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ABSTRACT

The integration of nanomaterials in asphalt modification has emerged as a promising
approach to enhance the performance of asphalt pavements, particularly under high-
temperature conditions. Nanomaterials, due to their unique properties such as high surface
area, exceptional mechanical strength, and thermal stability, offer significant improvements
in the rheological properties, durability, and resistance to deformation of asphalt binders.
This research reviewed the application of various nanomaterials, including nano silica, nano
alumina, nano titanium, nano zinc, and carbon nanotubes in asphalt modification. The
incorporation of these nanomaterials into asphalt mixtures has shown potential to increase
the stiffness and high-temperature performance, thereby reducing rutting potential and
improving the overall lifespan of the pavement. The mechanisms by which nanomaterials
enhance the thermal and mechanical properties of asphalt were explored. Furthermore, the
challenges associated with their implementation were examined, as effective utilization is
hindered by agglomeration, inconsistent dispersion, and dosage sensitivity, compounded by
the absence of standardized guidelines and the variability in reported contents. The findings
indicate that while nanomaterials hold considerable potential for improving high-
temperature asphalt performance, further research is needed to optimize their use and fully
realize their benefits in large-scale applications.
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1. INTRODUCTION

Permanent deformation (rutting) is a common form of surface deformation in asphalt roads
(Albayati and Latief, 2017), marked by the appearance of longitudinal grooves or
depressions along wheel paths. It is primarily caused by the repeated application of traffic
loads and can significantly affect road safety, ride quality, and the structural performance of
the pavement (Aljbouri and Albayati, 2024). This form of distress often leads to higher
maintenance expenses and shortens the pavement service life (Abd and Latief, 2024).
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Rutting develops as the asphalt layer undergoes gradual and irreversible deformation, a
process influenced by factors such as heavy traffic, insufficient material performance, and
adverse environmental conditions. The mechanical behavior of asphalt under load includes
both recoverable (elastic) and non-recoverable (viscous) responses (Asphalt Institute,
2007). Permanent deformation, or rutting, results from the accumulation of these non-
recoverable strains under repeated loading, especially at elevated temperatures (Huang,
2004). It is recognized that most paving materials are not fully elastic and undergo some
degree of permanent deformation after each load is applied (Shell Bitumen, 2015). If the
applied load is relatively low compared to the material’s strength and is repeated over a
large number of cycles, the resulting deformation from each load cycle is predominantly
recoverable, behaves proportionally to the load magnitude, and can be classified as elastic
in nature (Riaz et al., 2013). The resilient modulus (MR) is the elastic modulus to be used
with the elastic theory. Typically, as speed increases, the resilient modulus becomes larger,
leading to reduced deformation in the pavement (Huang, 2004). Rutting failure is the most
plausible failure under hot climate conditions (Albayati and Alani, 2017; Hassan and
Ismael, 2025).

In recent years, with the increase in traffic loads and modern pavement performance
requirements, researchers started to consider additions to traditional Asphalt Concrete (AC)
pavements; one of the ways to improve the performance is the addition of nanomaterials.
The European Union Observatory for Nanomaterials (EUON) adopted the definition for
nanomaterials as A natural, incidental, or engineered material with particles, individually or
in aggregates, where at least 50% (by number) have one or more external dimensions
between 1 and 100 nm (European Commission, 2011). The ASTM uses an objectively
similar terminology (ASTM E2456-06,2012). Micro and Nano are unit prefixes that are part
of the System International (SI) units of measurement; they represent the size of one
millionth (10¢) and one billionth (10-°) for Micro (n) and Nano (n), respectively
(International Bureau of Weights and Measures, 2006). In general, nanotechnology will
produce benefits by making existing products and processes more cost-effective, durable,
and efficient, and by creating entirely new products (Buhari et al., 2018). Nanomaterial
modifications are often added as a percentage of the asphalt binder weight. Due to their
extremely small dimensions and large surface area, nanomaterials require only a minimal
quantity to produce effects equivalent to those achieved by larger, conventional materials
(Taherkhani et al., 2017). Incorporating micro material into the asphalt binder enhanced
the stiffness modulus along with resistance of hot mix asphalt (HMA) to permanent
deformation (Shafabakhsh et al., 2015). Incorporating the sub-Nano-sized (600nm) modifier
increased the mechanical properties of hot mix asphalt (You et al., 2011). [t was found that when
the particle size is reduced from 2 micrometers to 80 nm, the anti-rutting factors of asphalt
are improved by 22.3% (Zhang et al., 2017). Nanoparticles are more evenly dispersed in
asphalt compared to micro particles, helping to delay the propagation of internal
microcracks (Fu et al., 2022). The stiffness modulus of micro and nano-modified asphalt
was tested, which resulted in 30% and 90% improvement in micro and nano modifications,
respectively (Meenu and Bindhu, 2018). The inclusion of nanomaterials showed promising
results to improve the rheological properties of asphalt binder (Buhari et al., 2018;
Aboelmagd et al.,, 2021). Notably, the high surface-to-volume ratio of nanoparticles
enhances their potential to improve rheological properties and their adhesion to aggregates
(Yarahmadi et al., 2022). (Enieb and Diab, 2017) found that nanomodification enhanced
the resilient modulus, split tensile strength, and fracture energy.
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This review of literature was made to present a reference for the use of nano modifiers to
improve rutting resistance to develop a more resilient, reliable, and high-performance
asphalt concrete pavement. The general progression of this review of cited literature is
shown in Fig. 1. Nano [Silica (NS), Alumina (NA), Titanium oxide (NT), Zinc oxide (NZ), and
Carbon nanotubes (CNT)] are the focus of this review and are gathered from previous
literature and discussed in the following sections.

Nano Material
(NM)

Silica ] Alumina [ Zinc ] CNT [Titanium

Properties of NM & Binder

Preparation of Nano Material

Rheological Properties

HMA Properties

Results

Figure 1. Review diagram.

2. MATERIALS AND METHODS
2.1 Silicon Dioxide (SiO;)

Silica, frequently the main constituent of sand, is present in numerous natural minerals and
can also be produced synthetically. In industrial contexts, silica nanoparticles are utilized to
reinforce elastomers and serve as rheological agents. The white nano powder form of silica,
made up of nanostructured polymorphs of silicon dioxide (SiO,), is distinguished by its large
surface area, improved adsorption properties, and excellent stability (Yousef et al., 2025).
Naturally occurring as quartz, this nanomaterial offers the significant benefit of low
production costs while delivering high performance (Qasim et al., 2022).

2.2 Aluminum Oxide (Al203)

Nano Al203 (alumina) is a readily accessible material, since its raw material, bauxite, from
which aluminum oxide is extracted, is found in large quantities in nature (Albayati et al.,
2024). Nano-alumina exhibits high thermal conductivity, large surface area, superior
strength and stiffness, excellent wear resistance, and strong oxidation and thermal stability
(Bhat and Mir, 2021). Scanning electron microscopy image of NA features a varied range of
agglomerated particles with irregular morphology, indicating a complex structure that may
suggest more sophisticated surface interactions with the asphalt (Albayati et al., 2024).
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2.3 Titanium Dioxide (TiO2)

Titanium Dioxide is a natural oxide in the Earth’s crust. Titanium dioxide (TiO;) is a
transition metal oxide that exists in three main crystalline forms: anatase, rutile, and
brookite (Chen and Mao, 2007).

2.4 Zinc Oxide (ZnO)

Zinc oxide (Zn0), the oxide form of zinc, is commonly found as a white crystalline powder
and occurs naturally as the mineral zincite. It crystallizes in two forms: hexagonal wurtzite
and cubic zincblende (Fierro, 2005).

2.5 Carbon Nanotubes (CNT)

There are two types of carbon nanotubes (CNT): single-wall CNT, which consist of individual
tubes, and multi-wall CNT, which are composed of coaxial tubes. While multi-wall CNT
(MWCNT) are more cost-effective and simpler to produce, they have lower strength and
stiffness compared to single-wall CNT (SWCNT) (Santagata et al., 2012). The diameter of
carbon nanotubes ranges from 1-4 nm for single-walled (SWCNT) and 5-50 nm for multi-
walled (MWCNT), with lengths extending up to several micrometers (Gong et al., 2017).
CNTs exhibit a strong tendency to aggregate, forming a random network of interconnected
clusters (Faramarzi et al., 2015). Typical properties of nanomaterials are presented in

Tables 1 and 2.

Table 1. Typical properties of nanomaterials.

Particle Densit SSA* .
NM Reference Form Size (nm) (8 /cm3})’ (m2/g) Purity (%)
(Taherkhani et al., 2017) 11-13 2.4 (<0.1 Bulk) 200 99
(Shi et al., 2018) 30 n/a 225 99.8
(Taherkhani et al., 2019) 20 2.85(<0.1 Bulk) 10-40 >99
% | (Shafabakhsh et al.,2020) | White 80 2.4 160 99.9
= [ (Al-mousawi et al,, 2020) | °V9e' [ 1112 2.4 200 99.8
(Mohammed et al., 2021) 10-20 2.4 180-600 99.8
(Qasim et al., 2022) 15 2 10025 >99.9
(Khan et al., 2023) 14-36 n/a 580 >98
(Ali et al., 2016) 13-20 n/a 100-200 >99
(Karahancer, 2020) n/a 2.9 (0.2 Bulk) >550 >99.1
E (Hussein et al., 2021) White 20 3.89 >138 <99
E (Bhat et al., 2021) Powder| _ 30-50 n/a 130-150 99.9
< (Cao et al., 2022) <80 0.9 n/a n/a
(Kadhim et al., 2024) 80 3.97 >15 +99
(Albayati et al., 2024) 10-20 (0.2 Bulk) 120-160 99.9
g | (Tanzadeh etal, 2012) 10-25 n/a 200-240 n/a
E (Shafabakhsh et al., 2014)| White 20 (0.08 bulk) 50 n/a
8 (Qian et al., 2019) Powder 20 3.16 50-100 8.1
[ (Ameli etal, 2020) 20 (0.08 bulk) 50 n/a
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(Masri et al., 2022) 20 4.26 n/a 7.5
(Mohammed et al., 2024) 10-30 (0.08 bulk) 50-100 n/a
(Hamedi et al., 2015) 20 5.5-5.6 40+5 n/a
g (Xu et al., 2019) White 30 4.6 40 n/a
S| (Saltan et al.,, 2019) Powder 30 5.5 (0.28 bulk) 50 99.9
(AlMistarehi et al., 2023) 20-30 5.6 n/a 99.8
*SSA: Special Surface Area.
Table 2. Typical properties of carbon Nanotubes.
Physical Outside Length Densit SSA* Puri
Reference Fzrm Diameter (nm) (urﬁ) (g/ cm3))’ (m2/g) %ty
(Faramarzietal., 2015) 10-20 10-30 | 2.1 (0.22 bulk) >200 >95
(Galooyaketal., 2015) n/a 30 2.1 200 n/a
(Amin et al., 2016) 10-30 10-30 2.1 >200 >90
(Gong et al., 2017) Pglvi‘él;r >50 10-20 n/a >40 >90
(Ashish et al., 2018) 30-32 20 n/a 190 n/a
(Yang et al., 2019) 9.5 1.5 0.1 250-300 90
(Ismael et al., 2021) 10-30 10-30 (0.06 bulk) >200 n/a
*SSA: Special Surface Area.

2.6 Preparation and Mixing Method

The incorporation of Nanomaterials into asphalt is a crucial step in achieving their benefits.
Ensuring proper mixing is vital for the uniform dispersion of Nanomaterials within the
asphalt matrix, which is necessary for consistent performance enhancements. A key
challenge is preventing Nanoparticles from agglomerating, as this can reduce their
effectiveness. Advanced mixing methods and the use of dispersing agents might be needed
to achieve a uniform distribution of nanomaterials. Different types of addition methods are
reviewed; (Shafabakhsh et al., 2020) prepared several samples of Kerosene-Nanomaterial
solution (wet blend) mixed at different times, as well as in different mixing periods. In the
end, the results were that the mix for 30 min at 2500 rpm had the best results for initial
mixing, and then continued mixing after the evaporation of the dispersion agent (kerosene)
with high shear mixing (HSM) at 4000 rpm, 150 °C for 30 min. (Mohammed et al., 2023)
used a (dry blending) method with PG (64-16) for the 1, 3, 5, and 7% dosages, with initial
heating of (500g) of asphalt at 140°C for 20min. After that, 2-4 grams /min at 2500 rpm and
then at 4000rpm for 45min at 150-160°C. Modified asphalt cement properties (penetration,
softening point, ductility, and penetration index) are presented in Table 3.

Table 3. Characteristics of nanomaterial modified asphalt.

Penetration | Soft. Point | Ductility Pen
NM Researcher Dosage % | (ASTM D5) ((ASTM D36)| ASTM D113 In de;(
25°C(0.1mm) (°Q) 25°C (cm)
0 62 50
.§ (Saltan et al., 2017) 8; g: ig >100 n/a
= 0.5 55 51
(Taherkhani et al., 0 69 49 100 -0.69
2019) 1 68 49 94 -0.7
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3 63 50 87 -0.56
5 55 55 70 0.14
0 62 45 -2
(Abdel Wahed et 1 43 53 -1
al,, 2022) 2 39 54 n/a -0.5
4 41 57 0.1
0 70 46 >100 -1.48
(Ali et al., 2016) 5 25 53 62 -1.84
7 38 51 91 -1.54
© 0 62 50 >100 -0.705
£ |(Karahancer, 2020) 3 54 49 >100 -1.25
g 7 57 48 >100 -1.39
< 0 42 55 120 -0.31
(Hussein et al., 3 31 59 90 -0.25
2021) 5 25 62 50 -0.195
7 28 60 75 -0.34
0 52 54
(Neto et al.,2020) 3 45 7 n/a
0 67 49 102 -1.25
g . 4 61 52 107 0.5
E (Ameli et al., 2020) 6 60 =3 109 11
8 8 - 55 112 1.4
= 0 42 49 112 -1.53
(Mohammed 3 39 56 115 -0.4
and Abed, 2024) 5 37 60 120 0.2
7 40 58 123 -0.2
0 64 47 240
2 63 48 225
(Zhang et al., 2018) 3 6 49 200 n/a
4 58 50 190
o 0 62 50 > 100 -0.70
= 1 48 50 > 100 -1.29
N |[(Saltanetal., 2019) 3 ) 0 >100 20.89
5 52 53 > 100 -0.38
0 65 48 -0.96
(Zhu et al., 2024) 1 70 48 n/a -0.84
5 74 50 -0.73
0 61 49 123
(Faramarzi et al.,, 0.1 58 48 116
8 2015) 0.5 55 50 101 n/a
3 1 52 52 81
= 0 65 52 n/a 0.062
5 (Galooyak etal, 0.9 55 56 0.433
g ) 1.5 49 61 1.175
2 0 42 51
S (Ismael et al., 0.5 41 54 n/a
2021) 1 38 56
1.5 35 59
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Different mixing techniques including low shear mixer (LSM), mechanical mixing (MM),
sonication process (SP), and ultrasonic mixing (USM) a to integrate different Nanomaterials
into asphalt are shown in Table 4.

Table 4. Integration of Nanomaterials.

. Blend |,,. Temp |Speed | Time Scan
NM Researcher Binder Method Mixer (oc)p (II')pm) (min) Method
(Taherkhani et al.,, 2017) | 60-70 Dry |HSM | 160 | 3000 | 60 SEM
(Shafabakhsh et al., 2020)| 60-70 Wet |HSM | 150 | 4000 | 30 n/a
« | (Mohammed etal.,, 2021) | 80-100 n/a n/a SEM
= ((Abdel Wahed et al., 2022)| 60-70 | Dry |HSM | 145 | 4000 | 60 |XRD/TEM/FTIR
“ | (Taher etal., 2023) 40-50 | Dry |HSM| 163 | 3000 | 60 SEM
(Mohammed et al., 2023) | 40-50 Dry |HSM | 160 | 4000 | 45 SEM
(Albayati et al., 2024) |PG64-16| Dry |HSM | 140 | 4000 | 20 SEM
(Ali etal,, 2016) 60-70 Dry |HSM | 170 | 5000 | 90 FTIR/XRD
« (Ali etal., 2016) 60-70 Dry |HSM | 170 | 5000 | 90 n/a
E (Karahancer, 2020) 60-70 Dry |HSM | 160 | 3000 | 60 SEM
2| (Husseinetal, 2021) 40-50 Dry | MM | 145 | 1500 | 60 n/a
< (Song, 2022) #70 Asph.] Wet |HSM | 150 | 4000 | n/a n/a
(Albayati et al,, 2024) |PG64-16| Dry |HSM | 140 | 4000 | 20 SEM
(Tanzadeh et al.,, 2012) 60-70 Dry |HSM | n/a | 7000 | 45 SEM
(Neto et al., 2014) 50-70 Dry | MM | 150 | 2000 | 90 n/a
§ (Buhari et al., 2018) 80-100 Dry |HSM | 155 | 3500 | 45 EDS/FTIR
'g (Qian et al., 2019) 50-60 Dry |HSM | 170 | 8000 | 30+5 SEM
= (Filho et al., 2020) 50-60 | Dry | MM | 150 | 2000 | 90 | SEM /XRD
(Mohammed et al., 2024) | 40-50 Dry |HSM | 160 | 6000 | 40 SEM
(Albayati et al, 2024) | 40-50 | Dry |HSM | 140 | 4000 | 20 SEM
(Zhang et al., 2015) 60-70 Dry |HSM | 150 | 4000 | 60 n/a
(Yunus et al., 2018) 60-70 Dry |HSM | 145 | 2000 | 30 SEM
(Saltan et al., 2019) PG 64-22| Dry |HSM | 160 | 4000 | 120 SEM
o (Xu etal,, 2019) 60-70 Dry |HSM | 150 | 5000 | 60 SEM /UVS
£| (Kleizien¢etal,2020) | 70-100 | Dry | n/a | 150 | 5000 | 30 n/a
(Neto et al., 2022) 50-70 Dry |LSM | 150 | 2000 | 90 XRD
. . 160 | 2000 | 20
(Al Mistarehi et al., 2023) | 60-70 Dry | HSM 170 1 4500 | 20 n/a
(Zhu et al., 2024) PG 64-22| Dry |HSM | 163 | 5000 | 45 |SEM/AFM /FTIR
s | (Faramarzi etal, 2015) | 60-70 ]‘D/GZ{ HSSP;V[ - 625} 0’“;;3 35’”‘”2‘ SEM
2| (Galooyaketal,2015) | 60-70 | n/a |USM| 65watt 15min SEM / XRD
cz% (Gongetal,2017) | 6080 | Dry |HsM|120 | 2000 | 20 TE;" LR
g (Ashish et al., 2018) AC-10 Dry |HSM | 155 | 5000 | 60 n/a
-c% (Yang et al., 2019) PG 64-22| Dry |HSM | 170 | 5000 | 30 SEM / DSC
|  (Ismaeletal, 2021) gg_'?g Dry | MM | 163 | 1500 | 45 | SEM /AFM
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2.7 Testing Methods

A comprehensive suite of standardized tests was used to evaluate the performance of asphalt
binders and mixtures. Binder morphological tests include Scanning Electron Microscopy
(SEM), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Energy
Dispersive X-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), and Differential
Scanning Calorimetry (DSC). Chemical analysis includes Fourier Transform Infrared
Spectroscopy (FTIR), UV-Vis-infrared Spectrophotometer (UVS). Behavior on rheological
and deformation, including the Rotational Viscometer (ASTM D4402/D4402M-15, 2015)
to assess stiffness (viscosity), the Dynamic Shear Rheometer (AASHTO T315-12, 2011) to
evaluate high-temperature rutting resistance, and the Multiple Stress Creep Recovery
(MSCR) test (AASHTO T350-14, 2013) at 0.1 and 3.2 kPa to quantify non-recoverable
compliance. Mixture performance tests comprise Resilient Modulus (MR) (AASHTO T307-
99, 2010) for stiffness evaluation, Indirect Tensile Strength (ITS), and uniaxial dynamic
creep (AASHTO TP79, 2013) for permanent deformation, repeated loading Permanent
Deformation (PD) under repeated loading. Marshall Stability (MS) and Flow (MF) (ASTM
D6927-15, 2015), while the Wheel Tracking Test (WTT) (AASHTO T324-19, 2018)
simulated rutting under controlled temperature and loading. Additional performance
indicators included the Asphalt Pavement Analyzer (APA), Flow Number (FN) (AASHTO
T378-17, 2014) for rutting resistance, , Rutting Test (RT), Dynamic Stability (DS) Static
Creep Test (SCT), Double Punch Test (DPT), Dynamic Creep Test (DCT) and Shape Memory
(SM), providing insight into the resistance to load-induced deformation and structural
integrity.

3. RESULTS AND DISCUSSION
3.1 Binder Rheological Tests
3.1.1 Rotational Viscometer

Rotational viscosity of unaged Nano-modified binder for different modifiers is shown in
Figs. 2 to 5.

[Qasim et al., 2022]60/70 [Ali etal, 2016]60/70

[AbdelWahed et al., 2022]60,/70 [Albayati et al., 2024]PG 64-16
[Mohammed et al., 2023]40/50 #— [Shafabakhsh et al., 2020]60/70(3%SBS)
—=o— [Albayati et al., 2024]PG 64-16 == == 3Pas
2 4
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’g 1.5 g 3 e — [ S R S R P
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0 o |
o 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
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Figure 2. Rotational viscosity at 135 °C for A) nano silica B) nano alumina modified asphalt.
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Figure 3. Rotational viscosity at 135 °C for nano titanium modified asphalt.
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Figure 4. Rotational viscosity at 135 °C for nano zinc modified asphalt.
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Figure 5. Rotational viscosity at 135 °C for carbon Nanotubes modified

3.1.2 Dynamic Shear Rheometer (Rutting Parameter)

Rutting parameters of different Nano-modified asphalt are shown in Figs. 6 to 10
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Figure 6. Rutting parameter of nano silica: A) unaged, B) RTFO aged binder.
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Figure 7. Rutting parameter of nano alumina unaged binder.
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Figure 8. Rutting parameter of nano titanium A) unaged, B) RTFO aged binder.
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Figure 9. Rutting parameter of nano zinc A) unaged, B) RTFO aged binder.
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Figure 10. Rutting parameter of carbon nanotubes A) unaged, B) RTFO aged binder.

3.1.3 Multiple Stress Creep Recovery (Jnr)
Multiple stress creep recovery (Jnr) at 0.1 and 3.2kPa of unaged Nano-modified asphalt for
different materials is shown in Figs. 11-14.
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Figure 11. Jnr of nano silica modified asphalt cement.
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Figure 12. Jnr of Nano alumina modified asphalt cement.
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Figure 14. |nr of Nano zinc modified asphalt cement.
3.2 Asphalt Mixture Properties

3.2.1 Volumetric Properties of Mixtures

Volumetric properties of Nano-modified asphalt mixtures are shown in Table 5.
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Table 5. Volumetric properties of modified mixtures.

NM| Reference Asphalt | Dosages | Air Voids [Voids in Mineral| Voids Filled with
Content % (%) (%) Aggregate (%) Asphalt (%)
0 4.15 16.3 74.65
(Taherkhani 53 1 4.38 15.95 72.95
etal, 2017) ' 3 4.64 15.74 70.38
« 5 4.93 15.43 66.58
= 0 4 14.5 72.5
@ , 2 3.8 14.2 73
(‘;}P;%"Zt;;t 5 4 3.4 14.2 76.5
’ 6 3.2 14.6 77.5
8 3.1 15 78.5
o 4.55 0 4 14.75 72
E (Karahancer, 5.96 3 4 16.5 75
= 2020) 5.25 5 4 16.48 75
< 4.85 7 4 15.6 72
0 4 14.5 72.5
<
E (Albayati et : 2 3.95 14.6 73.5
| al,2024) 4 38 15 75
< 6 3.65 15.1 76
8 3.5 15.3 77
. 0 4 14.5 72.5
Z | (Albayati et c i g?} 1;}; 773 65
8 al,, 2024) : :
= 6 3.2 15.7 74.9
8 3.1 16 73.5
4.5 0 4 14.2 74
2 (Ashish et 4.5 1 4 16.1 75
< al,, 2018) 5.1 3 4 15.2 75
5.3 5 4 16.1 76
0 4 15.5 74.19
= (Ismael et 0.5 3.76 15.37 75.54
Z al, 2021) 5 1 3.56 15.2 76.58
’ 1.5 3.3 14.64 77.46
2 3.4 14.8 77.03

3.2.2 Testing of Asphalt Mixtures

Asphalt mixture tests of Nano-modified asphalt mixtures are shown in Table 6.

Table 6. Modified asphalt mixtures tests.

NM Researcher Binder /NMS Test Results
Dosages
MS | 12% higher Marshall Stability at 5% NS.
(Taherkhani et 60-70 MF | Flow decreases with increasing NS content.

.§ al., 2017) /12.5mm MR | At5% NS, a 49% increase in resilient modulus.
A N 1,3,5% Accumulated vertical strain decreases with

DCT | . .

increasing NS.
80-100 SM | Best NS contentis 15 % (at 40°C).
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(Mohammed et /14mm DCT At 10,000 cycles, the minimum displacement
al,, 2021) 4,6,15% at 6% NS.
60-70 MS | 16.16% increase in Marshall Stiffness at 4%
(Abdel Wahed et &MF | NS.
/12.5mm
al,, 2022) 1.2.3 49 DPT | NS content (4%) leads to increased DP values.
T SCT | Adding NS leads to decreased strain values.
MF | Min flow (3.1mm) at 2% NS.
MS Max stability 15.5kN at 6% NS, 12.75kN at 8%
(Qasim et al., 60-70 NS, OAC 4.9%.
2022) 2,4,6,8% WTT 58% decrease in rut depth after 10,000 cycles
at 8% NS.
5% NA resulted in the best reduction of rut
(Gedafa et al., PG 64-28 APA depth.
2019) 1,5 7% 1% NA had negative effects on the rut depth
above 2000 cycles.
(Karahancer, 60-70 ITS Increase in ITS value (dry and wet) as the NA
2020) 3,5,7% dosage increases.
#70Asphat .
(Song, 2022) 0.3-1.2% DCT | 0.3-1.2% can reduce the strain by 2-49%.
2 12% NA, MS of dry and wet samples (15.9kN,
= MS | 14.4 kN), which are (72-90%) higher than the
'5 #70 Matrix control sample.
Asphalt 3-12% NA, the rut depth (60°C) decreases b
(Cao etal, 2022) / 131.)2mm RT | 12-36% respectively,p an((i dyn)amic stabilitill
3,6,9,12% increases by 17-39%.
9% NA results in 49% lower final strain at
bCT 60°C.
(Albayati et al. 40 -50 MS | 19% increase in Marshall Stability at 8% NA.
2024) ’ /12.5mm MF | 29% decrease in Marshall Flow at 8% NA.
2,4,6,8% PD | 16% (M) improvement of at 8% NA.
(Tanzza(;ilt-zél)et al, 60-70/ 4% WTT | 4% NT reduced rutting depth at 10,000 cycles.
(Shafabakhsh et 60-80 PD 5% NT resulted in the best reduction in final
al, 2014) 1,3,5 7% strain.
MR | 8% NT made a 34% enhancement to MR.
g (Ameli et al., 60-70 79% improvement in FN 8% NT mixture with
2 2020) /12.5mm N Jime.
% 2,4,6,8% . .
S WTT | 29% reduction in rutting depth at 8% NT.
= MS | 11% increase in Marshall Stability at 8% NT.
40-50 MF | 31% decrease in Marshall Flow at 8% NT.
(Albayati et al., Slight improvement of 8% improvement at 8%
/12.5mm MR
2024) 2 4 6 8% NT.
T PD At 10,000 loading cycles, a 64% reduction in
permanent strain (8% NT).
(Hamedi et al., 60-70 ITS NZ significantly improved ITS values for
= 2015) 1,3,5% (unconditioned & conditioned samples).
N (Zh;gﬁg}t al, PG 64-16 4% DS | 22.3% improvement in dynamic stability.
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3-5% NZ increased ITS 5.3-30.87%

(Salzt?)ri;)t b 131G36£§-§/2 ITS | respectively. However, ITS decreased by 1%
0
- NZ.
(Mostafa et al 70-80 MS | 58% increase in stability at 0.5% CNT.
2016) 0.01,100-/01, 0.5, MF | 8% decrease in Flow at 0.5% CNT.
(Saltan et al PG 64-22 3-5% CNT increased ITS by 22-39
2018) ’ 13,59 ITS | respectively.

1% CNT reduced ITS by 6%.
MS | 35% increase in MS at 1.5% CNT.
(Ismael et al., 40-50 /12.5mm | MF | 14% decrease in MF at 1.5% CNT.
2021) 0.5,1,1.5,2% 1.5% CNT yields 61% improvement in rutting
WTT :
resistance at 10,000 cycles.

Carbon Nanotubes

At high temperatures, Nanomaterials incorporated into asphalt mixtures significantly
influence the performance of asphalt mixture by enhancing the rheological and structural
properties of the binder (Albayati et al., 2024). The addition of Nanomaterials increases
the viscosity and complex modulus of the asphalt binder at elevated temperatures (Neto et
al,, 2022), resulting in a binder that is less prone to flow and permanent deformation. This
characteristic is particularly beneficial in hot climatic regions and under heavy traffic
loading, where conventional binders tend to soften and deform. The improvement in rutting
resistance arises from the formation of a stiffer and more elastic binder due to Nanomaterial
addition (Ameli et al., 2020). This modified binder often exhibits a lower creep rate under
repeated traffic loading, which directly translates to reduced rut depths in asphalt
pavements. Furthermore, Nanomaterials function as active fillers, enhancing the filler-
binder interaction and forming a densely packed microstructural network within the asphalt
matrix (Nazari et al., 2018). This microstructural reinforcement limits binder mobility at
high temperatures, effectively strengthening the aggregate-binder interface and reducing
the risk of stripping, shoving, and plastic flow. In addition to mechanical benefits, certain
Nanomaterials, such as Nano titanium, provide enhanced thermal and ultraviolet (UV)
stability (Liu et al., 2014). These properties slow down binder softening and oxidative aging
under prolonged heat exposure, thereby preserving the mixture’s structural integrity and
extending its service life. Another critical effect arises from the interfacial bonding
improvement, as Nanomaterials may have surfaces that can interact with polar components
of asphalt, such as asphaltenes. This enhanced adhesion improves the aggregate-binder
bond strength, making it more resistant to shear deformation and stripping (Long et al.,
2020). Collectively, these mechanisms contribute to a durable, rut-resistant asphalt mixture
that can better withstand the challenges of high-temperature service conditions.

3.3 Results of Previous Research

Findings of previous research are gathered and shown in Table 7.

Table 7. The effect of Nanomaterials on asphalt mixtures.

Dosage

% Findings

NM| Researcher |Country|Binder

(Taherkhani
etal, 2017)

—NM of 5 % resulted in a 49% higher resilient modulus.
—Fatigue life (5% NM) is approximately 160% higher.

Iran 60-70 | 1,3,5

silica
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—1.2% addition increases rutting resistance by around

al., 2021)

(z?:fag%lg:f)h Iran | 60-70 %‘3(;' 2‘62’ 100% (at 40 °C).

Y "7 7™ -Increase in fatigue life of samples by 50%.
(Mohammed . ) —15% Nano-silica leads to the best rutting resistance
etal, 2021) Malaysia| 80-100| 4,6, 15 At 40°C.

. —The optimal dosage (8%) decreased the rut depth.

tal,, 2,4, . . . .
(Qaglongze) a Iraq 60-70 6 8 —Higher tensile strength, lower rutting depth, higher
’ stability and minimum flow.
—Optimal dosage is 4%.
(lzl)glelg\(l)azhze)d Egypt | 60-70 13’ 24’ —The binder’'s storage stability decreases with
v ’ increasing Nano contents.
—Enhance pavement performance (stability and
volumetric characteristics).
Taher et al.,, 2,4, . Lo
( az((;;g) a Iraq 40-50 6 — Greatest Marshall Stability and the best reduction in
Marshall Flow were achieved in 6% and 4%
respectively.
(Mohammed et Ira 40-50 1,3, |-Recommended 5% dosage of NS.
al,, 2023) q 5,7 |-5% showed a 60% increase in RV at 135 °C.
(Albayati et PGoa-| 2 4 —Optimal dosage of 4%, viscosity increase of 33%.
al 23(’)2 1) Iraq 16 6’ 8’ —Improved the resistance to rutting. Making it effective
” ’ for high temperature pavement performance.
(Ali etal,, Malavsial 60-70 | 3.5 7 T The optimal performance was at 5% NM.
2015) y *7’ " |-Increased resistance to rutting and fatigue.
- Enhanced elastic behavior of asphalt.
(Alietal, . i - Increase the high temperature rutting resistance,
2016) Malaysia| 60-70 | 3,5,7 | (oct at 506 NA).
—Decrease in G*.sin § (up to 5% Nano content) at 25 °C.
- Economic benefit for NM<5% (lower compaction and
mixing temperatures).
(Karahancer - Reduced Rutting Performance and enhanced fatigue
S 2020) " | Turkey | 60-70 | 3,5,7 | parameter.
E - Only after RTFO, 5% NA made rutting parameter
El improvement.
< —Performance grades were determined as PG 64-22.
03 0.6 1.2% showed potential to improve the high
(Shafabakhsh Iran 60-70 0'9’ 1'2’ temperature performance.
etal., 2020) (SBS) | 3’ O. " I Jnr remarkably decreased with dosage increase.
' —3% NA showed increased viscosity above (3 Pa.s).
- Penetration decreased by about 49% when 5%
Hussein et modifier was added.
Iraq 40-50 | 3,5,7

—Better resistance to oxidation and aging obtained, up
to 7% decreased ductility.
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- At the optimum content of 9%, dynamic stability of
asphalt mixture showed 34% (at 60°C).

(Cao etal.,, China #70 36912 Reduced cumulative permanent strain by 36-49%.

2022) Asphalt|™ ™ ©" “"-Improved fatigue performance, water stability by 3-

7% & 8-19% respectively, with 2% reduction in low-

temperature tensile strain.

- Decreased rut depth by 12-36% for 0.3-1.2% dosage,
respectively.

(Song, China #70 |0.3, 0.6, The dynamic stability increases by 17-39%.

2023) Asphalt| 0.9, 1.2 | Fatigue properties improve to some extent (best at

0.6%).

—Low temperature performance decreases slightly.

(Kadhim et al 60-70 - 5% NA +2.5%SBS resulted in 31% Higher MSCR.

2024) [ran (SBS) 2,3,4, 5—;}(;/(())/NA + 2.5%SBS improved fatigue resistance by
0.

- 6% NA enhanced rutting resistance, with satisfactory
fatigue resistance.

(Albayati et Iraq PG 64- 2 4 6 8—Although a 6% dosage does not offer the highest
al,, 2024) 16 "7 777 resistance to fatigue, it provides a balanced

improvement in asphalt properties, including

penetration, softening point, and mass loss.

Alumina

—Nano TiO; decreases the rutting depth and increases
Iran 60-70 4 the softening point, consequently, improving the
temperature sensitivity.

(Tanzadeh et
al,, 2013)

—Adding NT lead to improvements in permanent
deformation and HMA. With an optimal content of
5%.

(Shafabakhsh i 1
etal,2014) | a0 | 60701 5

—Following RTFO aging, there is a substantial increase
(Qian etal. . in the rutting factor after modification.
2019) ’ China | 50-60 5 10 —Rutting parameter progressively rises with
’ increasing the dosage from 1% to 10% [slower rate
of growth compared to (0% - 1%)].

—Increased resistance to permanent deformation.

3, |-Improve asphalt binder workability at higher
, 7 temperatures as well as aging resistance.

—Optimal content is 5%.

(Filho et al., . i 1
2020) Brazil | 50-60 5

Titanium

—Atideal modifier (5%) rutting parameter increased by

64% at 64°C.

' Promoted PG by 1 grade at 3% and 2 grades at 5-7%.

—At 5% and 7% Nano TiO;, the complex modulus
increased.

(Mohammed

etal,2024) | 4 | 40-50

—Optimal dosage of 6%.

2,4, FMajorincrease in the rutting parameter.

6,8 |-Lower concentrations of NT acts as an effective anti-
aging agent (12% reduction in mass loss at 2% NT).

(Albayati et

al,, 2024) Iraq | 40-50
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—Reducing the 2pm size to 80nm, anti-rutting factors &
(Zhang et al., . i the dynamic stabilities of asphalt improve by 22.3%
2016) China | 60-70 | 2,3,4 & 17.9% respectively.
—Flexural tensile strength is improved.
— i i 0,
(Yunus et al,, Malaysia| 60-70 | 3,5,7 Grgater rutting resistance at 7% NZ (before and after
2018) aging).
= (Saltan et al —Best rutting performance was achieved with 5% NM,
< 2019) ? | Turkey | 60-70 | 1,3,5 | with a 3.94% increase compared to neat bitumen.
— Lower fatigue performance.
—Improvement to the rheological properties of asphalt.
(Xu et al.,, China | 60-70 1,2,3,-Improve the fatigue properties of asphalt, but
2019) 4,5 excessive dosages lead to decreased fatigue
performance.
L —NZ < 3% does not affect bitumen mechanical
(Kleiziené et | . .
al,, 2020) Lithuanial 70-100| 1,3 performance.
’ —Excessive amounts may lower fatigue resistance.
(Neto et al —Optimum content of 7% leads to an increase in
2022) e Brazil | 50-60 | 3,5,7 | Performance Grade, rutting resistance, and fatigue
life.
=]
-E (AlMistarehi | Saudi 60-70 | 1 2 3 —Adding 3% NZ exhibited the best improvements for
etal, 2023) | Arabia T different temperatures (increased stiffness).
—NZ with a particle size of 10-30 nm at 3-5% was
suggested to reduce agglomeration.
Zh L, . PG 64- . : . o
( zgze:.)a China ng 1,3,5 [-Optimum NZ content and particle size distribution
demonstrated potentially superior rheology,
durability, and morphology.
(Faramarzi -17% increase in permanent deformation resistance at
etal,, 2015) Iran | 60-70 |0.1,0.5,1] 1% CNT.
” —CNT increased resistance to thermal cracking.
(Galooyak et 0.3, 0.6, —Optimal percentage of CNT of 1.2% has the best
Iran | 60-70 | 0.9, 1.2,
al,, 2015) 15 performance.
4 — An optimum CNT dosage of 0.5% increased stability
£ |(Mostafa et al., Eovpt | 70-80 0.01,0.1,| by 58.3% and reduced flow by 8.6%.
‘é 2016) EYP 0.5,1 |- High shear mixing proved more effective than
3 conventional mechanical mixing.
s
_g -As the CNT content increases, binder penetration
= decreases while the softening point rises. A significant
© (Gong et al drop in ductility is observed at 0.5% CNT; however, at
020g1('37)a v China | 60-80 | 1,2,3 | CNT > 0.5% there is only a minor change.
-CNT improved the high temperature performance and
aging resistance.
—Decreased low temperature performance.
(Ashish et al., India | AC-10 0.4, 0.75,-Addition of CNT beyond 1.5% is not recommended
2018) 1.5, 2.25| due to agglomeration of CNT.
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B o , ,
(Yang et al., ' PG 64- 0.2,0.4, -CNT of 1.5% is the best content to improve the high
2018) China 22 0.6, 0.8, | temperature performance.
1, 1.5, 3 |- At 3% CNT, some agglomerations are observed.
-At 1.5%, CNT of 40-50 grade resulted in an increase in
: . . 0 0
(Ismael etal, raq 4050 | 05,1, Ilzléztsgfti:’i}l’stance and stability by 61.0% & 35.0%
2021 60-70 | 1.5,2 '
) "’ |-60-70 grade needed 2.0% of CNT to be near the 40-
50 results.
3.4 Conflicted Findings

There is a notable divergence in the reported optimal dosages of Nanomaterials for asphalt
modification, as shown in Table 8, as discrepancies persist among researchers regarding the
most effective content levels. While some studies suggest that lower dosages are sufficient
to enhance performance without compromising other properties, others report that higher
dosages yield better improvements in rutting resistance or stiffness. These inconsistencies
highlight the complexity of determining a universally accepted optimal dosage, which may
vary depending on the type of Nanomaterial, binder grade, mixing method, and specific
performance criteria evaluated.

Table 8. Optimum Nanomaterial dosages.

Optimum

NM Researcher Dosage (%) Comment

g (Mohammed et al., 2021) 15% Reported dosages from 4% to 15% vary
= (Qasim et al. 2022) 8% widely due to differences in materials,

«» (Albayati et al. 2024) 4% blending methods, and evaluation targets.
£ « (Ali etal., 2016) 5% Optimum contents from 0.9% to 9%
2 = (Cao etal., 2022) 9% reflect varied binder types and dispersion
< (Song, 2022) 0.9% efficiencies.

0,

E § (sgl:;:;:ﬁﬁghezz{i"zg ;:12] ASLO//Z Dosagg discrepa}nc_ies (4-8%) likely stem
= (Ameli et al,, 2020) 8% from binder variations.

o (Zhang et al,, 2016) 4% Studies reported 3-7% as optimal,

.E (Yunus et al.,, 2018) 7% influenced by material and method

(AlMistarehi et al., 2023) 3% variability.
o | (Galooyaketal., 2015) 1.2%

S 3s (Mostafa et al., 2016) 0.5% CNT dosage ranged from 0.5% to 2%,
29 highlighting sensitivity to type and
S E (Ismael et al., 2021) 2% dispersion quality.

These discrepancies in reported outcomes can be attributed to multiple factors. Key
contributors include differences in nanomaterial properties (particle size, morphology,
surface treatment, and purity), variation in binder grades and aggregate types, aggregate
gradation, and non-uniform mixing or dispersion techniques, which directly influence the
degree of particle interaction with the binder matrix. Additionally, differences in testing
methodologies and targeted performance metrics can result in non-comparable
performance trends across studies. Optimum dosage can be subjective and criterion-
dependent, as some consider cost-effectiveness. Testing protocols and performance
evaluation criteria vary widely, with some studies conducted in hot climates reporting
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higher optimum dosages, focusing on rutting resistance. Whereas cold-climate studies may
favor lower dosages to avoid embrittlement and cracking on which reduces fatigue life or
stiffness, and some try to find balanced performance, leading to non-comparable definitions
of (optimum dosage). Also, even when proper initial dispersion is achieved, Nanoparticles
may re-agglomerate during storage (Jenima et al., 2024). This effect can reduce the
effectiveness of Nanomaterials, causing inconsistencies between immediate laboratory
testing and delayed performance evaluation. Aging protocols and oxidative hardening also
influence reported results; for instance, a dosage that appears optimal under unaged
conditions may behave differently after short or long-term aging. Furthermore, differences
in test scale (binder-level DSR versus mixture-level wheel tracking) can produce conflicting
interpretations because improvements in binder rheology do not always directly translate
to mixture-level rutting resistance. Interaction with other additives, such as polymers,
hydrated lime, or fibers, can either enhance or interfere with the Nanomaterial’s effects,
further contributing to dosage variability. To reconcile these conflicting findings, future
research needs to adopt standardized protocols for Nanomaterial preparation and
performance evaluation. Establishing unified, consistent mixing procedures, dosage
optimization strategies, and performance testing protocols will enhance cross-study
comparability and reproducibility, supporting the practical implementation of
Nanotechnology in pavement engineering.

4. CONCLUSIONS

For the limited studies reviewed, the following conclusions and research implications can be

drawn:

1- Most nanomaterials studied tend to increase the binder’s stiffness and resistance to
rutting when added in controlled dosages.

2- Nanomaterial additives, including nano silica, alumina, titanium dioxide, and carbon
nanotubes, improve the stiffness and high-temperature rutting resistance of asphalt
binders. However, the effect of nano zinc oxide remains inconclusive.

3- There is a critical dosage threshold for each nanomaterial, beyond which the benefits
plateau or reverse, often leading to reduced performance and workability. This
underlines the importance of identifying material-specific optimal contents to balance
high-temperature performance and long-term durability.

4- Blending techniques and equipment significantly influence nanomaterial dispersion
quality and performance outcomes. While high shear mixing at 140-160°C and 3000-
8000 rpm was widely used, no standardized mixing protocol exists, limiting
reproducibility and field implementation.

5- Agglomeration remains a technical barrier, particularly for carbon nanotubes. Although
ultrasonic mixing has shown promise, cost-effective and scalable dispersion techniques
are still not clear.

6- There is a need for standardization for processing protocols to ensure repeatability,
scale-up potential, and field performance.

7- Field performance studies and life-cycle assessments remain sparse and are needed to
bridge the lab-to-field gap.
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Nomenclature

Symbol | Description Symbol | Description
AFM | Atomic Force Microscopy APA | Asphalt Pavement Analyzer
DSC | Differential Scanning Calorimetry DCT | Dynamic Creep Test

EDS | Energy Dispersive X-ray Spectroscope DPT | Double Punch Test
FTIR [Fourier Transform Infrared Spectroscopy DS Dynamic Stability

HSM | High Shear Mixer FN Flow Number

LSM | Low Shear Mixer ITS Indirect Tensile Strength

MM | Mechanical Mixer MF Marshall Flow

SEM | Scanning Electron Microscopy MS Marshall Stability

SM Shear Mixer NMS | Nominal Maximum Aggregate Size
SP Sonication Process PD Permanent Deformation

TEM | Transmission Electron Microscopy MR Resilient Modulus

USM | Ultrasonic Mixer RT Rutting Test

SCT Static Creep Test
SM Shape Memory
XRD X-ray Diffraction WTT | Wheel Tracking Test

UVS | UV-Vis-infrared Spectrophotometer
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