

Journal of Engineering

journal homepage: www.jcoeng.edu.iq

Volume 31 Number 11 November 2025

Improvement of Hot Mix Asphalt Resistance to Permanent Deformation at High Temperature Using Nanomaterial Modifiers: A Review

Yousuf M. Hamed Al Hamdou Post, Amjad H. Khalil Al Bayati

Department of Civil Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

ABSTRACT

 ${f T}$ he integration of nanomaterials in asphalt modification has emerged as a promising approach to enhance the performance of asphalt pavements, particularly under hightemperature conditions. Nanomaterials, due to their unique properties such as high surface area, exceptional mechanical strength, and thermal stability, offer significant improvements in the rheological properties, durability, and resistance to deformation of asphalt binders. This research reviewed the application of various nanomaterials, including nano silica, nano alumina, nano titanium, nano zinc, and carbon nanotubes in asphalt modification. The incorporation of these nanomaterials into asphalt mixtures has shown potential to increase the stiffness and high-temperature performance, thereby reducing rutting potential and improving the overall lifespan of the pavement. The mechanisms by which nanomaterials enhance the thermal and mechanical properties of asphalt were explored. Furthermore, the challenges associated with their implementation were examined, as effective utilization is hindered by agglomeration, inconsistent dispersion, and dosage sensitivity, compounded by the absence of standardized guidelines and the variability in reported contents. The findings indicate that while nanomaterials hold considerable potential for improving hightemperature asphalt performance, further research is needed to optimize their use and fully realize their benefits in large-scale applications.

Keywords: Asphalt, Nanomaterials, Permanent deformation.

1. INTRODUCTION

Permanent deformation (rutting) is a common form of surface deformation in asphalt roads (Albayati and Latief, 2017), marked by the appearance of longitudinal grooves or depressions along wheel paths. It is primarily caused by the repeated application of traffic loads and can significantly affect road safety, ride quality, and the structural performance of the pavement (Aljbouri and Albayati, 2024). This form of distress often leads to higher maintenance expenses and shortens the pavement service life (Abd and Latief, 2024).

*Corresponding author

Peer review under the responsibility of University of Baghdad.

https://doi.org/10.31026/j.eng.2025.11.09

This is an open access article under the CC BY 4 license (http://creativecommons.org/licenses/bv/4.0/).

Article received: 28/05/2025 Article revised: 18/08/2025 Article accepted: 27/09/2025 Article published: 01/11/2025

Rutting develops as the asphalt layer undergoes gradual and irreversible deformation, a process influenced by factors such as heavy traffic, insufficient material performance, and adverse environmental conditions. The mechanical behavior of asphalt under load includes both recoverable (elastic) and non-recoverable (viscous) responses (Asphalt Institute, 2007). Permanent deformation, or rutting, results from the accumulation of these nonrecoverable strains under repeated loading, especially at elevated temperatures (Huang, **2004)**. It is recognized that most paving materials are not fully elastic and undergo some degree of permanent deformation after each load is applied (Shell Bitumen, 2015). If the applied load is relatively low compared to the material's strength and is repeated over a large number of cycles, the resulting deformation from each load cycle is predominantly recoverable, behaves proportionally to the load magnitude, and can be classified as elastic in nature (Riaz et al., 2013). The resilient modulus (MR) is the elastic modulus to be used with the elastic theory. Typically, as speed increases, the resilient modulus becomes larger, leading to reduced deformation in the pavement (Huang, 2004). Rutting failure is the most plausible failure under hot climate conditions (Albayati and Alani, 2017; Hassan and Ismael, 2025).

In recent years, with the increase in traffic loads and modern pavement performance requirements, researchers started to consider additions to traditional Asphalt Concrete (AC) pavements; one of the ways to improve the performance is the addition of nanomaterials. The European Union Observatory for Nanomaterials (EUON) adopted the definition for nanomaterials as A natural, incidental, or engineered material with particles, individually or in aggregates, where at least 50% (by number) have one or more external dimensions between 1 and 100 nm (European Commission, 2011). The ASTM uses an objectively similar terminology (ASTM E2456-06, 2012). Micro and Nano are unit prefixes that are part of the System International (SI) units of measurement; they represent the size of one millionth (10-6) and one billionth (10-9) for Micro (μ) and Nano (n), respectively (International Bureau of Weights and Measures, 2006). In general, nanotechnology will produce benefits by making existing products and processes more cost-effective, durable, and efficient, and by creating entirely new products (Buhari et al., 2018). Nanomaterial modifications are often added as a percentage of the asphalt binder weight. Due to their extremely small dimensions and large surface area, nanomaterials require only a minimal quantity to produce effects equivalent to those achieved by larger, conventional materials (Taherkhani et al., 2017). Incorporating micro material into the asphalt binder enhanced the stiffness modulus along with resistance of hot mix asphalt (HMA) to permanent deformation (Shafabakhsh et al., 2015). Incorporating the sub-Nano-sized (600nm) modifier increased the mechanical properties of hot mix asphalt (You et al., 2011). It was found that when the particle size is reduced from 2 micrometers to 80 nm, the anti-rutting factors of asphalt are improved by 22.3% (Zhang et al., 2017). Nanoparticles are more evenly dispersed in asphalt compared to micro particles, helping to delay the propagation of internal microcracks (Fu et al., 2022). The stiffness modulus of micro and nano-modified asphalt was tested, which resulted in 30% and 90% improvement in micro and nano modifications, respectively (Meenu and Bindhu, 2018). The inclusion of nanomaterials showed promising results to improve the rheological properties of asphalt binder (Buhari et al., 2018; **Aboelmagd et al., 2021).** Notably, the high surface-to-volume ratio of nanoparticles enhances their potential to improve rheological properties and their adhesion to aggregates (Yarahmadi et al., 2022). (Enieb and Diab, 2017) found that nanomodification enhanced the resilient modulus, split tensile strength, and fracture energy.

This review of literature was made to present a reference for the use of nano modifiers to improve rutting resistance to develop a more resilient, reliable, and high-performance asphalt concrete pavement. The general progression of this review of cited literature is shown in **Fig. 1**. Nano [Silica (NS), Alumina (NA), Titanium oxide (NT), Zinc oxide (NZ), and Carbon nanotubes (CNT)] are the focus of this review and are gathered from previous literature and discussed in the following sections.

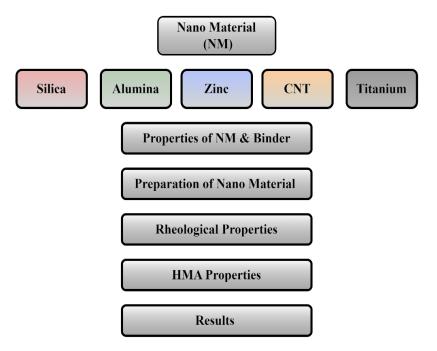


Figure 1. Review diagram.

2. MATERIALS AND METHODS

2.1 Silicon Dioxide (SiO₂)

Silica, frequently the main constituent of sand, is present in numerous natural minerals and can also be produced synthetically. In industrial contexts, silica nanoparticles are utilized to reinforce elastomers and serve as rheological agents. The white nano powder form of silica, made up of nanostructured polymorphs of silicon dioxide (SiO₂), is distinguished by its large surface area, improved adsorption properties, and excellent stability (Yousef et al., 2025). Naturally occurring as quartz, this nanomaterial offers the significant benefit of low production costs while delivering high performance (Qasim et al., 2022).

2.2 Aluminum Oxide (Al₂O₃)

Nano Al₂O₃ (alumina) is a readily accessible material, since its raw material, bauxite, from which aluminum oxide is extracted, is found in large quantities in nature (Albayati et al., 2024). Nano-alumina exhibits high thermal conductivity, large surface area, superior strength and stiffness, excellent wear resistance, and strong oxidation and thermal stability (Bhat and Mir, 2021). Scanning electron microscopy image of NA features a varied range of agglomerated particles with irregular morphology, indicating a complex structure that may suggest more sophisticated surface interactions with the asphalt (Albayati et al., 2024).

2.3 Titanium Dioxide (TiO₂)

Titanium Dioxide is a natural oxide in the Earth's crust. Titanium dioxide (TiO_2) is a transition metal oxide that exists in three main crystalline forms: anatase, rutile, and brookite (Chen and Mao, 2007).

2.4 Zinc Oxide (ZnO)

Zinc oxide (ZnO), the oxide form of zinc, is commonly found as a white crystalline powder and occurs naturally as the mineral zincite. It crystallizes in two forms: hexagonal wurtzite and cubic zincblende (Fierro, 2005).

2.5 Carbon Nanotubes (CNT)

There are two types of carbon nanotubes (CNT): single-wall CNT, which consist of individual tubes, and multi-wall CNT, which are composed of coaxial tubes. While multi-wall CNT (MWCNT) are more cost-effective and simpler to produce, they have lower strength and stiffness compared to single-wall CNT (SWCNT) (Santagata et al., 2012). The diameter of carbon nanotubes ranges from 1–4 nm for single-walled (SWCNT) and 5–50 nm for multi-walled (MWCNT), with lengths extending up to several micrometers (Gong et al., 2017). CNTs exhibit a strong tendency to aggregate, forming a random network of interconnected clusters (Faramarzi et al., 2015). Typical properties of nanomaterials are presented in Tables 1 and 2.

Table 1. Typical properties of nanomaterials.

NM	Reference	Form	Particle Size (nm)	Density (g/cm³)	SSA* (m²/g)	Purity(%)
	(Taherkhani et al., 2017)		11-13	2.4 (<0.1 Bulk)	200	99
	(Shi et al., 2018)		30	n/a	225	99.8
	(Taherkhani et al., 2019)		20	2.85(<0.1 Bulk)	10-40	>99
ca	(Shafabakhsh et al.,2020)	White	80	2.4	160	99.9
Silica	(Al-mousawi et al., 2020)	Powder	11-12	2.4	200	99.8
	(Mohammed et al., 2021)		10-20	2.4	180-600	99.8
	(Qasim et al., 2022)		15	2	100±25	>99.9
	(Khan et al., 2023)		14-36	n/a	580	>98
	(Ali et al., 2016)		13-20	n/a	100-200	>99
	(Karahancer, 2020)		n/a	2.9 (0.2 Bulk)	≥550	>99.1
ina	(Hussein et al., 2021)	White	20	3.89	>138	<99
Alumina	(Bhat et al., 2021)	Powder	30-50	n/a	130-150	99.9
Al	(Cao et al., 2022)	1 0 11 001	≤80	0.9	n/a	n/a
	(Kadhim et al., 2024)		80	3.97	>15	+99
	(Albayati et al., 2024)		10-20	(0.2 Bulk)	120-160	99.9
m	(Tanzadeh et al., 2012)		10-25	n/a	200-240	n/a
Titanium	(Shafabakhsh et al., 2014)	White	20	(0.08 bulk)	50	n/a
itaı	(Qian et al., 2019)	Powder	20	3.16	50-100	8.1
T	(Ameli et al., 2020)		20	(0.08 bulk)	50	n/a

	(Masri et al., 2022)		20	4.26	n/a	7.5
	(Mohammed et al., 2024)		10-30	(0.08 bulk)	50-100	n/a
	(Hamedi et al., 2015)		20	5.5-5.6	40±5	n/a
Zinc	(Xu et al., 2019)	White	30	4.6	40	n/a
Zi	(Saltan et al., 2019)	Powder	30	5.5 (0.28 bulk)	50	99.9
(AlMistarehi et al., 2023) 20-30 5.6 n/a						99.8
*SS	A: Special Surface Area.					

Table 2. Typical properties of carbon Nanotubes.

Reference	Physical	Outside	Length	Density	SSA*	Purity
Reference	Form	Diameter (nm)	(µm)	(g/cm ³)	(m^2/g)	%
(Faramarzi et al., 2015)		10-20	10-30	2.1 (0.22 bulk)	>200	>95
(Galooyak et al., 2015)		n/a	30	2.1	200	n/a
(Amin et al., 2016)	Dlasla	10-30	10-30	2.1	>200	>90
(Gong et al., 2017)	Black Powder	>50	10-20	n/a	>40	>90
(Ashish et al., 2018)		30-32	20	n/a	190	n/a
(Yang et al., 2019)		9.5	1.5	0.1	250-300	90
(Ismael et al., 2021)		10-30	10-30	(0.06 bulk)	>200	n/a
*SSA: Special Surface Ar	ea.					

2.6 Preparation and Mixing Method

The incorporation of Nanomaterials into asphalt is a crucial step in achieving their benefits. Ensuring proper mixing is vital for the uniform dispersion of Nanomaterials within the asphalt matrix, which is necessary for consistent performance enhancements. A key challenge is preventing Nanoparticles from agglomerating, as this can reduce their effectiveness. Advanced mixing methods and the use of dispersing agents might be needed to achieve a uniform distribution of nanomaterials. Different types of addition methods are reviewed; **(Shafabakhsh et al., 2020)** prepared several samples of Kerosene-Nanomaterial solution (wet blend) mixed at different times, as well as in different mixing periods. In the end, the results were that the mix for 30 min at 2500 rpm had the best results for initial mixing, and then continued mixing after the evaporation of the dispersion agent (kerosene) with high shear mixing (HSM) at 4000 rpm, 150 °C for 30 min. **(Mohammed et al., 2023)** used a (dry blending) method with PG (64-16) for the 1, 3, 5, and 7% dosages, with initial heating of (500g) of asphalt at 140°C for 20min. After that, 2-4 grams /min at 2500 rpm and then at 4000rpm for 45min at 150-160°C. Modified asphalt cement properties (penetration, softening point, ductility, and penetration index) are presented in **Table 3**.

 Table 3. Characteristics of nanomaterial modified asphalt.

NM	Researcher	Dosage %	Penetration (ASTM D5) 25°C(0.1mm)	Soft. Point (ASTM D36) (°C)	(ASTM D36) ASTM D113 (°C) 25°C (cm)	
		0	62	50		n/a
	(Saltan et al., 2017)	0.1	54	50	>100	
Silica		0.3	54	48	>100	
Sil		0.5	55	51		
	(Taherkhani et al.,	0	69	49	100	-0.69
	2019)	1	68	49	94	-0.7

		3	63	50	87	-0.56	
	-	<u>5</u>	55	55	70	0.14	
		0	62	45	70	-2	
	(Abdol Wahad at	1	43	53	_	-1	
	(Abdel Wahed et al., 2022)	2	39	54	n/a	-0.5	
	al., 2022)				-		
		4	41	57	> 100	0.1	
	(Alietal 2016)	<u> </u>	70 25	46 53	>100	-1.48	
	(Ali et al., 2016)	<u>5</u> 7				-1.84	
			38	51	91	-1.54	
na	(IZ	0	62	50	>100	-0.705	
Ш	(Karahancer, 2020)	<u>3</u>	54	49	>100	-1.25	
Alumina			57	48	>100	-1.39	
4		0	42	55	120	-0.31	
	(Hussein et al.,	3	31	59	90	-0.25	
	2021)	5	25	62	50	-0.195	
		7	28	60	75	-0.34	
	(Neto et al.,2020)	0	52	54	n/a	a	
	(110.00 00 01.,2020)	3	45	57			
		0	67	49	102	-1.25	
Ħ	(Ameli et al., 2020)	4	61	52	107	0.5	
Titanium		6	60	53	109	1.1	
<u>z</u>		8	-	55	112	1.4	
Ξ		0	42	49	112	-1.53	
	(Mohammed and Abed, 2024)	3	39	56	115	-0.4	
		5	37	60	120	0.2	
		7	40	58	123	-0.2	
		0	64	47	240		
	(Zhang et al., 2018)	2	63	48	225	n/a	
	(Zhang et al., 2010)	3	56	49	200		
		4	58	50	190		
၁		0	62	50	> 100	-0.70	
Zinc	(Saltan et al. 2010)	1	48	50	> 100	-1.29	
7	(Saltan et al., 2019)	3	54	50	> 100	-0.89	
		5	52	53	> 100	-0.38	
		0	65	48		-0.96	
	(Zhu et al., 2024)	1	70	48	n/a	-0.84	
		5	74	50		-0.73	
		0	61	49	123		
	(Faramarzi et al.,	0.1	58	48	116	n /o	
es	2015)	0.5	55	50	101	n/a	
Carbon Nanotubes		1	52	52	81		
nol	(Calaavaly at al	0	65	52	n/a	0.062	
Naj	(Galooyak et al.,	0.9	55	56		0.433	
n l	2015)	1.5	49	61		1.175	
cbc		0	42	51			
Caı	(Ismael et al.,	0.5	41	54] ,	_	
_	2021)	1	38	56	n/a		
	2021)		30	30			

Different mixing techniques including low shear mixer (LSM), mechanical mixing (MM), sonication process (SP), and ultrasonic mixing (USM) a to integrate different Nanomaterials into asphalt are shown in **Table 4**.

Table 4. Integration of Nanomaterials.

NM	Researcher	Binder	Blend Method	Mixer	Temp (°C)	Speed (rpm)	Time (min)	Scan Method
	(Taherkhani et al., 2017)	60-70	Dry	HSM	160	3000	60	SEM
	(Shafabakhsh et al., 2020)	60-70	Wet	HSM	150	4000	30	n/a
В	(Mohammed et al., 2021)	80-100	n/a		n/a			SEM
Silica	(Abdel Wahed et al., 2022)	60-70	Dry	HSM	145	4000	60	XRD/TEM/FTIR
S	(Taher et al., 2023)	40-50	Dry	HSM	163	3000	60	SEM
	(Mohammed et al., 2023)	40-50	Dry	HSM	160	4000	45	SEM
	(Albayati et al., 2024)	PG 64-16	Dry	HSM	140	4000	20	SEM
	(Ali et al., 2016)	60-70	Dry	HSM	170	5000	90	FTIR/XRD
В	(Ali et al., 2016)	60-70	Dry	HSM	170	5000	90	n/a
nin	(Karahancer, 2020)	60-70	Dry	HSM	160	3000	60	SEM
Alumina	(Hussein et al., 2021)	40-50	Dry	MM	145	1500	60	n/a
A	(Song, 2022)	#70 Asph.	Wet	HSM	150	4000	n/a	n/a
	(Albayati et al., 2024)	PG 64-16	Dry	HSM	140	4000	20	SEM
	(Tanzadeh et al., 2012)	60-70	Dry	HSM	n/a	7000	45	SEM
_ ا	(Neto et al., 2014)	50-70	Dry	MM	150	2000	90	n/a
Titanium	(Buhari et al., 2018)	80-100	Dry	HSM	155	3500	45	EDS/FTIR
ani	(Qian et al., 2019)	50-60	Dry	HSM	170	8000	30±5	SEM
Tit	(Filho et al., 2020)	50-60	Dry	MM	150	2000	90	SEM / XRD
-	(Mohammed et al., 2024)	40-50	Dry	HSM	160	6000	40	SEM
	(Albayati et al., 2024)	40-50	Dry	HSM	140	4000	20	SEM
	(Zhang et al., 2015)	60-70	Dry	HSM	150	4000	60	n/a
	(Yunus et al., 2018)	60-70	Dry	HSM	145	2000	30	SEM
	(Saltan et al., 2019)	PG 64-22	Dry	HSM	160	4000	120	SEM
ມ	(Xu et al., 2019)	60-70	Dry	HSM	150	5000	60	SEM /UVS
Zinc	(Kleizienė et al., 2020)	70-100	Dry	n/a	150	5000	30	n/a
	(Neto et al., 2022)	50-70	Dry	LSM	150	2000	90	XRD
	(Al Mistarehi et al., 2023)	60-70	Dry	HSM	160	2000	20	n/a
	(Al Mistal elli et al., 2023)	00-70	Dry	11314	170	4500	40	II/ a
	(Zhu et al., 2024)	PG 64-22	Dry	HSM	163	5000	45	SEM/AFM/FTIR
	(Faramarzi et al., 2015)	60-70	Dry/	SP		watt 25		SEM
səc			Wet	HSM	160	2500	2	
E E	(Galooyak et al., 2015)	60-70	n/a	USM	65	watt 15		SEM / XRD
Carbon Nanotubes	(Gong et al., 2017)	60-80	Dry	HSM	120	2000 5000	10 30	TEM / FTIR / AFM
oc l	(Ashish et al., 2018)	AC-10	Dry	HSM	155	5000	60	n/a
rbc	(Yang et al., 2019)	PG 64-22	Dry	HSM	170	5000	30	SEM / DSC
Ca	(Ismael et al., 2021)	40-50 60-70	Dry	MM	163	1500	45	SEM / AFM

2.7 Testing Methods

A comprehensive suite of standardized tests was used to evaluate the performance of asphalt binders and mixtures. Binder morphological tests include Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), and Differential Scanning Calorimetry (DSC). Chemical analysis includes Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis-infrared Spectrophotometer (UVS). Behavior on rheological and deformation, including the Rotational Viscometer (ASTM D4402/D4402M-15, 2015) to assess stiffness (viscosity), the Dynamic Shear Rheometer (AASHTO T315-12, 2011) to evaluate high-temperature rutting resistance, and the Multiple Stress Creep Recovery (MSCR) test (AASHTO T350-14, 2013) at 0.1 and 3.2 kPa to quantify non-recoverable compliance. Mixture performance tests comprise Resilient Modulus (MR) (AASHTO T307-99. 2010) for stiffness evaluation, Indirect Tensile Strength (ITS), and uniaxial dynamic creep (AASHTO TP79, 2013) for permanent deformation, repeated loading Permanent Deformation (PD) under repeated loading. Marshall Stability (MS) and Flow (MF) (ASTM D6927-15, 2015), while the Wheel Tracking Test (WTT) (AASHTO T324-19, 2018) simulated rutting under controlled temperature and loading. Additional performance indicators included the Asphalt Pavement Analyzer (APA), Flow Number (FN) (AASHTO T378-17, 2014) for rutting resistance, , Rutting Test (RT), Dynamic Stability (DS) Static Creep Test (SCT), Double Punch Test (DPT), Dynamic Creep Test (DCT) and Shape Memory (SM), providing insight into the resistance to load-induced deformation and structural integrity.

3. RESULTS AND DISCUSSION

3.1 Binder Rheological Tests

3.1.1 Rotational Viscometer

Rotational viscosity of unaged Nano-modified binder for different modifiers is shown in **Figs. 2 to 5**.

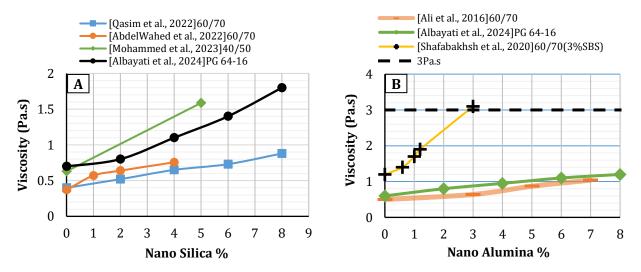
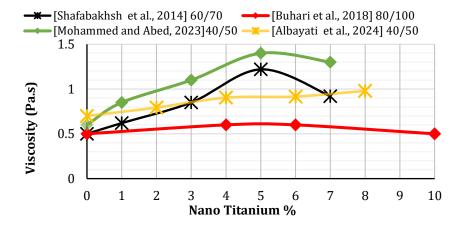
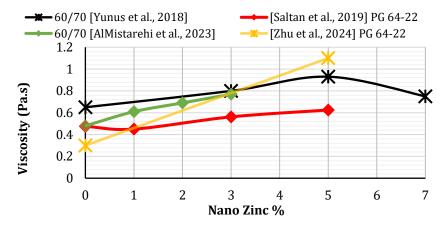




Figure 2. Rotational viscosity at 135 °C for A) nano silica B) nano alumina modified asphalt.

Figure 3. Rotational viscosity at 135 °C for nano titanium modified asphalt.

Figure 4. Rotational viscosity at 135 °C for nano zinc modified asphalt.

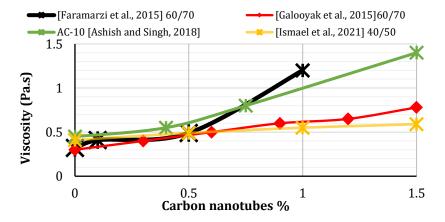
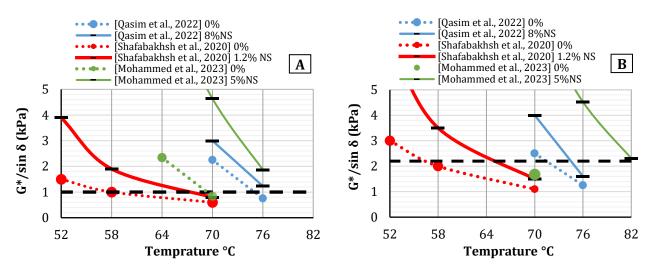
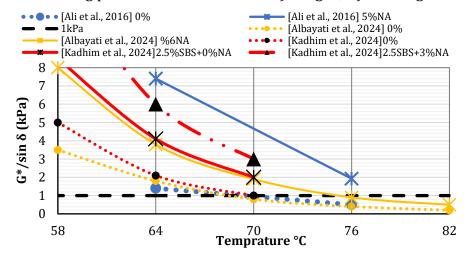



Figure 5. Rotational viscosity at 135 °C for carbon Nanotubes modified


3.1.2 Dynamic Shear Rheometer (Rutting Parameter)

Rutting parameters of different Nano-modified asphalt are shown in Figs. 6 to 10

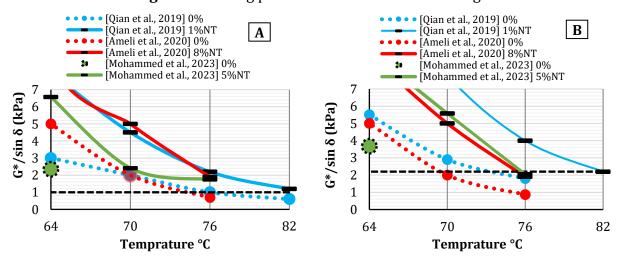
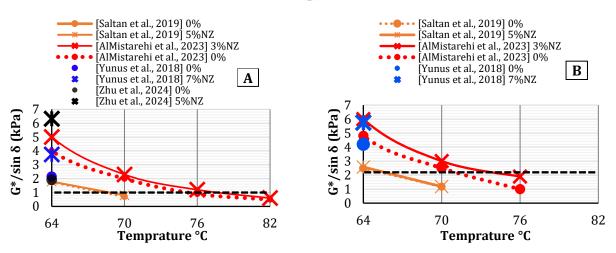
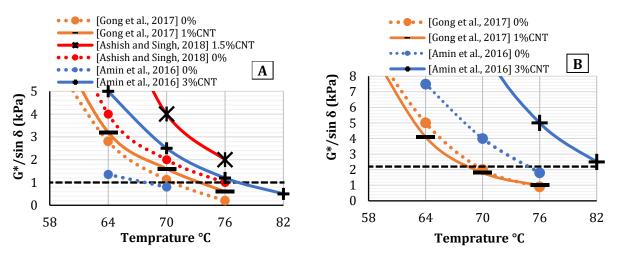


Figure 6. Rutting parameter of nano silica: A) unaged, B) RTFO aged binder.

Figure 7. Rutting parameter of nano alumina unaged binder.

Figure 8. Rutting parameter of nano titanium A) unaged, B) RTFO aged binder.

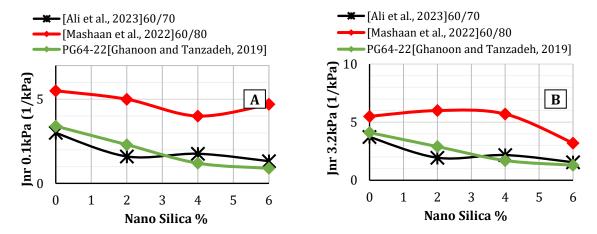

Figure 9. Rutting parameter of nano zinc A) unaged, B) RTFO aged binder.

Figure 10. Rutting parameter of carbon nanotubes A) unaged, B) RTFO aged binder.

3.1.3 Multiple Stress Creep Recovery (Jnr)

Multiple stress creep recovery (Jnr) at 0.1 and 3.2kPa of unaged Nano-modified asphalt for different materials is shown in **Figs. 11-14**.

Figure 11. Jnr of nano silica modified asphalt cement.

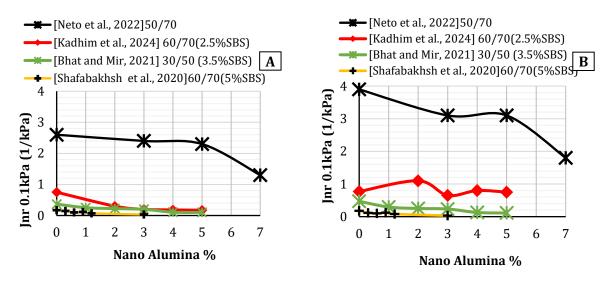
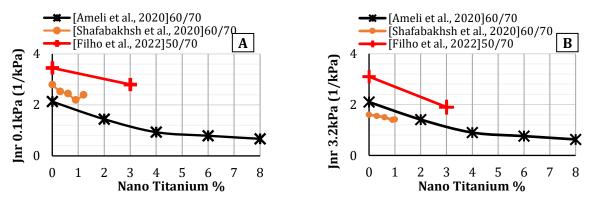



Figure 12. Jnr of Nano alumina modified asphalt cement.

Figure 13. Inr of Nano titanium modified asphalt cement.

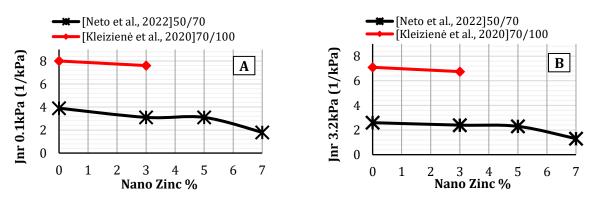


Figure 14. Jnr of Nano zinc modified asphalt cement.

3.2 Asphalt Mixture Properties

3.2.1 Volumetric Properties of Mixtures

Volumetric properties of Nano-modified asphalt mixtures are shown in **Table 5**.

Table 5. Volumetric properties of modified mixtures.

		Asphalt	Dosages	Air Voids	Voids in Mineral	Voids Filled with
NM	Reference	Content %	(%)	(%)	Aggregate (%)	Asphalt (%)
			0	4.15	16.3	74.65
	(Taherkhani	F 0	1	4.38	15.95	72.95
	et al., 2017)	5.3	3	4.64	15.74	70.38
В			5	4.93	15.43	66.58
Silica			0	4	14.5	72.5
Si	(All		2	3.8	14.2	73
	(Albayati et	5	4	3.4	14.2	76.5
	al., 2024)		6	3.2	14.6	77.5
			8	3.1	15	78.5
а		4.55	0	4	14.75	72
Alumina	(Karahancer,	5.96	3	4	16.5	75
lun	2020)	5.25	5	4	16.48	75
А	_	4.85	7	4	15.6	72
			0	4	14.5	72.5
na	(Albayati at		2	3.95	14.6	73.5
Alumina	(Albayati et al., 2024)	5	4	3.8	15	75
Alι			6	3.65	15.1	76
			8	3.5	15.3	77
			0	4	14.5	72.5
mn	(Albayati et		2	3.8	14.6	73.5
Titanium	al., 2024)	5	4	3.4	15.2	76
Tit	al., 2024)		6	3.2	15.7	74.9
			8	3.1	16	73.5
		4.5	0	4	14.2	74
Zinc	(Ashish et	4.5	1	4	16.1	75
Zi	al., 2018)	5.1	3	4	15.2	75
		5.3	5	4	16.1	76
			0	4	15.5	74.19
ľ	(Ismael et		0.5	3.76	15.37	75.54
CNT	al., 2021)	5	1	3.56	15.2	76.58
	ai., 2021j		1.5	3.3	14.64	77.46
			2	3.4	14.8	77.03

3.2.2 Testing of Asphalt Mixtures

Asphalt mixture tests of Nano-modified asphalt mixtures are shown in **Table 6**.

Table 6. Modified asphalt mixtures tests.

NM	Researcher	Binder /NMS Dosages	Test	Results
	ত্ত (Taherkhani et		MS	12% higher Marshall Stability at 5% NS.
		60-70 /12.5mm 1, 3, 5 %	MF	Flow decreases with increasing NS content.
Silica	al., 2017)		MR	At 5% NS, a 49% increase in resilient modulus.
Sil	ai., 2017 j		DCT	Accumulated vertical strain decreases with
			DCI	increasing NS.
		80-100	SM	Best NS content is 15 % (at 40°C).

	(Mohammed et al., 2021)	/14mm 4, 6, 15 %	DCT	At 10,000 cycles, the minimum displacement at 6% NS.
	(Abdel Wahed et	60-70	MS &MF	16.16% increase in Marshall Stiffness at 4% NS.
	al., 2022)	/12.5mm 1, 2, 3, 4 %	DPT	NS content (4%) leads to increased DP values.
		1, 2, 3, 1 /0	SCT	Adding NS leads to decreased strain values.
			MF	Min flow (3.1mm) at 2% NS.
	(Qasim et al.,	60-70	MS	Max stability 15.5kN at 6% NS, 12.75kN at 8% NS, OAC 4.9%.
	2022)	2, 4, 6, 8 %	WTT	58% decrease in rut depth after 10,000 cycles at 8% NS.
	(Gedafa et al., 2019)	PG 64-28 1, 5, 7%	APA	5% NA resulted in the best reduction of rut depth. 1% NA had negative effects on the rut depth above 2000 cycles.
	(Karahancer, 2020)	60-70 3, 5, 7 %	ITS	Increase in ITS value (dry and wet) as the NA dosage increases.
	(Song, 2022)	#70Asphat 0.3-1.2%	DCT	0.3–1.2% can reduce the strain by 2–49%.
Alumina		#70 Matrix	MS	12% NA, MS of dry and wet samples (15.9kN, 14.4 kN), which are (72-90%) higher than the control sample.
·	(Cao et al., 2022)	Asphalt /13.2mm 3, 6, 9, 12 %	RT	3–12% NA, the rut depth (60°C) decreases by 12–36% respectively, and dynamic stability increases by 17–39%.
			DCT	9% NA results in 49% lower final strain at 60°C.
	(Albayati et al.,	40 -50 /12.5mm	MS	19% increase in Marshall Stability at 8% NA.
	2024)		MF	29% decrease in Marshall Flow at 8% NA.
		2, 4, 6, 8%	PD	16% (M _r) improvement of at 8% NA.
	(Tanzadeh et al., 2012)	60-70/4%	WTT	4% NT reduced rutting depth at 10,000 cycles.
	(Shafabakhsh et al., 2014)	60-80 1, 3, 5, 7%	PD	5% NT resulted in the best reduction in final strain.
		60-70	MR	8% NT made a 34% enhancement to MR.
Titanium	(Ameli et al., 2020)	/12.5mm 2, 4, 6, 8 %	FN	79% improvement in FN 8% NT mixture with lime.
itar		2, 4, 0, 0 %	WTT	29% reduction in rutting depth at 8% NT.
Ī			MS	11% increase in Marshall Stability at 8% NT.
		40-50	MF	31% decrease in Marshall Flow at 8% NT.
	(Albayati et al., 2024)	/12.5mm 2, 4, 6, 8%	MR	Slight improvement of 8% improvement at 8% NT.
		2, T, O, O /0	PD	At 10,000 loading cycles, a 64% reduction in permanent strain (8% NT).
Zinc	(Hamedi et al., 2015)	60-70 1, 3, 5 %	ITS	NZ significantly improved ITS values for (unconditioned & conditioned samples).
Zi	(Zhang et al., 2018)	PG 64-16 4%	DS	22.3% improvement in dynamic stability.

	(Saltan et al., 2019)	PG 64-22 1, 3, 5 %	ITS	3-5% NZ increased ITS 5.3-30.87% respectively. However, ITS decreased by 1% NZ.
	(Mostafa et al.,	70-80	MS	58% increase in stability at 0.5% CNT.
ıbes	2016)	0.01, 0.1, 0.5, 1%	MF	8% decrease in Flow at 0.5% CNT.
Nanotubes	(Saltan et al., 2018)	PG 64-22 1, 3, 5 %	ITS	3-5% CNT increased ITS by 22-39 respectively. 1% CNT reduced ITS by 6%.
			MS	35% increase in MS at 1.5% CNT.
Carbon	(Ismael et al.,	40-50 /12.5mm	MF	14% decrease in MF at 1.5% CNT.
Ü	2021)	0.5, 1, 1.5, 2%	WTT	1.5% CNT yields 61% improvement in rutting resistance at 10,000 cycles.

At high temperatures, Nanomaterials incorporated into asphalt mixtures significantly influence the performance of asphalt mixture by enhancing the rheological and structural properties of the binder (Albayati et al., 2024). The addition of Nanomaterials increases the viscosity and complex modulus of the asphalt binder at elevated temperatures (Neto et al., 2022), resulting in a binder that is less prone to flow and permanent deformation. This characteristic is particularly beneficial in hot climatic regions and under heavy traffic loading, where conventional binders tend to soften and deform. The improvement in rutting resistance arises from the formation of a stiffer and more elastic binder due to Nanomaterial addition (Ameli et al., 2020). This modified binder often exhibits a lower creep rate under repeated traffic loading, which directly translates to reduced rut depths in asphalt pavements. Furthermore, Nanomaterials function as active fillers, enhancing the fillerbinder interaction and forming a densely packed microstructural network within the asphalt matrix (Nazari et al., 2018). This microstructural reinforcement limits binder mobility at high temperatures, effectively strengthening the aggregate-binder interface and reducing the risk of stripping, shoving, and plastic flow. In addition to mechanical benefits, certain Nanomaterials, such as Nano titanium, provide enhanced thermal and ultraviolet (UV) stability (Liu et al., 2014). These properties slow down binder softening and oxidative aging under prolonged heat exposure, thereby preserving the mixture's structural integrity and extending its service life. Another critical effect arises from the interfacial bonding improvement, as Nanomaterials may have surfaces that can interact with polar components of asphalt, such as asphaltenes. This enhanced adhesion improves the aggregate-binder bond strength, making it more resistant to shear deformation and stripping (Long et al., 2020). Collectively, these mechanisms contribute to a durable, rut-resistant asphalt mixture that can better withstand the challenges of high-temperature service conditions.

3.3 Results of Previous Research

Findings of previous research are gathered and shown in **Table 7**.

Table 7. The effect of Nanomaterials on asphalt mixtures.

NM	Researcher	Country	Binder	Dosage %	Findings
ilica	(Taherkhani et al., 2017)	Iran	60-70	1 3 5 1	NM of 5 % resulted in a 49% higher resilient modulus.Fatigue life (5% NM) is approximately 160% higher.

	(Shafabakhsh et al., 2020)	Iran	60-70	0.3, 0.6, 0.9, 1.2	 -1.2% addition increases rutting resistance by around 100% (at 40 °C). -Increase in fatigue life of samples by 50%.
	(Mohammed et al., 2021)	Malaysia	80-100	4,6,15	–15% Nano-silica leads to the best rutting resistance at 40°C.
	(Qasim et al., 2022)	Iraq	60-70	2,4, 6,8	 The optimal dosage (8%) decreased the rut depth. Higher tensile strength, lower rutting depth, higher stability and minimum flow.
	(AbdelWahed et al., 2022)	Egypt	60-70	1,2, 3,4	Optimal dosage is 4%.The binder's storage stability decreases with increasing Nano contents.
	(Taher et al., 2023)	Iraq	40-50	2,4,	 Enhance pavement performance (stability and volumetric characteristics). Greatest Marshall Stability and the best reduction in Marshall Flow were achieved in 6% and 4% respectively.
	(Mohammed et al., 2023)	Iraq	40-50	1,3, 5,7	Recommended 5% dosage of NS.5% showed a 60% increase in RV at 135 °C.
	(Albayati et al., 2024)	Iraq	PG 64- 16	2,4, 6,8	 Optimal dosage of 4%, viscosity increase of 33%. Improved the resistance to rutting. Making it effective for high temperature pavement performance.
	(Ali et al., 2015)	Malaysia	60-70	3, 5, 7	The optimal performance was at 5% NM.Increased resistance to rutting and fatigue.
	(Ali et al., 2016)	Malaysia	60-70	3,5,7	 Enhanced elastic behavior of asphalt. Increase the high temperature rutting resistance, (best at 5% NA). Decrease in G*.sin δ (up to 5% Nano content) at 25 °C.
Alumina	(Karahancer, 2020)	Turkey	60-70	3,5,7	 Economic benefit for NM≤5% (lower compaction and mixing temperatures). Reduced Rutting Performance and enhanced fatigue parameter. Only after RTFO, 5% NA made rutting parameter improvement. Performance grades were determined as PG 64-22.
	(Shafabakhsh et al., 2020)	Iran	60-70 (SBS)	0.3, 0.6, 0.9, 1.2, 3.0	 1.2% showed potential to improve the high temperature performance. Jnr remarkably decreased with dosage increase. 3% NA showed increased viscosity above (3 Pa.s).
	(Hussein et al., 2021)	Iraq	40-50	3,5,7	 Penetration decreased by about 49% when 5% modifier was added. Better resistance to oxidation and aging obtained, up to 7% decreased ductility.

	T	Ī	1	ı		
	(Cao et al., 2022)	China	#70 Asphalt	3, 6, 9, 12	 At the optimum content of 9%, dynamic stability of asphalt mixture showed 34% (at 60°C). Reduced cumulative permanent strain by 36–49%. Improved fatigue performance, water stability by 3-7% & 8-19% respectively, with 2% reduction in low-temperature tensile strain. 	
	(Song, 2023)	China	#70 Asphalt		 Decreased rut depth by 12–36% for 0.3-1.2% dosage, respectively. The dynamic stability increases by 17–39%. Fatigue properties improve to some extent (best at 0.6%). Low temperature performance decreases slightly. 	
Alumina	(Kadhim et al., 2024)	Iran	60-70 (SBS)	2, 3, 4, 5	- 5% NA +2.5%SBS resulted in 31% Higher MSCR. -4% NA + 2.5%SBS improved fatigue resistance by 67%.	
	(Albayati et al., 2024)	Iraq	PG 64- 16	2,4,6,8	 6% NA enhanced rutting resistance, with satisfactory fatigue resistance. Although a 6% dosage does not offer the highest resistance to fatigue, it provides a balanced improvement in asphalt properties, including penetration, softening point, and mass loss. 	
Titanium	(Tanzadeh et al., 2013)	Iran	60-70	4	$-$ Nano TiO $_2$ decreases the rutting depth and increases the softening point, consequently, improving the temperature sensitivity.	
	(Shafabakhsh et al., 2014)	Iran	60-70	1,3, 5,7	-Adding NT lead to improvements in permanent deformation and HMA. With an optimal content of 5%.	
	(Qian et al., 2019)	China	50-60	1,2, 5,10	 Following RTFO aging, there is a substantial increase in the rutting factor after modification. Rutting parameter progressively rises with increasing the dosage from 1% to 10% [slower rate of growth compared to (0% - 1%)]. 	
	(Filho et al., 2020)	Brazil	50-60	1,3, 5,7	 Increased resistance to permanent deformation. Improve asphalt binder workability at higher temperatures as well as aging resistance. Optimal content is 5%. 	
	(Mohammed et al., 2024)	Iraq	40-50	1,3, 5,7	 At ideal modifier (5%) rutting parameter increased by 64% at 64°C. Promoted PG by 1 grade at 3% and 2 grades at 5–7%. At 5% and 7% Nano TiO₂, the complex modulus increased. 	
	(Albayati et al., 2024)	Iraq	40-50	2,4,6,8	 Optimal dosage of 6%. Major increase in the rutting parameter. Lower concentrations of NT acts as an effective antiaging agent (12% reduction in mass loss at 2% NT). 	

Zinc	(Zhang et al., 2016)	China	60-70	2,3,4	 Reducing the 2µm size to 80nm, anti-rutting factors of the dynamic stabilities of asphalt improve by 22.3% 4 17.9% respectively. Flexural tensile strength is improved. 	
	(Yunus et al., 2018)	Malaysia	60-70	3,5,7	 Greater rutting resistance at 7% NZ (before and after aging). 	
	(Saltan et al., 2019)	Turkey	60-70	1,3,5	 Best rutting performance was achieved with 5% NM, with a 3.94% increase compared to neat bitumen. Lower fatigue performance. 	
	(Xu et al., 2019)	China	60-70	1,2,3, 4,5	 Improvement to the rheological properties of asphalt. Improve the fatigue properties of asphalt, but excessive dosages lead to decreased fatigue performance. 	
Zinc	(Kleizienė et al., 2020)	Lithuania	70-100	1,3	-NZ < 3% does not affect bitumen mechanical performance.-Excessive amounts may lower fatigue resistance.	
	(Neto et al., 2022)	Brazil	50-60	3,5,7	-Optimum content of 7% leads to an increase in Performance Grade, rutting resistance, and fatigue life.	
	(AlMistarehi et al., 2023)	Saudi Arabia	60-70	1,2,3	 Adding 3% NZ exhibited the best improvements for different temperatures (increased stiffness). 	
	(Zhu et al., 2024)	China	PG 64- 22	1,3,5	 NZ with a particle size of 10–30 nm at 3-5% was suggested to reduce agglomeration. Optimum NZ content and particle size distribution demonstrated potentially superior rheology, durability, and morphology. 	
	(Faramarzi et al., 2015)	Iran	60-70		-17% increase in permanent deformation resistance at 1% CNT. -CNT increased resistance to thermal cracking.	
	(Galooyak et al., 2015)	Iran	60-70	0.3, 0.6, 0.9, 1.2, 1.5	-Optimal percentage of CNT of 1.2% has the best performance.	
Carbon Nanotubes	(Mostafa et al., 2016)	Egypt	70-80	0.01, 0.1, 0.5, 1	 An optimum CNT dosage of 0.5% increased stability by 58.3% and reduced flow by 8.6%. High shear mixing proved more effective than conventional mechanical mixing. 	
	(Gong et al., 2017)	China	60-80	1, 2, 3	 As the CNT content increases, binder penetration decreases while the softening point rises. A significant drop in ductility is observed at 0.5% CNT; however, at CNT > 0.5% there is only a minor change. CNT improved the high temperature performance and aging resistance. Decreased low temperature performance. 	
	(Ashish et al., 2018)	India	AC-10		-Addition of CNT beyond 1.5% is not recommended due to agglomeration of CNT.	

(Yang et al., 2018)	China	22 0.6, 0.8		-CNT of 1.5% is the best content to improve the high temperature performanceAt 3% CNT, some agglomerations are observed.	
(Ismael et al., 2021)	Iraq	40-50 60-70	0.5, 1, 1.5, 2	-At 1.5%, CNT of 40-50 grade resulted in an increase in rutting resistance and stability by 61.0% & 35.0% respectively60-70 grade needed 2.0% of CNT to be near the 40-50 results.	

3.4 Conflicted Findings

There is a notable divergence in the reported optimal dosages of Nanomaterials for asphalt modification, as shown in **Table 8**, as discrepancies persist among researchers regarding the most effective content levels. While some studies suggest that lower dosages are sufficient to enhance performance without compromising other properties, others report that higher dosages yield better improvements in rutting resistance or stiffness. These inconsistencies highlight the complexity of determining a universally accepted optimal dosage, which may vary depending on the type of Nanomaterial, binder grade, mixing method, and specific performance criteria evaluated.

Optimum NM Researcher Comment Dosage (%) (Mohammed et al., 2021) 15% Reported dosages from 4% to 15% vary Silica (Qasim et al. 2022) widely due to differences in materials, 8% 4% blending methods, and evaluation targets. (Albayati et al. 2024) (Ali et al., 2016) 5% Optimum contents from 0.9% to 9% 9% reflect varied binder types and dispersion (Cao et al., 2022) (Song, 2022) 0.9% efficiencies. (Tanzadeh et al., 2013) 4% Dosage discrepancies (4–8%) likely stem (Shafabakhsh et al., 2014) 5% from binder variations. (Ameli et al., 2020) 8% (Zhang et al., 2016) 4% Studies reported 3–7% as optimal, (Yunus et al., 2018) 7% influenced by material and method (AlMistarehi et al., 2023) 3% variability. (Galooyak et al., 2015) 1.2% **Nanotube** Carbon CNT dosage ranged from 0.5% to 2%, (Mostafa et al., 2016) 0.5% highlighting sensitivity to type and (Ismael et al., 2021) 2% dispersion quality.

Table 8. Optimum Nanomaterial dosages.

These discrepancies in reported outcomes can be attributed to multiple factors. Key contributors include differences in nanomaterial properties (particle size, morphology, surface treatment, and purity), variation in binder grades and aggregate types, aggregate gradation, and non-uniform mixing or dispersion techniques, which directly influence the degree of particle interaction with the binder matrix. Additionally, differences in testing methodologies and targeted performance metrics can result in non-comparable performance trends across studies. Optimum dosage can be subjective and criterion-dependent, as some consider cost-effectiveness. Testing protocols and performance evaluation criteria vary widely, with some studies conducted in hot climates reporting

higher optimum dosages, focusing on rutting resistance. Whereas cold-climate studies may favor lower dosages to avoid embrittlement and cracking on which reduces fatigue life or stiffness, and some try to find balanced performance, leading to non-comparable definitions of (optimum dosage). Also, even when proper initial dispersion is achieved, Nanoparticles may re-agglomerate during storage (Jenima et al., 2024). This effect can reduce the effectiveness of Nanomaterials, causing inconsistencies between immediate laboratory testing and delayed performance evaluation. Aging protocols and oxidative hardening also influence reported results; for instance, a dosage that appears optimal under unaged conditions may behave differently after short or long-term aging. Furthermore, differences in test scale (binder-level DSR versus mixture-level wheel tracking) can produce conflicting interpretations because improvements in binder rheology do not always directly translate to mixture-level rutting resistance. Interaction with other additives, such as polymers, hydrated lime, or fibers, can either enhance or interfere with the Nanomaterial's effects, further contributing to dosage variability. To reconcile these conflicting findings, future research needs to adopt standardized protocols for Nanomaterial preparation and performance evaluation. Establishing unified, consistent mixing procedures, dosage optimization strategies, and performance testing protocols will enhance cross-study comparability and reproducibility, supporting the practical implementation of Nanotechnology in pavement engineering.

4. CONCLUSIONS

For the limited studies reviewed, the following conclusions and research implications can be drawn:

- 1- Most nanomaterials studied tend to increase the binder's stiffness and resistance to rutting when added in controlled dosages.
- 2- Nanomaterial additives, including nano silica, alumina, titanium dioxide, and carbon nanotubes, improve the stiffness and high-temperature rutting resistance of asphalt binders. However, the effect of nano zinc oxide remains inconclusive.
- 3- There is a critical dosage threshold for each nanomaterial, beyond which the benefits plateau or reverse, often leading to reduced performance and workability. This underlines the importance of identifying material-specific optimal contents to balance high-temperature performance and long-term durability.
- 4- Blending techniques and equipment significantly influence nanomaterial dispersion quality and performance outcomes. While high shear mixing at 140–160°C and 3000–8000 rpm was widely used, no standardized mixing protocol exists, limiting reproducibility and field implementation.
- 5- Agglomeration remains a technical barrier, particularly for carbon nanotubes. Although ultrasonic mixing has shown promise, cost-effective and scalable dispersion techniques are still not clear.
- 6- There is a need for standardization for processing protocols to ensure repeatability, scale-up potential, and field performance.
- 7- Field performance studies and life-cycle assessments remain sparse and are needed to bridge the lab-to-field gap.

Nomenclature

Symbol	Description	Symbol	Description
AFM	Atomic Force Microscopy	APA	Asphalt Pavement Analyzer
DSC	Differential Scanning Calorimetry	DCT	Dynamic Creep Test
EDS	Energy Dispersive X-ray Spectroscope	DPT	Double Punch Test
FTIR	Fourier Transform Infrared Spectroscopy	DS	Dynamic Stability
HSM	High Shear Mixer	FN	Flow Number
LSM	Low Shear Mixer	ITS	Indirect Tensile Strength
MM	Mechanical Mixer	MF	Marshall Flow
SEM	Scanning Electron Microscopy	MS	Marshall Stability
SM	Shear Mixer	NMS	Nominal Maximum Aggregate Size
SP	Sonication Process	PD	Permanent Deformation
TEM	Transmission Electron Microscopy	MR	Resilient Modulus
USM	Ultrasonic Mixer	RT	Rutting Test
UVS	IIV Vic infrared Spectrophotometer	SCT	Static Creep Test
	UV-Vis-infrared Spectrophotometer	SM	Shape Memory
XRD	X-ray Diffraction	WTT	Wheel Tracking Test

Credit Authorship Contribution Statement

Yousuf AlHamdou: Original draft writing & editing. Amjad AlBayati: Conception, supervision, methodology & review.

Declaration of Competing Interest

The authors declare no known financial or personal conflicts of interest that could have influenced the findings presented in this study.

REFERENCES

AASHTO T307-99, 2010. Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials. AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO T315-12, 2011. Standard Method of Test for Determining the Dynamic Shear Rheometer (DSR) Properties of Asphalt Binder. AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO T350-14, 2013. Standard Method of Test for Multiple Stress Creep Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO T378-17, 2014. Standard Method of Test for Determining the Flow Number (FN) of Asphalt Mixtures Using the Asphalt Mixture Performance Tester (AMPT). AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO T324-19, 2018. Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA). AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO TP79, 2013. Standard Practice for Determining the Permanent Deformation and Creep Characteristics of Hot Mix Asphalt (HMA) Using the Uniaxial Repeated Load Test. AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

Abdel Wahed T., Abdel Raheem A., and Moussa G.S., 2022. Performance evaluation of asphalt mixtures modified with nanomaterials. *Mansoura Engineering Journal (MEJ)*, 47(1). https://doi.org/10.21608/bfemu.2022.221670

Abd N.I., and Latief R.H., 2024. Assessment of rutting resistance for fiber-modified asphalt mixtures. (2024) *Journal of Engineering*, 30(05), pp. 98–113. https://doi.org/10.31026/j.eng.2024.05.07.

Aboelmagd A.Y., Moussa G.S., Enieb M., Khedr S., and Alla E.M., 2021. Evaluation of hot mix asphalt and binder performance modified with high content of nano silica fume. *Journal of Engineering Sciences*, 49(4), pp. 378–399. https://doi.org/10.21608/JESAUN.2021.70733.1046

Al Mistarehi, B., Al-Omari, A., Taamneh, M., Imam, R., and Khafaja, D.A.D., 2023. The effects of adding nano clay and nano zinc oxide on asphalt cement rheology. *Journal of King Saud University - Engineering Sciences*, 35(4), pp. 260–269. https://doi.org/10.1016/j.jksues.2021.03.010

Albayati, A.H., and Alani A.F.H., 2017. Influence of temperature upon permanent deformation parameters of asphalt concrete mixes Journal *of Engineering*, 23(7), pp. 14–32. https://doi.org/10.31026/j.eng.2017.07.02.

Albayati, A.H., Latief, R.H., Al-Mosawe, H., and Wang, Y., 2024. Nano-additives in asphalt binder: bridging the gap between traditional materials and modern requirements. *Applied Sciences*, 14, P. 3998. https://doi.org/10.3390/app14103998

Albayati, A.H., Oukaili, N.K., Moudhafar, M.M., Allawi, A.A., Said, A.I., and Ibrahim, T.H., 2024. Experimental study to investigate the performance-related properties of modified asphalt concrete using nanomaterials Al2O3, SiO2, and TiO2. *Materials*, 17, P. 4279. https://doi.org/10.3390/ma17174279

Albayati, A.H.K., and Latief, R.H., 2017. Evaluating the performance of high modulus asphalt concrete mixture for base course in Iraq, Journal *of Engineering*, 23(6), pp. 14–33. https://doi.org/10.31026/j.eng.2017.06.02.

Ali S.I.A., Alothman D., and Gökçekuş H., 2023. Rheological performance of ZycoTherm/Nano-Silica composite modified binders. *Turkish Journal of Civil Engineering*, 34(2), pp. 77–102. https://doi.org/10.18400/tjce.1239171

Ali, S.I.A., Ismail, A., Karim, M.R., Yusoff, N.I.M., Al-Mansob, R.A., and Aburkaba, E., 2016. Performance evaluation of Al2O3 nanoparticle-modified asphalt binder. *Road Materials and Pavement Design*, 18(6), pp. 1251–1268. https://doi.org/10.1080/14680629.2016.1208621

Ali S., Ismail A., Yusoff N., Abdul Hassan N., and Ibrahim A., 2016. Characterization of the performance of aluminum oxide nanoparticles modified asphalt binder. *Jurnal Teknologi (Sciences & Engineering)*, 78(4), pp. 91–96.

Aljbouri H.J., and Albayati A.K., 2024. The effect of nano-hydrated lime on the durability of hot mix asphalt. *Journal of Engineering*, 30(03), pp. 143–158. https://doi.org/10.31026/j.eng.2024.03.10.

Al Mousawi, E.J., Al Rubaee, R.H., and Shubber, A.A., 2020. Mixing and compaction temperature of nanosilica composite polymer modified asphalt. *Wasit Journal of Engineering Sciences*, 8(2). https://doi.org/10.31185/ejuow.Vol8.Iss2.165

Ameli A., Pakshir A.H., Babagoli R., Norouzi N., Nasr D., and Davoudinezhad S., 2020. Experimental investigation of the influence of Nano TiO2 on rheological properties of binders and performance of stone matrix asphalt mixtures. *Construction and Building Materials*, 265, P. 120750. https://doi.org/10.1016/j.conbuildmat.2020.120750

Amin, I., El-Badawy, S.M., Breakah, T., and Ibrahim, M.H.Z., 2016. Laboratory evaluation of asphalt binder modified with carbon nanotubes for the Egyptian climate. *Construction and Building Materials*, 121, pp. 361–372. https://doi.org/10.1016/j.conbuildmat.2016.05.168

Ashish, P. K., and Singh D., 2018. Development of empirical model for predicting G*/sinδ and viscosity value for nanoclay and carbon nano tube modified asphalt binder. *Construction and Building Materials*, 165, pp. 363–371. https://doi.org/10.1016/j.conbuildmat.2018.01.021

Asphalt Institute, 2007. The Asphalt Handbook, Manual Series No. 4 (MS-4), 7th Edition. USA.

ASTM E2456-06, 2012. ASTM: Standard terminology relating to nanotechnology. West Conshohocken, PA, USA.

ASTM D4402/D4402M-15, 2015. Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Rotational Viscometer. ASTM. West Conshohocken, PA: ASTM International.

ASTM D6931-12, 2015. Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM. West Conshohocken, PA: ASTM International.

ASTM D6927-15, 2015. Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. ASTM. West Conshohocken, PA: ASTM International.

Bhat, F. S., and Mir M. S., 2021. A study investigating the influence of nano Al2O3 on the performance of SBS modified asphalt binder. *Construction and Building Materials*, 271, P. 121499. https://doi.org/10.1016/j.conbuildmat.2020.121499

Buhari, R., Abdullah M.E., Ahmad M.K., Chong A.I., Haini R., and Bakar S.K., 2018. Physical and rheological properties of titanium dioxide modified asphalt. E3S Web of Conferences, 34, P. 01035. https://doi.org/10.1051/e3sconf/20183401035

Cao, Y., Liu, Z., and Song, W., 2022. Performance and overall evaluation of nano-alumina-modified asphalt mixture. *Nanotechnology Reviews*, 11(1), pp. 2891–2902. https://doi.org/10.1515/ntrev-2022-0485

Chen, X., and Mao, S.S., 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. *Chemical Reviews*, 107(7), pp. 2891–2959. https://doi.org/10.1021/cr0500535

Faramarzi, M., Arabani, M., Haghi, A., and Mottaghitalab, V., 2015. Carbon nanotubes-modified asphalt binder: preparation and characterization. *International Journal of Pavement Research and Technology*, 8, pp. 29–37. https://doi.org/10.6135/ijprt.org.tw/2015.8(1).29

Fierro, J.L.G., 2006. *Metal Oxides: Chemistry and Applications*. Florida, USA: CRC Press.

Filho, T. M., P.G., Lucena L., L.C., and Lopes C. M., 2022. Investigation of titanium nanoparticles-reinforced asphalt composites using rheological tests. *TRANSPORTES*, 30(2), P. 2614. https://doi.org/10.14295/transportes.v30i2.2614

Fu Z., Tang Y., Ma F., Wang Y., Shi K., Dai J., Hou Y., and Li J., 2022. Rheological properties of asphalt binder modified by nano-TiO2/ZnO and basalt fiber, *Construction and Building Materials*, Volume 320, P. 126323, https://doi.org/10.1016/j.conbuildmat.2022.126323

Enieb, M., and Diab A., 2017. Characteristics of asphalt binder and mixture containing nanosilica. *International Journal of Pavement Research and Technology*, 10, pp. 148–157. https://doi.org/10.1016/j.ijprt.2016.11.009.

Galooyak, S.S., Palassi, M., Farahani, H.Z., and Goli, A., 2015. Effect of carbon nanotube on the rheological properties of bitumen. *Petroleum & Coal*, 57(5), pp. 556–564.

Gedafa, D.S., Karki B., Berg A., Saha R., and Melaku R.S., 2019. Effect of nanomaterials on cracking and rutting resistance of HMA. *Airfield and Highway Pavements*, pp. 88–95. https://doi.org/10.1061/9780784482476.010

Gong, M., Yang, J., Yao, H., Wang, M., Niu, X., and Haddock, J.E., 2017. Investigating the performance, chemical, and microstructure properties of carbon nanotube-modified asphalt binder. *Road Materials and Pavement Design*, 19(7), pp. 1499–1522. https://doi.org/10.1080/14680629.2017.1323661

Hamedi H., Moghadas Nejad F., and Oveisi K., 2015. Estimating the moisture damage of asphalt mixture modified with nano zinc oxide. *Materials and Structures*, 49. https://doi.org/10.1617/s11527-015-0566-x

Hassan, F.S., and Ismael M.Q., 2025. Marshall properties and rutting resistance for asphaltic mixtures modified by nano-montmorillonite. *Journal of Engineering*, 31(2), pp. 19–33. https://doi.org/10.31026/j.eng.2025.02.02.

Huang, Y.H., 2004. Pavement Analysis and Design. Upper Saddle River, NJ: Pearson Prentice Hall.

Hussein, S., Hussein, T., and Khoshnaw, G., 2021. Impact of nano materials on the properties of asphalt cement. *Eurasian Journal of Science and Engineering*, 7, pp. 155–162. https://doi.org/10.23918/eajse.v7i1p155

International Bureau of Weights and Measures, 2006. *The International System of Units (SI)*, 8th ed. ISBN 92-822-2213-6.

Ismael, M.Q., Fattah, M.Y., and Jasim, A.F., 2021. Improving the rutting resistance of asphalt pavement modified with the carbon nanotubes additive. *Ain Shams Engineering Journal*, 12(4), pp. 3619–3627. https://doi.org/10.1016/j.asej.2021.02.038

Jenima, J., Dharshini, M.P., Ajin, M.L., Moses, J.J., Retnam, K.P., Arunachalam, K.P., Avudaiappan, S. and Munoz, R.F.A., 2024. A comprehensive review of titanium dioxide nanoparticles in cementitious composites. *Heliyon*, 10(20), P. e39238. https://doi.org/10.1016/j.heliyon.2024.e39238.

Kadhim H. J., Modarres A., and Al-Busaltan S., 2024. Rheological and microstructural properties of nano-composite bitumen modified by nano-alumina and low-SBS content. *Case Studies in Construction Materials*, 20, P. e03244. https://doi.org/10.1016/j.cscm.2024.e03244

Karahancer, S., 2020. Effect of aluminum oxide nano particle on modified bitumen and hot mix asphalt. *Petroleum Science and Technology*, 38(13), pp. 773–784. https://doi.org/10.1080/10916466.2020.1783292

Kleizienė, R., Paliukaitė, M., and Vaitkus, A., 2020. Effect of Nano SiO2, TiO2 and ZnO modification to rheological properties of neat and polymer modified bitumen. In: Pasetto, M., Partl, M., Tebaldi, G. (eds) *Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE)*. Lecture Notes in Civil Engineering, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-29779-4_32

Long, H., You, L., Tang, X., Ma, W., Ding, Y. and Xu, F., 2020. Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using molecular dynamics simulation. *Construction and Building Materials*, 255, P. 119354. https://doi.org/10.1016/j.conbuildmat.2020.119354

Masri, K.A., Zali, S.M., Syafiqah, N., Jaya, R.P., Seman, M.A., and Hasan, M.R., 2022. The influence of nano titanium as bitumen modifier in stone mastic asphalt. *Advances in Materials Science and Engineering*, 2022, P. 4021618. https://doi.org/10.1155/2022/4021618

Mashaan, N.S., 2022. Rutting Performance of Nano-Silica-Modified C320 Bitumen, *Eng*, 3(4), pp. 635–645. https://doi.org/10.3390/eng3040043.

Meenu K., and Bindhu B.K., 2018. Comparative study on bituminous concrete modified by nano silica and micro silica. *IJSTE*, 4(10).

Mohammed A.A., Mwangi P.M., Anwar M.P., Leong L.T., Jayaprakash J., Ramadhansyah P.J., Jaafar Z.F.M., and Mashros N., 2021. Nano-silica-modified asphalt concrete under rutting resistance and shape memory component. IOP Conf. Series: *Earth and Environmental Science*, 682, P. 012041. https://doi.org/10.1088/1755-1315/682/1/012041

Mohammed, A.M., and Abed, A.H., 2024. Effect of nano-TiO2 on physical and rheological properties of asphalt cement. *Open Engineering*, 14(1), P. 20220520. https://doi.org/10.1515/eng-2022-0520

Mostafa A. E. A., 2016. Examining the performance of hot mix asphalt using nano-materials. *IOSR Journal of Mechanical and Civil Engineering*, 6(2), pp. 25–34.

Neto O., Ferreiro A., Freire A., Silva T., Lucena G.C.B., and Neto, L. V., 2020. Rheological analysis of asphalt binders modified with hydrated lime and titanium dioxide nanoparticles. *International Journal for Innovation Education and Research*, 8(11).

Neto V.F. S., Lêda C.F.L., Lucena, Barros A. G., Lucena E.F.L., and Filho P. G.T. M., 2022. Rheological evaluation of asphalt binder modified with zinc oxide nanoparticles. *Case Studies in Construction Materials*, 17, P. e01224. https://doi.org/10.1016/j.cscm.2022.e01224

Qasim Z.I., Al-Sahaf N.A., and Al-Jameel H.A., 2022. Effectiveness of micro- and nano silica as modifiers in asphalt concrete mixture. *Journal of Engineering Science and Technology*, 17(2), pp. 820–838.

Qian, G., Yu, H., Gong, X., and Zhao, L., 2019. Impact of nano-TiO2 on the NO2 degradation and rheological performance of asphalt pavement. *Construction and Building Materials*, 218, pp. 53–63. https://doi.org/10.1016/j.conbuildmat.2019.05.075

Riaz, K., Khan, R., Khan, I., Jan, M.R., and Wahab, A., 2013. To study the viscoelastic behavior of asphalt binders using Multi Stress Creep Recovery test. *Life Science Journal*, 10(12s), pp. 921–925.

Saltan M., Terzi S., and Karahancer S., 2017. Examination of hot mix asphalt and binder performance modified with nano silica. *Construction and Building Materials*, 156, pp. 976–984. https://doi.org/10.1016/j.conbuildmat.2017.09.069

Saltan M., Terzi S., and Karahancer S., 2018. Performance analysis of nano-modified bitumen and hot mix asphalt. *Construction and Building Materials*, 173, pp. 228–237. https://doi.org/10.1016/j.conbuildmat.2018.04.014

Shi K X., Cai L., Xu W., Fan J., and Wang X., 2018. Effects of nano-silica and rock asphalt on rheological properties of modified bitumen. *Construction and Building Materials*, 161, pp. 705–714. https://doi.org/10.1016/j.conbuildmat.2017.11.162

Santagata, E., Baglieri, O., Tsantilis, L., and Dalmazzo, D., 2012. Rheological characterization of bituminous binders modified with carbon nanotubes. *Procedia - Social and Behavioral Sciences*, 53, pp. 546–555. https://doi.org/10.1016/j.sbspro.2012.09.905

Shell Bitumen, 2015. *Shell Bitumen Handbook*. 6th ed. London: ICE Publishing.

Shafabakhsh G.A., Sadeghnejad M., Ahoor B., and Taheri E., 2020. Laboratory experiment on the effect of nano SiO2 and TiO2 on short and long-term aging behavior of bitumen. *Construction and Building Materials*, 237, 117640. https://doi.org/10.1016/j.conbuildmat.2019.117640

Shafabakhsh, G., Aliakbari Bidokhti, M., and Divandari, H., 2020. Evaluation of the performance of SBS/Nano-Al2O3 composite-modified bitumen at high temperature. *Road Materials and Pavement Design*, 22(11), pp. 2523–2537. https://doi.org/10.1080/14680629.2020.1772351

Song, W., 2022. Study on the high and low temperature performance of nano alumina modified asphalt mixture. *International Journal of Microstructure and Materials Properties*, 1(1). https://doi.org/10.1504/IJMMP.2022.10052619

Taher Z.K., and Ismael M.Q., 2023. Moisture susceptibility of hot mix asphalt mixtures modified by nano silica and subjected to aging process. *Journal of Engineering*, 29(4). https://doi.org/10.31026/j.eng.2023.04.09

Taherkhani H., Afroozi S., and Javanmard S., 2017. Comparative study of the effects of nanosilica and Zyco-Soil nanomaterials on the properties of asphalt concrete. *Journal of Materials in Civil Engineering*. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0001889

Taherkhani, H. and Tajdini, M., 2019. Comparing the effects of nano-silica and hydrated lime on the properties of asphalt concrete. *Construction and Building Materials*, 218, pp. 308–315. https://doi.org/10.1016/j.conbuildmat.2019.05.116

Tanzadeh, J., Vahedi, F., Kheiry, P.T., and Tanzadeh, R., 2012. Laboratory study on the effect of nano TiO2 on the rutting performance of asphalt pavements. *Advanced Materials Research*, pp. 990–994. https://doi.org/10.4028/www.scientific.net/amr.622-623.990

The European Commission, 2011. *Recommendation on the definition of nanomaterial* (2011/696/EU). Official Journal of the European Union, L 275/38.

Xu X., Guo H., Wang X., Zhang M., Wang Z., and Yang B., 2019. Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder. *Construction and Building Materials*, 224, pp. 732–742. https://doi.org/10.1016/j.conbuildmat.2019.07.097

Yang, Q., Liu, Q., Zhong, J., Hong, B., Wang, D., and Oeser, M., 2019. Rheological and micro-structural characterization of bitumen modified with carbon nanomaterials. *Construction and Building Materials*, 201, pp. 580–589. https://doi.org/10.1016/j.conbuildmat.2018.12.173

Yarahmadi, A. M., Shafabakhsh, G., and Asakereh, A., 2022. Laboratory investigation of the effect of nano CaCO3 on rutting and fatigue of stone mastic asphalt mixtures. *Construction and Building Materials*, 317, P. 126127. https://doi.org/10.1016/j.conbuildmat.2021.126127

You, Z., Mills-Beale, J., Foley, J.M., Roy, S., Odegard, G.M., Dai, Q., and Goh, S.W., 2011. Nanoclay-modified asphalt materials: Preparation and characterization. *Construction and Building Materials*, 25, pp. 1072-1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070.

Yousef, N., EL-Kemary, M., Salama, M.I., and Bekheet, W., 2025. Improving the performance of asphalt concrete mixtures using mesoporous silica nanoparticles and graphitic carbon nitride. *Innovative Infrastructure Solutions*, 10, P. 221. https://doi.org/10.1007/s41062-025-01951-w.

Yunus, K. N. M., Abdullah M. E., Ahmad M. K., Kamaruddin N. H. M., and Tami H., 2018. Physical and rheological properties of nano zinc oxide modified asphalt binder. *MATEC Web Conf.*, 250, P. 02004. https://doi.org/10.1051/matecconf/201825002004

Zhang, H., Zhu, C. and Kuang, D., 2015. Physical, rheological, and aging properties of bitumen containing organic expanded vermiculite and nano-zinc oxide. *Journal of Materials in Civil Engineering*, 27(12), P. 04015203. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001499

Zhu, Q., He Z., Wang J., and Wang S., 2024. Morphology, rheology, and physical properties investigations of multi-scale nano-zinc oxide modified asphalt binder. *Alexandria Engineering Journal*, 89, pp. 31–38. https://doi.org/10.1016/j.aej.2023.12.031

تحسين مقاومة التشوه الدائم للخرسانة الاسفلتية عند درجات الحرارة المرفعة بواسطة مواد معدِلة بقياس نانوي – مراجعة

يوسف محمد حامد الحمدو *، امجد حمد خليل البياتي

قسم الهندسة المدنية ، كلية الهندسة، جامعة بغداد ، بغداد ، العراق

الخلاصة

إضافة المواد النانوية في تعديل الخلطات الاسفلتية يُعد نهجًا واعدًا لتعزيز أداء الخرسانة الاسفلتية ، خاصةً في الظروف ذات درجات الحرارة المرتفعة. المواد النانوية ، بفضل خصائصها الفريدة مثل المساحة السطحية العالية ، والقوة الميكانيكية الاستثنائية، وثباتها الحراري ، توفر تحسينات كبيرة في الخصائص الريولوجية ، المتانة ومقاومة التشوه الدائم. تستعرض هذه الدراسة تطبيق مجموعة متنوعة من المواد النانوية ، بما في ذلك نانو السيليكا ، نانو الألومينا ، نانو تيتانيوم ، نانو زنك وأنابيب الكربون النانوية في تعديل الأسفلت. وقد أظهرت إضافة هذه المواد النانوية إلى الخلطات الاسفلتية قدرة على زيادة الصلابة وتحسين الأداء عند درجات الحرارة العالية ، مما يؤدي إلى تقليل إمكانية حدوث التشوه الدائم (التخدد) ، وتحسين العمر الخدمي الكلي للطرق. كما تتاولت الدراسة التحديات المتعلقة بتوزيع هذه المواد وطرق خلطها. وتم استكشاف الآليات التي تعزز من خلالها المواد النانوية الخصائص الحرارية والميكانيكية للأسفلت. وتشير النتائج إلى أن المواد النانوية تَحمِل إمكانيات كبيرة في تحسين أداء الأسفلت في درجات الحرارة العالية ، إلا أن هناك حاجة إلى مزيد من الأبحاث من أجل تحسين استخدامها وتحقيق أقصى استفادة منها في التطبيقات على نطاق واسع.

الكلمات المفتاحية: الاسفلت، مواد نانوية، التشوه الدائم.