كطريقة   Kruskal-Wallisبدرجات عضوية مختلفة، وبالتالي دعم التجمعات ذات الحدود المتداخلة. كما تم استخدام اختبار  

لاختيار الميزات لتحديد الجينات الهامة التي توجه عملية التجميع نحو الخصائص ذات الأهمية في البيانات عالية الأبعاد. وقد  
التقليدية في جميع التجارب التي أُجريت على بيانات تركيبية    k-meansعلى    FCFWالمنتظمة بـ    k-meansتفوقت خوارزمية  

% على مجموعة بيانات لتعبير جينات سرطان الثدي 89.39وحقيقية لتعبير الجينات. فعلى سبيل المثال، حققت دقة بنسبة  
(GSE10797  مقارنة بـ ،)ـ  % فقط ل58k-means    التقليدية. كما تفوقت على طريقة حديثة للتجميع في الفضاء العميق الفرعي
(scPEDSSC  مؤشر في   )Adjusted Rand Index    بيانات  8.3بنسبة مجموعة  على   %Goolam    الأحادية للخلايا 
النهج  0.729مقابل    Deng  (0.801% على مجموعة بيانات  7.2(، وبنسبة  0.885مقابل    0.968) (. بشكل عام، حقق 

المنتظمة باستخدام   k-meansعبر خمس مجموعات بيانات معيارية، مما يؤكد أن    NMIو  ARIالمقترح أعلى القيم في مؤشري  
FCFW .توفر نتائج تجميع أكثر دقة واستقرارًا، وتظهر أداءً قويًا في التعامل مع البيانات عالية الأبعاد 

 
 .وولف المصححة بالكامل-المُنظَّم، خوارزمية فرانك k-means: التجميع، الكلمات المفتاحية

 
 


