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ABSTRACT 

   Buckling and free vibration analysis of laminated rectangular plates with uniform and non 

uniform distributed in-plane compressive loadings along two opposite edges is performed using the 

Ritz method. Classical laminated plate theory is adopted. The static component of the applied in- 

plane loading are assumed to vary according to uniform, parabolic or linear distributions. Initially, 

the plate membrane problem is solved using the Ritz method; subsequently, using Hamilton’s 

variational principle, linear homogeneous algebraic equations in terms of unknown are generated, 

the set of linear algebraic equations can be solved as an Eigen-value problem. Buckling loads for 

laminated plates with different combinations of boundary conditions are obtained and their effect on 

the natural frequencies of plate are also investigated. The proposed method is verified by comparing 

results to data obtained by the finite element method (FEM) using ANSYS program, from 

experimental program and that obtained by other researchers. Analytical results are also presented 

to bring out the effects of aspect ratio, boundary conditions, lamination angle, and loading type on 

the critical buckling load and natural frequency. 
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 تحليل الإستقراريت و الذيناهيكت لصفائح هركبت طبقيت
                              تايه  حويزة فراس                                                                                أ.م.د. وداد ابراهين هجيذ                             

 قسم هندسة الميكانيك                                                                           قسم هندسة الميكانيك                            
 بغداد جامعة- الهندسة كلية                                                                  بغداد جامعة / الهندسة كلية                        

 
 الخلاصت

تحلٍل الاًبعاج و الاهتساز الحر لصفائح طبقٍة هستطٍلة هعرظة لأحوال ظاغطة هىزعةة شكة ل هٌةتأن أو أخري فً هذا البحث    

. الٌأرٌة ال لاسٍ ٍة للصةفائح الطبقٍةة  ةد ارتٍةرر ءخةرا  هةذٍ الد اسةة. Ritzغٍر هٌتأن على حافتٍي هتعاكستٍي شاستخدام طرٌقة 

أرتٍر الو ىى الساكي للأحوال الوسلطة ظوي الوستىي لٍ ىى هىزع شثلاثة أش ال: هٌتأن, رطً, و هٌحًٌ على ش ل  طع ه ةاف.. 

ٌةة هتداًسةة كةدوال لوداهٍةل شاسةتخدام لحةل هسةةلة الصةفٍحة و الحصةىل علةى هعةايلار رطٍةة خبر Ritzاستخدام طرٌقة شداٌةً, تن 

. تةن يٌدةاي حوةل الاًبعةاج للصةفائح الطبقٍةة و التةً Eigen-valueٌتن حةل هةذٍ الوعةايلار كوسةةلة  ; Hamiltonالوبدأ التغٍٍري لـ 

ح عديٌةة هستحصةلة ت ىى هثبتة شحدوي هختلفة و ي اسة تةثٍر هذٍ الاحوال على التريي الطبٍعً. تن التحقق هي الٌتائح شوقا ًتها شٌتةائ

و شٌتةائح هختبرٌةة تدرٌبٍةةة, و كةذلر هقا ًتهةا شةبعط الٌتةائح الوقدهةةة شىاسةطة شةاحثٍي ئرةرٌي. الٌتةةائح  ANSYSشاسةتخدام شرًةاهح 

التحلٍلٍة  دهت لد اسة تةثٍر ًسبة الطىل الى العرض, حدوي التثبٍت, زاوٌة التصفٍح, و ًىع التحوٍل علةى حوةل الاًبعةاج الحةرج و 

 لطبٍعً.التريي ا

 .Ritzالٌأرٌة ال لاسٍ ٍة للصفائح الطبقٍة, طرٌقة صفٍحة هتباٌٌة الخىاص, اهتساز, استقرا ٌة,  الكلواث الرئيسيت:
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1. INTRODUCTION 

   Thin plates of various shapes used in naval and aeronautical structures are often subjected to 

normal compressive and shearing loads acting in the middle plane of the plate (in-plane loads). 

Under certain conditions such loads can result in a plate buckling. In many cases, a failure of thin 

plate elements may be attributed to an elastic instability and not to the lack of their strength. 

Therefore, plate buckling analysis presents an integral part of the general analysis of a structure, 

Ventsel and Krauthammer, 2001. It is important to note that a plate leading from the stable to 

unstable configuration of equilibrium always passes through the neutral state of equilibrium, which 

thus can be considered as a bordering state between the stable and unstable configurations. In the 

mathematical formulation of elastic stability problems, neutral equilibrium is associated with the 

existence of bifurcation of the deformations. According to this formulation, the critical load is the 

smallest load at which both the flat equilibrium configuration of the plate and slightly deflected 

configuration are possible , Ventsel and Krauthammer, 2001. The composite structures whether 

used in civil, marine or aerospace are subjected to dynamic loads during their operation. Therefore, 

there exists a need for assessing the natural frequency. Therefore, for assessing the natural 

frequency of the laminated composite plate structures, the accurate mathematical model is required, 

Reddy, et al., 2013. There are many applications on buckling and stability of composite materials 

structures in the present industry such as ship hull, crown of the hat-stiffened panel, blended wing 

body (BWB) Aircraft. Many researchers have studied the stability of composite plates subjected to 

buckling loads, each one with his own perspective. Matsunaga, 2000, analyzed natural frequencies 

and buckling stresses of cross-ply laminated composite plates by taking into account the effects of 

shear deformation, thickness change and rotatory inertia. Leissa and Kang, 2002, investigated 

exact solutions for the free vibration and buckling of rectangular plates having two opposite edges 

simply supported and the other two were clamped, with the simply supported edges subjected to a 

linearly varying normal stress. Craciun and Simionescu–Panait, 2004, considered the internal and 

superficial instability of a prestressed fiber reinforced orthotropic elastic composite. Jana and 

Bhaskar (2007) examined the effect of a non-uniform distribution of the applied edge loads on their 

net critical value with in-plane lateral restraint. Amabili, et al., 2010, presented an investigation to 

laminate composite rectangular plates with different boundary conditions subjected to an external 

point force. Tang and Wang, 2011, investigated the buckling analysis of symmetrically laminated 

rectangular plates with parabolic distributed in-plane compressive loadings along two opposite 

edges using the Rayleigh–Ritz method. In the present work, the stability and buckling analysis of 

laminated composite plate under uniaxial uniform and non-uniform distributed load is performed. 

Classical laminated plate theory is adopted. Buckling loads for laminated plates with different 

combinations of boundary conditions are obtained and their effect on the natural frequencies of 

plate are also investigated. 

 

2. THEORY 

This study is based on classical laminated plate theory (CLPT) and used Hamiltons principles to 

derive the equation of motion. Ritz method is used to solve the principle of minimum potential 

energy as an Eigen-value problem to get the critical buckling load and natural frequency for 

different considerations (boundary conditions, aspect ratios, mechanical properties, lamination 

systems).   

 



Journal of Engineering Volume   21  August  2015 Number 8 
 

 
 

141 

 

2.1 Classical Laminated Plate Theory  
The simplest laminated plate theory is the classical laminated plate theory (or CLPT), which is an 

extension of the Kirchhoff (classical) plate theory to laminated composite plates. It is based on the 

displacement field, Reddy, 2004. 
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where (uo, vo, wo) are the displacement components along the (x, y, z) coordinate directions, 

respectively, of a point on the midplane (i.e., z = 0). The displacement field implies that straight 

lines normal to the xy-plane before deformation remain straight and normal to the midsurface after 

deformation. The Kirchhoff assumption neglects both transverse shear and transverse normal 

effects; i.e., deformation is due entirely to bending and in-plane stretching. 

 

2.2 Total Mechanical Energy 

The first law of thermodynamics or the principle of conservation of energy serves as the foundation 

for energy-based methods employed in the analysis of structures, including plates. The total 

mechanical energy (defined as the sum of its potential and kinetic energies) of a particle being acted 

on by only conservative forces is constant, Brown, 2007. 

 

                                                                                                                                  (2) 

 

where E is the total mechanical energy; Ec is the total kinetic energy; Π is total potential energy. 

The kinetic energy Ec is written as the following form taking in account the transverse deformation 

only on the vibration frequencies, Berthelot, 2010: 
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where   is the natural frequency of the plate vibrations and Io is the moment of inertia of the 

laminate at point (x, y) given below: 
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Where L is the total number of layers in the laminate; k denotes the layer number; h is the thickness 

of the laminate; zk and zk-1 are distances from the reference plane of the laminate to the two surfaces 
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of the kth ply Fig. 1 .The total potential energy,  , consists of the strain energy of internal forces, U, 

and the work of external forces, Ω, i.e. Reddy, 2004, 

                                                                                                                                               (5) 

 

The strain energy for an anisotropic material is written as, Kollar, and Springer, 2003: 
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where κx, κy, and κxy are the curvatures of the reference plane of the plate defined as: 
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[B] and [D] are the coupling and bending stiffness matrices, respectively. The elements of these 

matrices are (i, j = 1, 2, 6) given as functions of the transformed reduced stiffness matrix elements 
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 By using the relationships between the curvatures and the deflections, the expression of the strain 

energy for a symmetric layup is as follows: 
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The potential energy is related only to the in-plane distributed loads Nx applied uniaxially to the 

edges x=0, a, and is written as 
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Nx is assumed to be distributed load (uniform and not uniform) taking the forms as derived Fig. 2: 
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where No is the maximum intensity of the compressive force at the edges x=0 and x=a. 

 

2.3 Boundary Conditions 

   The approximate solution is sought in the usual form of a double series in separate variables 

Berthelot, 2010: 
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where M and N are the numbers of half-waves used in the x and y directions, respectively, of a mode 

shape. The functions Xm(x) and Yn(y) must constitute functional bases and are chosen so as to satisfy 

the boundary conditions along the edges x = 0, x = a, y = 0, and y = b. The coefficients Amn are 

determined by the stationarity conditions: 
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                             . To select an expression for the deflection wo, the 

functions Xm(x) and Yn(y) are selected to satisfy the geometrical boundary conditions for the studied 

cases: 

   a- For the case of a simply supported (SSSS) plate, the boundary conditions functions along the 

edges are as follows, Reddy, 2004: 
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   b- For the case of a built in (CCCC) plate, the functions of the transverse deflection wo can be 

taken as follows Berthelot, 2010:  
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where                  are constants given in Table (1). 

   c- In the case where two opposite edges are clamped along x=0 and x=a and the other two edges 

are simply supported along y=0 and y=b, that can be sampled as (CSCS), the transverse deflection 

wo functions are as follows Berthelot, 2010: 
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d- For the case where the edges along x=0 and x=a are simply supported and the edges along y=0 

and y=b are free that can be sampled as (SFSF), the functions that satisfy these boundary conditions 

can be taken as follows Berthelot, 2010: 
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 The values of    and    are reported in Table (1). 

   e- When the plate is taken clamped along two opposite edges where x=0 and x=a and free along 

the others where y=0 and y=b that can be sampled as (CFCF), and the functions will be combined 

as shown below Berthelot, 2010: 
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where                  are constants given in Table (1). 

 

2.4 Weak Forms 

   The Ritz method can be used to determine an approximate solution to the bending, buckling, and 

natural vibrations of symmetric laminates. The weak form or the statement of the principle of 

minimum total potential energy for buckling and natural vibration problems is given below, Reddy, 

2004: 
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where   denotes the frequency of natural vibration. For buckling analysis, all terms involving 

frequency of vibration are set to zero, while Nx is eliminated for natural vibration. 

 

2.4.1 Buckling of a simply supported plate  

   Consider a simply supported rectangular plate made of an orthotropic laminate, the material 

directions of which coincide with the plate directions. This plate is subjected to uniaxial uniform in-

plane compressive forces Nx along the edges x = 0 and x = a. The total potential energy can be 

written in the following expression: 
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The transverse displacement (wo) is written as mentioned in section 2.3 in the following form:  
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   Assume a plate of a symmetric layup subjected to uniaxial compression; for a simple case, 

consider m=n=1: 
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substituting wo Eq. (22) in Eq. (20) and performing the differentiation and integration processes, and 

then by using Eq. (19) , the following representation of the critical buckling load Ncr can be 

obtained: 
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when m and n are more than 1, the critical load Ncr is determined by solving Eigen value problem. 

For different arbitrary boundary conditions and m & n are greater than 1, the solution becomes more 

difficult and needs computer programming to determine the critical buckling load. 

 

2.4.2 Vibration of simply supported plate  

   For vibration problem, the total mechanical energy is written as:  
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   The natural frequancy    is obtained using the same procedure to be as below: 
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   In case of finding the natural frequency under the action of critical buckling force Ncr, the total 

mechanical energy is written as: 

 



Journal of Engineering Volume   21  August  2015 Number 8 
 

 
 

146 

 

  
 

 
∫∫ [   (

    
   

)

 

     
    
   

    
   

    (
    
   

)

 

     (
    
    

)

  

 

 

 

  (   
    
   

    
   

 

                              
    
   

     
    

    
    
   

     
    

)     (
   
  
)
 

    
   

 +                   (  ) 

 

   The natural frequency under that critical buckling load is found to be:  
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   The natural frequency given in Eq. (25) and Eq. (27) is the fundamental natural frequency where 

it occurs at m=n=1 Reddy, 2004. 

 

3. EXPERIMENTAL WORK  

   The experimental work is performed on a plate composed of Polyester as a matrix reinforced with 

E-Glass fibers. 

 

3.1 Mold Preparation and Mechanical Properties 

   Two flat wood panels are shaped as square panels of 35 cm*35 cm, with proper thickness to carry 

moderate loads; they are used as base and cover of the mold to prepare the desired models. One of 

the panels is used as the base where the materials are molded up, and the other one is the cover that 

transferes the pressure from up surface to the surface of the desired plate molded on the base. After 

weaving a layer of E-glass fibers, the catalyzed resin mixture with hardener must be applied to the 

fibers carefully to prevent distortion in them during the brushing process until the fibers saturate 

with the risen. Brushes and rollers are used to diffuse the mix over the fibers, and blades are used to 

take the air bubbles out of the laminate layers Fig. 3. Then the mold is left for a day in room 

temperature for curing after that we cut the model to the desired dimensions by a proper diamond 

impregnated wheel, cooled by running water. Before starting the experimental work, the fiber, 

matrix, and then composite densities are measured see Table (2). Then, the fiber volume fraction is 

measured experimentally to be 0.323. Tensile test is performed to find the composite mechanical 

properties. D3039 ASTM is used to formulate the tested specimens. The tensile test led to the 

mechanical properties of E-Glass/Polyester laminated composite plate listed in Table (2).  

 

3.2 Buckling Test 

   For buckling test, tow models of E-Glass/Polyester laminated plates are prepared. One of the 

models is (20 cm*20 cm*0.25 cm, [0/90]s) where the aspect ratio (a/b) is equal to 1, and the other 

one is (40 cm*20 cm*0.2 cm, [0/90]2) where       . The models are placed vertically between 

the testing device jaws, where the machine is of 100 KN capacity. The boundary conditions of the 

tested plates are simply supported along the top and bottom edges while the left and right edges are 

left free. The compression is exerted on the upper edge by moving stiff head with a speed of 2 

mm/min while the lower head is fixed. For determination of the buckling load, load-displacement 
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method is used Fig. 4. Analytical and Numerical results are determined for the tested models and 

are presented to verify the found experimental results which are listed in Table (3). 

 

3.3 Experimental Modal Analysis 
   For free vibration test, a model specimen is manufactured with dimensions of (30 cm*30 cm*0.37 

cm) and lamination of (0/90)2. The plate is placed in a structure Fig. 5.a, where the boundary 

conditions are simply supported along the four edges and the real tested area is (25 cm* 25 cm) 

where the edges of the structure are designed to prevent the plate from moving in z-direction. 

Calibration operation is performed before the test to ensure that the result from the test is right with 

less error. The plate is placed in the structure that is already manufactured for this purpose where 

the boundary conditions are kept to be simply supported. The oscilloscope is viewing the response 

of the specimen that is loaded with hit by an impact hammer which is connected to the oscilloscope 

and generates the input load to the specimen. The accelerometer is connected to the charge 

amplifier which will reduce the frequency noise by filters were built to limit the frequency range to 

the range of interest. The signal goes from the amplifier to the oscilloscope to analyze it and then 

present it as wave with tops that will give the frequency of the modes. The hit exerted by the impact 

hammer on the plate. The FFT solution generated Fig. 5.b captured from the oscilloscope monitor 

in purple color wave. The natural frequency    of the first mode taken from the wave is found to be 

0.0331 rad/sec. The non-dimensional natural frequency is calculated as below: 
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The analytical result is found to be  ̅        so that the error is 8.9%, and that is an accepted error 

if some conditions are taken in account such as movement of the structure, accuracy of the devices, 

and the molding process, etc..  Fig. 5.b shows the response wave of the plate in yellow color. 

 

4. RESULTS AND DISCUSSION  

   This study investigates mainly the effect of the critical buckling load that a composite materials 

plate can hold on its natural frequency. The results are determined analytically and numerically, and 

study the effect of boundary conditions, aspect ratio, lamination angle, and type of applied edge 

load. 

 

4.1 Investigation of Critical Buckling Load 

   The critical buckling load is studied under some considerations. The load is obtained as the non-

dimensional load ( ̅). 
  

a- Effect of Boundary Conditions 

   Assume a square symmetric cross-ply [0 90 0] laminate (E1/E2 =10, G12=0.6E2, 

   =0.25) is subjected to uniaxial edge loads. Table (4) shows the Nondimensionalized 

buckling load ( ̅  
    

 

    
) that the plate can hold. It shows that the clamped plate along 

two or four edges can hold buckling load more than plate with simply supported boundary 
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conditions, especially for the case where the plate is SFSF. In the case where the plate is 

simply supported or mixed with free edges, it is weak to hold large loads compared with 

clamped plates. From Table (4), it is observed that the critical buckling load for SFSF 

decreases by 80.28% compared with CCCC for uniformly loaded plate, 74.6% for 

parabolic load, and 86.28% for linear load. 

 

b- Effect of aspect ratio 

   Assume a plate (E1/E2 =10, G12=0.6E2,    =0.25) with various aspect ratios. From Fig. 6.a, it is 

observed that the Nondimensionalized buckling load ( ̅  
   

 

     
) for clamped plated decreases 

rapidly with the increase of the aspect ratio until the aspect ratio is 1.6 where  ̅ starts to increase 

again for the three types of loading; but for SFSF which is the weaker case, the plate buckles with 

close values of loads for larger aspect ratios than 1.6 with no increasing in buckling load. Hence, the 

increasing of aspect ratio decreases buckling load as verified with Reddy, 2004, Hu, and Abatan, 

2003. Fig. 6.b shows the Nondimensionalized buckling load ( ̅) for a simply supported plate 

laminated as [0/90]2 and subjected to uniform distributed load in x direction, the plot is compared 

with that presented by Reddy, 2004 as a verification. It shows that  ̅ decreases very slowly with 

increasing aspect ratio after a/b=1.3 especially when a/b=2.3 where the difference in the load starts 

to be very small, and observing that the buckling occurs rapidly with increasing aspect ratio. 

 

c- Effect of lamination angle 

   Assume a square plate (E1/E2 =40, G12=0.5E2,    =0.25) subjected to distributed loads in x 

direction and has the lamination [-θ/θ]2. From fig. 7, it is observed that the plot is symmetric about 

θ= 45
o
 and the buckling load is maximum for SSSS conditions (verified with Reddy, 2004). But for 

other boundary conditions, the load decreases with the increase of lamination angle.  

 

d- Effect of Loading Type 

   Table (5). shows dimensionless critical buckling load ( ̅  
    

 

    
) of a simply supported and 

clamped plates (E1/E2=10, G12=0.6E2,    =0.25, [0/90/0]) subjected to different loading types. It 

shows that uniformly loaded plate buckles earlier than the others, while the linearly loaded plate 

buckles with higher loads which means that the plate will retain more load than plate subjected to 

uniform load. The critical linear loads for the two boundary conditions are twice the critical uniform 

loads. 

 

4.2 Investigation of Natural Frequency of Free Vibration 

   The natural frequency is investigated with and without the action of buckling where the critical 

buckling load applied to the plate is precalculated from the previous section. Several considerations 

are presented to investigate the natural frequency which is calculated as dimensionless form 

( ̅  
   

 

 
√
  

  
). In case of buckling action, a ratio (d) of critical load is applied. The effect of the 

load ratio (d) is studied to present the behavior of the plate and its frequency.  

a- Effect of Boundary Conditions 
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   In this analysis, a square plate (E1/E2=10, G12=0.6E2,    =0.25, [0/90/0]) with various boundary 

conditions is taken to calculate the dimensionless natural frequency. From Table (6), it is found that 

the clamped plate vibrates with natural frequency higher than the other boundaries because of the 

high stiffness due to boundary. In other hand, the natural frequency for the SFSF plate is minimum 

due to low stiffness. The same investigation is repeated in Table (6) for the same plate subjected to 

parabolic load (load ratio d=0.5), and it is clear that the natural frequency is less than that found 

without loading.  

 

b- Effect of aspect ratio 

   The increasing aspect ratio decreases the natural frequency, till a/b=2, where the frequency starts 

to converge with higher aspect ratio. Fig. 8 shows this behavior for a [0/90]2 simply supported 

laminate (E1/E2=10, G12=0.6E2,    =0.25) with and without the action of buckling for parabolic 

load. It is obvious that natural frequency with buckling is lower than that without buckling. 

 

c- Effect of lamination angle 

   Assume a square plate (E1/E2=10, G12=0.6E2,    =0.25) but with different lamination systems and 

boundary conditions. From Table  (7), it is obvious that [45/-45]2 plate has the same frequency of 

[45 -45]s plate, but for SFSF plate under buckling action, it is greater in symmetric than 

unsymmetric laminates. For the other laminates, the frequency is equal for symmetric and 

unsymmetric in the cases of SSSS and CCCC conditions while it is unequal for the other conditions 

for the same laminate. It can be seen for the two cases that the natural frequency for symmetric 

laminates [0 90]s is greater than that for unsymmetric laminates [0/90]2. Oppositely; for laminates 

[60 30]s, the natural frequency is less than that for unsymmetrical laminates [60 30]2. 

 

d- Effect of loading type and ratio 

   The natural frequency under buckling is almost equal for different loading types in analytical 

solution, where the difference is very infinitesimal, while the frequency determined by numerical 

solution differs with very small error, but for case of parabolic load, the discrepancy is greater than 

other loading cases which may reach 7% for d=0.75 of clamped plate. Table (8) shows the 

dimensionless natural frequency of a laminated plate (E1/E2=10, G12=0.6E2,    =0.25, [0/90/0]) 

under buckling of different load functions. It is obvious that the natural frequency ( ̅  
   

 

  
√
   

   
) 

is inversely proportional to the load ratio, where the increasing in load ratio decreases the 

frequency. 

 

4.3 Verification Study for Buckling and Vibration of Laminated Plate 

   The numerical results are obtained using programming software (ANSYS) to verify the analytic 

derivation. The programming in ANSYS is stepped as follows: 

1- Choosing the element type (shell 281). 

2- The material properties as (E1/E2=10, G12=0.6E2,    =0.25). 

3- The layers angles and their thicknesses ([0/90/0]). 

4- Creating the model as a square plate (a/b=1).  

5- Meshing the area with different sizes for convergent result. 

6- Choosing the analysis type with prestress option. 
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7- Define the boundary conditions and loads. 

8- Solving the model. 

9- Reading and plotting the results. 

10- Finishing the solution. 

   Assume two simply supported and clamped plates subjected to different loads at edges x=0, a. 

Table (5) showed the numerical and analytical dimensionless critical buckling loads ( ̅  
    

 

    
). 

The comparison shows a good agreement between the analytical and numerical results, where the 

higher discrepancy is 4% for CCCC plate under parabolic load buckling. As investigated in section 

4.1, it is obvious that the buckling occurs earlier for uniform load than other loading types. 

   The Nondimensionalized natural frequency of the same plates found numerically for SSSS 

conditions to be ( ̅  
   

 

 
√
  

  
       ) while analytic result is ( ̅                     

     ). It is clear that a high agreement between the analytical and numerical results was obtained. 

The numerical natural frequencies of a plate under buckling action of different loads are listed in 

Table (9). The analytical result is ( ̅       ) for a simply supported plate subjected to the three 

load types. From the comparison between the results, high agreement is produced where the 

discrepancy does not exceed 2.8% for parabolic buckling case.  

 

5. CONCLUSIONS 

   The buckling and vibration results lead to the following conclusions: 

1- The number of half wavelengths affects the critical buckling load, where the increasing of aspect 

ratio requires larger number (half-waves number) to get more accurate results.  

2- The aspect ratio affects the buckling load and natural frequency reversely. The buckling load 

decreases rapidly with increasing aspect ratio till it is about 1.5, after that it takes constancy or close 

values for higher aspect ratios. The natural frequency, decreases with high percentage until aspect 

ratio a/b=2, then it takes the constancy for higher ratios. 

3- The boundary conditions affect the critical buckling load and fundamental natural frequency. 

Clamped edges conditions offer high stiffness, results in high critical buckling load and natural 

frequency. It is obvious for highly constrained edges, the stiffness increases which causes the plate 

to sustain high load and frequency. The results grade from higher to lower values as CCCC-CSCS-

CFCF-SSSS and then SFSF.  

4- The lamination angle has clear effect on the buckling load of the laminate, where the critical load 

of a simply supported plate is directly proportional to the angle under 45
o
 where the maximum load 

occurs, and then it is reversely proportional to the increasing in lamination angle. For other 

boundary conditions, the load is reversely proportional to the angle. 

5- The plate subjected to buckling linear load can hold larger load than other loading types; the 

uniform load buckles the plate earlier than others. The effect of load type is very small on the 

natural frequency. 

6- The natural frequency changes indirectly with buckling load ratio. 
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NOMENCLATURE 

Amn= coefficients in the assumed series for deflection, dimensionless. 

a, b= Plate length and width, m. 

Bij= coupling stiffness matrix elements, N. 

Dij= bending stiffness matrix elements, N.m. 

d= Load ratio, dimensionless. 

E= total mechanical energy, N.m. 

Ec= total kinetic energy, N.m .  

E1,E2= modulus of elasticity in 1 and 2 directions respectively, GPa. 

G12= shear modulus in plane 1-2, GPa. 

h= thickness of the laminate, m. 

Io= moment of inertia of the laminate at point (x, y), Kg/m
2
. 

k= layer number. 

κx, κy, κxy= curvatures of the reference plane of the plate, dimensionless. 

L= total number of layers in the laminate. 

M, N= upper limits of double series, dimensionless. 

m, n= numbers of half wavelengths, dimensionless. 

Nx= in-plane force in x direction, N/m. 

 ̅= nondimensionalized buckling load, dimensionless. 

   = critical buckling load, N/m. 

  = load intensity of distributed load, N/m. 

  = Load intensity of distributed load, N/m. 

Q ij= transformed reduced stiffness matrix elements, N/m. 

U= strain energy of internal forces, N.m. 

u, v, w= displacements in x, y, z directions, m. 

uo, vo, wo= displacement components along the (x, y, z ) coordinate directions, m. 

vf= fiber Volume fraction, dimensionless. 

Xm(x), Yn(y)= functional bases for boundary conditions, dimensionless. 

zk and zk-1= distances from the reference plane of the laminate to the two surfaces of the kth ply, m. 

   = constants of boundary conditions functions, dimensionless. 

δ= variation of a amount, dimensionless. 

= Angle of layer lamination, Degree. 

   = poisson ratio in plane 1-2, dimensionless. 

 = total potential energy, N.m. 

ρ= density of material, Kg/m
3
. 

        = densities of the composite, fiber, and matrix respectively, Kg/m
3. 

Ω= work of external forces, N.m. 



Journal of Engineering Volume   21  August  2015 Number 8 
 

 
 

153 

 

 = natural frequency of the plate vibrations, Hz.  

 ̅= nondimensionalized natural frequency, dimensionless. 

 

 
Figure 1. Distances from the reference plane. 

 

 

 
Figure 2. Plates subjected to distributed loads. 
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Figure 3. Specimen molding process 

 

 

 

 

 
Figure 4. Load displacement curves of the Buckled plates. 
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(a)                                                                           (b) 

Figure 5. a)Free vibration test setup; (1) Power supply, (2) Impact hammar, (3) Testing structure, 

(4) weights, (5) Tested plate, (6) Accelerometer, (7) Charge amplifier for Accelerometer, (8) 

Oscilloscope; b) Generated response and FFT wave.  

 

 
                                                (a)                                                                                   (b) 

Figure 6. Nondimensionalized buckling load ( ̅) versus aspect ratio for: a) CCCC and SFSF; b) 

SSSS orthotropic plates [0/90]2. 

 

 

Figure 7. Nondimensionalized buckling load ( ̅  
    

 

    
) versus lamination angle (θ) of 

antisymmetric angle-ply square laminates under uniaxial uniform compression. 

 

ω11 
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Figure 8. Nondimensionalized fundamental frequency ( ̅  
   

 

  
√
   

   
) versus aspect ratio of SSSS 

symmetric laminates subjected to parabolic load. 
 

Table 1. Values of the constants  i and  i of the plate functions in the case of clamped and free ends 

of the plate. 

m=n=i λi γi 

Clamped Free Clamped Free 
1 4.7300 0 0.9825  

2 7.8532 0 1.0007  

3 10.9956 4.730 0.9999 –0.9825 

4 14.1371 7.853 1.0000 –1.0008 

5 17.2787 10.996 0.9999 –1.000 

6 20.4203 14.137 1.0000 –1.000 

7 23.5619 17.279 1.0000 –1.000 

8 26.7035 20.420 1.0000 –1.000 
 

 

Table 2. Experimental mechanical properties of E-glass/Polyester composite plate. 

Physical and Mechanical Property Obtained Result 

  (    ⁄ ) 2360  

  (    ⁄ ) 970  

  (    ⁄ ) 1369  
E1(GPa) 26.285 

E2(GPa) 5.882 

G12(GPa) 2.213 

 12 0.25 

Vf 0.323 
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Table 3. Experimental non-dimensional critical buckling loads 
    

 

    
 of the tested plates. 

Plate Geometry (cm) 20×20×0.25 40×20×0.2 

Aspect Ratio a/b 1 2 

Angle Ply Orientations [0/90]s [0/90]2 

Experimental Result 3.097 0.538 

Analytical Result 3.398 0.575 

Discrepancy% 8.8 6.4 

 

Table 4. Nondimensionalized buckling load ( ̅) of a square plate laminated as (0/90/0) and 

subjected to uniaxial edge loads (The results between the brackets represent the numerical results 

for comparison. The subscript refers to (m=n)). 

Type of applied 

load 

Type of boundary conditions 

SSSS1 CCCC1 CSCS1 SFSF3 CFCF1 

Uniform load 11.491 

(11.559) 

40.507 

(40.777) 

36.255 

(36.276) 

7.991 

(8.018) 

32.982 

(32.968) 

Parabolic load 13.219 

(13.694) 

44.395 

(46.207) 

41.705 

(42.83) 

11.279 

(11.638) 

49.473 

(46.462) 

Linear load 22.983 

(22.838) 

81.015 

(80.11) 

72.510 

(70.481) 

11.120 

(11.327) 

65.964 

(64.391) 

 

Table 5. Nondimensionalized buckling load ( ̅) of a SSSS and CCCC square plate laminated as 

(0/90/0) and subjected to uniaxial edge loads. 

Type of 

Load 

Boundary Conditions 

SSSS CCCC 

Analytical 

Result 

Numerical 

Result 

discrepancy  Analytical 

Result 

Numerical 

Result 

discrepancy  

Uniform 11.491
 

11.6 0.9% 40.507 40.8 0.7% 

Parabolic 13.219 13.7 3.6% 44.395 46.2 4% 

Linear 22.983 22.8 0.7% 81.015 80.1 1.1% 

 

Table 6. Nondimensionalized fundamental frequency of a symmetric cross-ply square plate of 

various boundary conditions (the results between the brackets refer to the Nondimensionalized 

fundamental frequency of the same plate subjected to parabolic load of load ratio d=0.5). 

Boundary 

Conditions 

Analytical 

results 

Numerical 

results 

Discrepancy%  Other Researches 

SSSS 10.649 (7.530)
 

10.645 (7.613) 0.03 (1.1) 10.650[Reference 1] 

CCCC 22.323 (15.785)
 

 ــــــــــــــــــــــ (2.8) 0.05 (16.237) 22.310

CSCS 21.119 (14.933)
 

21.115 (15.256) 0.01 (2.1) 21.118[Reference 1] 

SFSF 8.886 (5.973)
 

 ــــــــــــــــــــ (3.3) 0.1 (5.774) 8.875
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Table 7. Nondimensionalized fundamental frequency (
   

 

  
√
  

   
) of a square plate of various 

laminations and boundary conditions (d=0.5 for buckled plate). 

Angle Ply  Type of boundary conditions 

SSSS CCCC CSCS SFSF CFCF 

 

[0 90]s 

Without Buckling 2.556 

(2.555) 

5.358 

(5.312) 

4.914 

(4.913) 

1.988 

(2.041) 

4.632 

(4.630) 

With Buckling 1.807 

(1.755) 

3.788 

(3.603) 

3.475 

(3.569) 

1.688 

(1.631) 

3.275 

(3.095) 

 

[0 90 0 90] 

Without Buckling 1.588 

 (1.601) 

3.330  

(3.398) 

 2.606 

(2.586) 

0.956 

(1.002) 

2.266 

(2.317) 

With Buckling 1.123 

(1.146) 

2.355 

(2.237) 

1.842 

(1.766) 

0.801 

(0.950) 

1.602 

(1.577) 

 

[60 30]s  

Without Buckling 1.877 

 (1.815) 

3.242 

 (3.101) 

2.391 

(2.287) 

0.781 

(0.711) 

1.441 

(1.491) 

With Buckling 1.327 

(1.397) 

2.292 

(2.131) 

1.691 

(1733) 

0.846 

(0.873) 

1.019 

(0.971) 

 

[60 30 60 30] 

Without Buckling 2.240 

(2.318) 

3.869 

(3.633) 

3.146 

(3.358) 

0.869 

(0.912) 

2.266 

(2.199) 

With Buckling 1.584 

(1.501) 

2.735 

(2.613) 

2.225 

(2.399) 

1.010 

(1.138) 

1.602 

(1.423) 

 

[45 -45]s 

Without Buckling 2.517 

(2.728) 

4.125 

(4.492) 

3.397 

(3.152) 

 1.070  

(0.910) 

2.267 

(1.986) 

With Buckling 1.780 

(1.694) 

2.916 

(3.089) 

2.402 

(2.495) 

1.187 

(1.036) 

1.602 

(1.554) 

 

[45 -45 45 -45] 

Without Buckling 2.517 

(2.311) 

4.125 

(4.016) 

3.397 

(3.248) 

0.486  

 0.441) 

2.267 

(2.252) 

With Buckling 1.780 

(1.701) 

2.916 

(3.052) 

2.402 

(2.258) 

0.711 

(0.730) 

1.602 

(1.523) 
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Table 8. Dimensionless natural frequency of a laminated plate under buckling of different load 

functions and ratios (superscripts refer to the first letter of the load type). 

 

d 

Type of  boundary condition 

SSSS CCCC CSCS SFSF CFCF 

0 10.649 

(10.645) 

22.323 

(22.310) 

21.119 

(21.115) 

8.886 

(8.875) 

20.143 

(20.133) 

 

0.25 

9.223 

(9.231)
U 

(9.275)
P

 

(9.218)
L

 

19.332 

(19.353)
U 

(19.530)
P

 

(19.305)
L

 

18.290 

(18.352)
U 

(18.451)
P

 

(18.259)
L

 

7.443 

(7.403)
U 

(7.322)
P

 

(7.501)
L
 

17.444 

(17.121)
U 

(17.988)
P

 

(17.673)
L
 

 

0.5 

7.530 

(7.544)
U

 

(7.613)
P 

(7.522)
L 

15.785 

(15.785)
U 

(16.219)
P 

(15.638)
L 

14.933 

(15.040)
U 

(15.256)
P 

(14.947)
L 

5.973 

(5.877)
U 

(6.212)
P

 

(5.834)
L
 

14.243 

(14.405)
U 

(13.899)
P

 

(14.011)
L
 

 

0.75 

5.324 

(5.379)
U

 

(5.583)
P

 

(5.378)
L

 

11.161 

(11.013)
U 

(11.948)
P

 

(11.282)
L

 

10.559 

(10.66)
U 

(11.115)
P

 

(10.685)
L

 

3.995 

(3.910)
U 

(4.197)
P

 

(3.980)
L
 

10.071 

(9.901)
U 

(10.100)
P

 

(10.227)
L
 

 

 

Table 9. Nondimensionalized natural frequency ( ̅) of a SSSS and CCCC square plate laminated as 

(0/90/0) and subjected to uniaxial edge loads. 

Type of Load SSSS Discrepancy  CCCC Discrepancy  

No Load 10.643 0.01% 22.310 0.05% 

Uniform Load 7.546 0.2% 15.839 0.3% 

Parabolic load 7.621 1.2% 16.235 2.8% 

 


