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ABSTRACT    

Scheduling problems are central to operations research because of their direct impact on 

productivity, resource utilization, and system responsiveness. This study addresses a novel 
tri-criteria and tri-objective model that provides an innovative framework for analyzing 
complex single-machine scheduling problems of minimizing total completion time (∑𝐶𝑗), 

total earliness (∑𝐸𝑗), and maximum lateness (𝐿𝑚𝑎𝑥), as well as their aggregated form.  The 

problem remains computationally challenging for large job sizes (up to n = 8000). To 
evaluate solution performance, three independent approaches were employed: the Branch 
and Bound (BAB) algorithm and two local search methods, Tabu Search and the Bees 
Algorithm. While BAB provides precise answers for small cases (n ≤ 19) with low AAE, its 
computational time increases significantly with problem size. Tabu Search balances solution 
quality and computational effort to produce near-optimal solutions with modest execution 
times for medium and large-scale examples (n = 500–8000). While the Bees Algorithm may 
not match the precision of exact approaches, it offers faster computation and produces a 
variety of solution patterns. These features make it especially appropriate for large-scale 
problems or situations with restricted computational time. Moreover, this study offers 
practical insights to support the selection of suitable solution techniques, taking into account 
problem size, available computational resources, and the required balance between 
efficiency and solution quality. 
 

Keywords: Branch and bound, Bees algorithm, Tabu search, Local search, Single-machine 
scheduling. 
 

1. INTRODUCTION 
 

Multi-objective and multi-criteria scheduling problems (MSPs) are essential topics in 
operations research because they help improve scheduling efficiency, reduce operational 
costs, and better utilize resources (Luo, 2023; Zhang, 2025; Costa et al., 2025; Abbas and 
Ghayyib, 2024). Single-Machine Scheduling Problems (SMSPs) are among the most 
important models used in the real world, including service systems, computing 

http://www.jcoeng.edu.iq/
https://doi.org/10.31026/j.eng.2026.02.11
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8525-0329
mailto:zainab.wali1103a@sc.uobaghdad.edu.iq
https://orcid.org/0000-0001-8758-6195
mailto:fadhaa.sameer@sc.uobaghdad.edu.iq


Journal of Engineering, 2026, 32(2) 
 

Z. W. Murad and F. O. Sameer 

 

169 

environments, and industrial operations (Pinedo, 2008; Abdulqader and Ali, 2023; 
Hassan et al., 2022). As scheduling environments become more complex, with changing 
conditions, diverse constraints, and conflicting operational goals, traditional single-objective 
models are becoming less useful for solving real-world problems (Motair, 2017; Chachan 
and Hameed, 2019; Ali and Jawad, 2020; Sameer, 2023). 
Recent studies have highlighted a clear research gap in the single-machine scheduling 
literature regarding models formulated with tri-criteria and tri-objective models, 
particularly in terms of applying and comparing exact and local search solution approaches 
(Ibrahim and Ali, 2022; Yousif et al., 2023; Neamah and Kalaf, 2024a; Neamah and 
Kalaf, 2024b). This gap motivates the present study, which addresses this limitation by 
proposing two novel scheduling formulations, namely TC-SCSELm and TO-SCSELm. In the 
TC-SCSELm model, the three objectives are total completion time (∑𝐶𝑗), total earliness (∑𝐸𝑗), 

and maximum lateness (𝐿𝑚𝑎𝑥) are treated independently, whereas the TO-SCSELm model 
aggregates these objectives into a single scalarised objective function( 𝐹𝑇𝑂 in Equation 2) to 
enable effective comparison. The two models are NP-hard. The objectives are considered 
without predefined weights to ensure a fair evaluation of all criteria. 
This study examines three methods for multi-criteria scheduling due to their computational 
complexity. The exact Branch-and-Bound (BAB) provides optimal solutions for small 
instances (Ahmed and Ali, 2022; Abbass, 2019). Two independent local search algorithms 
are also considered: TLSM-A, using memory-based strategies to escape local optima 
(Glover, 1989), and BLSM-A, inspired by swarm foraging, balancing global exploration with 
local exploitation (Pham et al., 2009; Aurasopon et al., 2025). All methods were applied 
in their original forms, allowing a fair comparison of solution quality, runtime, and stability 
across problem sizes. 

2. MACHINE SCHEDULING PROBLEMS CONCEPTS 
 

In this study, we focus on a single-machine tri-criteria and tri-objective problem. The 
following notations: 
𝑝𝑗: Represents the processing time required to complete job 𝑗. 

𝑑𝑗   :Indicates the due date assigned to job 𝑗.  

𝑠𝑗: Slack time of job j, s.t. 𝑠𝑗  = 𝑑𝑗  − 𝑝𝑗  . 

𝐶𝑗: The completion time of job j, such that 𝐶𝑗 = ∑𝑘=1
𝑗

𝑝𝑘. 

∑𝐶𝑗: Total completion time. 

𝐿𝑗: Lateness time for each j, s.t.  𝐿𝑗  = 𝐶𝑗  − 𝑑𝑗 . 

𝐿𝑚𝑎𝑥: Maximum of lateness time, s.t. 𝐿𝑚𝑎𝑥= 𝑚𝑎𝑥{𝐿𝑗}. 

𝐸𝑗: Earliest time for each j, such that  𝐸𝑗  = 𝑚𝑎𝑥 {-𝐿𝑗 , 0}. 

∑𝐸𝑗  : Total earliness time. 

• EDD Rule (Khusna and Prabowo, 2025, Peng et al., 2021; Dos Santos et al., 2024): The 
1// 𝐿𝑚𝑎𝑥  𝑇ℎ𝑒 problem is solved by sequencing jobs according to the earliest-due-date 
(EDD) rule, arranging them in ascending order of their due dates  𝑑𝑗.  

• SPT Rule (Jamalabadi and Schwiegelshohn, 2023; Yang et al., 2025): The 1// Σ𝐶𝑗   
The 

scheduling problem can be optimally solved by arranging the jobs in ascending order of 
their processing time, following the Shortest Processing Time (SPT) rule.  
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3. TRIPLE-CRITERION and TRIPLE-OBJECTIVE MATHEMATICAL FORMULATION 
 

This section presents the mathematical model of the Triple-Criteria Single-Machine 
Scheduling Problem (TC-SCSELm) and it scalarized Triple-Objective formulation (TO-
SCSELm). The goal is to minimize three conflicting objectives simultaneously: total 
completion time (∑𝐶𝑗), total earliness (∑𝐸𝑗) and maximum lateness (𝐿𝑚𝑎𝑥). 
 

𝐹𝑇𝐶 = 𝑚𝑖𝑛(∑𝐶𝑗 , ∑𝐸𝑗 , 𝐿𝑚𝑎𝑥)                            
𝑠. 𝑡.                                                                        
𝐶1 = 𝑝𝜎(1)                                                           

𝐶𝑗 = 𝐶𝑗−1 + 𝑝𝜎(𝑗),                         𝑗 = 2,3, , , 𝑛

𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗 ,                                 𝑗 = 1,2, , , 𝑛

𝐸𝑗 ≥ 𝐿𝑗,                                                               𝑗 = 1,2, , , 𝑛

𝐸𝑗  ≥ 0                                                                  

𝐶𝑗 ≥ 0                                                                    
                                       }

 
 
 
 

 
 
 
 

                                                                                        (1) 

The model described by Eq. (1) is strongly NP-hard for several reasons. First, the number of 
possible job sequences grows factorially with the number of jobs n, leading to a rapidly 
expanding solution space. Second, adding the early objective (∑𝐸𝑗) introduces another layer 

of combinations, making the problem even harder to solve. The scalarized objective function 
in Eq. (2) combines the three objectives into one measure of how well they do. In this 
formulation, the objectives are not given any weight. Instead, a simple summation is used to 
combine them, not a weighted sum. 

𝐹𝑇𝑂 = 𝑚𝑖𝑛(∑𝐶𝑗 + ∑𝐸𝑗 + 𝐿𝑚𝑎𝑥)                                 
𝑠. 𝑡.                                                                                    
𝐶1 = 𝑝𝜎(1)                                                                         

𝐶𝑗 = 𝐶𝑗−1 + 𝑝𝜎(𝑗),                                     𝑗 = 2,3, , , 𝑛

𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗 ,                                              𝑗 = 1,2, , , 𝑛

𝐸𝑗 ≥ 𝐿𝑗,                                                                                𝑗 = 1,2, , , 𝑛

𝐸𝑗  ≥ 0                                                                               

  𝐶𝑗 ≥ 0                                                                                  }
 
 
 
 

 
 
 
 

                                                                            (2)                                                                                                                              

4. PROPOSED SOLUTION TECHNIQUES FOR TC-SCSELM AND TO-SCSELM MODELS  
 

Since both the TC-SCSELm and TO-SCSELm models are computationally intensive. This 
section presents three solution methods; each applied to both models separately. To ensure 
a fair comparison of the performance of the TC-SCSELm and TO-SCSELm models across 
varying problem sizes, all three algorithms are executed independently on each model. 
Comprehensive explanations of each method are presented below. 
 
4.1 Branch and Bound (BAB) 
 

The Branch and Bound (BAB) algorithm is a classical, exact optimization method widely used 
in scheduling problems (Ahmed and Ali, 2022; Abbass, 2019). It systematically explores 
the solution space by dividing it into subproblems and eliminating non-promising branches 
using bounding rules. In the TC-SCSELm model, BAB optimizes each objective separately to 

produce Pareto-efficient schedules. For TO-SCSELm, it minimizes a single aggregated objective, 
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𝐹𝑇𝑂. Although BAB provides optimal solutions, its high computational cost confines its use to 

small instances, serving mainly as a benchmark for other methods 

Algorithm 1: Branch and Bound (BAB) for TC-SCSELm and TO-SCSELm 
 

𝜎: Partial or complete job sequence. 
𝛿: Set of non-dominated sequences (Pareto-optimal solutions). 
LB (𝜎): Lower bound of sequence 𝜎. 
UB (𝜎): Upper bound of sequence 𝜎. 
 
Procedure: 
Step 1: Input 𝑝𝑗 , 𝑑𝑗𝑛, for 𝑗 = 1,2, … , 𝑛,  δ = ∅. 

Step 2: For each partial sequence σ: 
      a. Compute 𝐹𝑇𝐶(𝜎) = (∑𝐶𝑗(𝜎) , ∑𝐸𝑗(𝜎) , 𝐿𝑚𝑎𝑥(𝜎)). 

      b. Estimate Upper Bound (UB): 
     - If the model is TC-SCSELm, 𝑈𝐵𝑇𝐶= 𝐹𝑇𝐶(𝜎) 
     - If the model is TO-SCSELm, generate the SPT sequence and compute 
        𝑈𝐵𝑇𝑂 = 𝐹𝑇𝑂(𝜎) = (∑𝐶𝑗(𝜎) + ∑𝐸𝑗(𝜎) + 𝐿𝑚𝑎𝑥(𝜎)), 

Step 3: For each node and partial sequence 𝜎; 
          a. Compute LB (𝜎) = Cost of scheduled jobs + Cost of remaining jobs (SPT rule). 
          b. For TO-SCSELm: include both sequenced and un-sequenced jobs. 
Step 4: Pruning: If LB (𝜎) ≥ UB (𝜎): Discard branch # Remove non-promising sequences. 
Step 5: Terminal nodes: If σ is complete and non-dominated:  Add σ to 𝛿 # Store non-
dominated solution. Remove dominated solutions from 𝛿 # Keep only the best solutions. 
Step 6: Continue steps 2–4 until no active nodes remain. 
Step 7: Output  𝛿. 
 
4.2 Bees Algorithm  
 

Nature-inspired metaheuristics efficiently address complex scheduling problems by 
adapting search strategies. The Bees Algorithm (Pham et al., 2005) imitates honeybee 
foraging, combining global exploration by scout bees with local search by workers to solve 
combinatorial challenges (Li et al., 2011; Huang et al., 2025). In this study, the Bees Local 
Search Method Algorithm (BLSM-A) is applied to single-machine scheduling with three 
objectives: total completion time (∑𝐶𝑗), total earliness (∑𝐸𝑗), and maximum lateness (𝐿𝑚𝑎𝑥). 

Each feasible solution represents a complete job sequence, evaluated within the 
optimization framework. 
• For the TC-SCSELm (multi-objective) model, solutions are compared using Pareto 
dominance, and non-dominated schedules are retained.  
• The TO-SCSELm (aggregated) model combines objectives into a scalar fitness function to 
guide schedule improvement. 
 

BLSM-A drives bees to search more intensively for possible solutions, while scout bees 
explore new areas to maintain diversity. Adjusted algorithm parameters balance 
convergence speed and local optima avoidance. Multi-objective and aggregated models can 
be searched for more efficiently using the update technique, thereby improving solution 
quality. 
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Algorithm 2: Bees Local Search Method Algorithm (BLSM-A) 
Input: 
1. Number of bees B. 
2. Number of elite sites E. 
3. Number of selected sites (S). 
4. Neighbourhood size NS. 
5. Maximum iterations (MaxIter) 
6. Job set 𝑗 = {1,2,…,𝑛} with processing times 𝑝𝑗  and deadlines 𝑑𝑗 . 

Output: Best-found schedule σ*. 
Procedure: 
Step 1: Start with B random job sequences. 
Step 2: For each solution σ: 
         a. Evaluate 𝐹𝑇𝐶(𝜎)or 𝐹𝑇𝑂(𝜎) based on the model. 
Step 3: Identify elite sites (E) and selected sites (S) based on: 
          a. 𝐹𝑇𝐶(𝜎)in multi-objective mode 
          b. 𝐹𝑇𝑂(𝜎) in scalar mode 
Step 4: Set  𝜎∗As the top solution in the original population. 
Step 5: For iter = 1 to MaxIter do: 
          a. Elite Site Search: For each elite site: 
          i. Recruit multiple bees 
         ii. Explore the neighborhood of size NS. 
         iii. Evaluate the solution using 𝐹𝑇𝐶(𝜎)or 𝐹𝑇𝑂(𝜎). 
         iv. Retain the best solution at each elite site. 
         b. Selected Site Search: For each selected site: 
         i. Recruit fewer bees. 
        ii. Explore a reduced neighborhood. 
        iii. Evaluate the solution using 𝐹𝑇𝐶(𝜎)or 𝐹𝑇𝑂(𝜎). 
        iv. Retain the best solution at the chosen site. 
       c. Scout Bee Search: Maintain population diversity by randomly searching the 
       surviving bees. 
      d. Update Global Best:  Change 𝜎∗ To the new solution, if it is superior 𝜎. 
Step 6: End  
Step 7: Return 𝜎∗. 
 
4.3 Tabu Search  
 

The Tabu Local Search Method Algorithm (TLSM-A), derived from Fred Glover’s Tabu 
Search, is widely employed in combinatorial optimization and has proven effective in 
scheduling, particularly in flexible job-shop and complex production settings (Fekih et al., 
2020; Zhang, 2025; Xie et al., 2019; Hajibabaei and Behnamian, 2021; Dabah et al., 
2019). This research utilizes TLSM-A to address a single-machine scheduling problem with 
three objectives: total completion time (∑𝐶𝑗), total earliness (∑𝐸𝑗), and maximum lateness 

(𝐿𝑚𝑎𝑥). The algorithm has two ways to work:  
 
1. Multi-objective (TC-SCSELm): Each goal is optimized on its own, and Pareto dominance is 
used to find solutions that aren't dominated and weigh the pros and cons.  
2. Aggregated (TO-SCSELm): All goals are put together into one scalar function to optimize 
everything at once. 



Journal of Engineering, 2026, 32(2) 
 

Z. W. Murad and F. O. Sameer 

 

173 

Algorithm 3: TLSM-A (Tabu Local Search Algorithm) 
𝜎0: Initial job sequence. 
𝜎: Current solution. 
𝜎*: The optimal solution discovered during the inquiry. 
𝜎': A potential solution based on 𝜎 (neighborhood). 
Tabu List: Memory structure to avoid revisiting recent solutions. 
Procedure: 
Step 1: Input initial solution σ₀, Tabu tenure T, Maximum iterations MaxIter 
Step 2: Initialize the current solution: Assign 𝜎 = 𝜎0. 
Step 3: Assess the goal function (F (𝜎) either 𝐹𝑇𝐶(𝜎) or 𝐹𝑇𝑂(𝜎)) and designate σ∗ to the 
present solution 𝜎. 
Step 4: Initialize the Tabu List as empty 
Step 5: For iteration = 1 to MaxIter, do: 
      a. Generate the neighborhood N(𝜎) (e.g., via adjacent job swaps) 
      b. For each candidate σ' ∈ N(𝜎), where  𝜎' is a neighboring solution generated from 
         the current solution 𝜎. 
     c. If σ' is not in TabuList OR F(𝜎') is better than F(𝜎*), mark 𝜎' as admissible 
        d. Select the best admissible solution and assign it to 𝜎 best 
        e. Update the current solution: set σ equal to 𝜎 _best 
        g. If F(𝜎) is better than F(𝜎*), update the best solution: set 𝜎*equal to 𝜎 
        h. Update the TabuList with 𝜎, removing expired entries 
Step 6: End. 
Step 7: Return (Best-found solution 𝜎*) 

5. APPLICATION OF THE PROPOSED SOLUTION TECHNIQUES TO TC-SCSELM AND TO-
SCSELM MODELS 
 

This part assesses how well the proposed solution techniques perform by reporting the 
average execution time (in seconds) across all test cases. Execution time is a key 
performance indicator because it directly shows how much work, efficiency, and scalability 
the algorithms have as the problem size grows. Given the combinatorial nature of the TC-
SCSELm and TO-SCSELm models, runtime represents a consistent and practically 
meaningful basis for comparing the exact BAB method with the two local search–based 
procedures (BLSM-A and TLSM-A). For every test case, the MSP generates a random 
processing time 𝑝𝑗  and 𝑑𝑗  s.t., 𝑝𝑗  ∈ [1,10] and  

𝑑𝑗  ∈

{
 
 

 
 
[1,30],         1 ≤ 𝑛 ≤ 29
[1,40],      30 ≤ 𝑛 ≤ 99 
[1,50],   100 ≤ 𝑛 ≤ 999
[1,70],            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                                          

subject to condition 𝑑𝑗  ≥ 𝑝𝑗 , for 𝑗 = 1, 2, …, 𝑛. The generated instances simulate real-world 

single-machine scheduling scenarios, such as manufacturing lines or service operations, 
ensuring practical relevance. All computational experiments were executed on a 
workstation equipped with a 13th Gen Intel® Core™ i9-13900HX CPU (2.20 GHz) and 32 GB 
of RAM, operating on Windows 11. To guarantee reliability and stability, each problem 
instance of size n was executed five times independently, using the same settings each time. 
The average of these runs reduces the impact of random variability common in local search 
processes, yielding more accurate performance measures. 
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The average runtime across all experiments ranged from R to 1800 seconds, depending on 
the instance's complexity. This shows that each algorithm can be used in real life: BAB works 
best for small cases (n ≤ 19), TLSM-A finds the right balance between accuracy and cost for 
medium and large instances (up to n = 8000), and BLSM-A works quickly with acceptable 
solution quality for significant, time-sensitive problems. The following short forms are used 
in this part: 
ANES: The average number of solutions that work.  
AEE: Average Absolute Error. 
AT/S: The average number of seconds. 
R: A real number between 0 and 1 that shows minimal runtime values or fractional averages. 
 
6. COMPARATIVE ANALYSIS OF BAB, BEES, AND TABU ALGORITHMS FOR MULTI-
OBJECTIVE SCHEDULING  
 

This section compares three algorithms: Branch and Bound (BAB), Tabu Local Search 
(TLSM-A), and Bees Local Search (BLSM-A), using experimental data reported in Tables 1 

to 4. The analysis divides problems into three sizes: small (n= 10-19), medium, and large (n 
= 500-8000). It evaluates solution quality (𝐹𝑇𝐶  and 𝐹𝑇𝑂), absolute average error (AAE), and 
computing efficiency (AT/S).  

6.1 Small Instances (n=10–19) 
 

In Tables 1 and 3, the following can be seen: 
• Solution Quality: BAB achieves the lowest aggregated objective value (572.9), 

confirming it as the most accurate and reliable method.  TLSM-A provides near-optimal 
results (𝐹𝑇𝑂=617.7), while BLSM-A shows slightly higher values (𝐹𝑇𝑂=636.7). 

• AAE: TLSM-A generally has lower AAE than BLSM-A (44.8 vs. 63.8), indicating higher 
accuracy. 

• Computational Efficiency: BAB run faster than TLSM-A and BLSM-A, which remains 
costly even after normalization (average AT/S = 72.7). 

Implication: BAB is the best choice for small instances in terms of accuracy; TLSM-A balances 
accuracy and runtime, while BLSM-A is suitable for faster but less precise solutions. 
 
6.2 Medium to Large Instances (n=500–8000) 
 

In Tables 2 and 4 we can see the following:  
• Solution Quality:  TLSM-A outperforms BLSM-A in combined objectives (average  

𝐹𝑇𝑂=64,007,879), offering better overall precision. 
• ANES: TLSM-A maintains lower ANE than BLSM-A (2.8 vs. 3.6), showing more accurate 

solutions. 
• Computational Efficiency: BLSM-A runs significantly faster (AT/S = 38 vs. 1210 for 

TLSM-A at n=8000), making it preferable for rapid computations. 
Implication: TLSM-A is best for high-accuracy answers, and BLSM-A is best for fast, 
approximate outcomes. 
Key Insights: 
• The BAB method works best for small cases (n≤19), but it doesn't work well for larger ones.  
• TLSM-A strikes a good balance between accuracy and runtime for all sizes.  
• In scenarios with a lot of objects or big ones, BLSM-A is faster but less accurate.  
• AAE reveals that TLSM-A is usually more accurate than BLSM-A. 
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Table 1. The comparison results between the (BLSM-A, TLSM-A) and BAB methods 

Remark (1). In Table 1, AT/S for BLSM-A and TLSM-A is equal to R for 𝑛 = 10: 19.       
      

Table 2. Results of the comparison of (BLSM-A and TLSM-A) for 𝑛 = 500:8000. 
 

Ex BLSM-A TLSM-A 
N AV( 𝑭𝑻𝑪  ) AT/S ANES AV( 𝑭𝑻𝑪) AT/S ANES 

500 (673991.8,43.5,2695.3) 3.6 3.8 (655457.4,113.0,2701.6) 4.5 3.0 
1000 (2736856.1,106.7,5491.0) 4.7 5.0 (2699755.7,178.0,5490.4) 6.9 3.0 
1500 (6109015.3,97.0,8162.6) 9.8 3.6 (6020509.0,123.0,8153.6) 19.0 3.0 
2000 (10937896.9,86.7,11011.3) 7.8 3.2 (10853858.5,181.1,11013.9) 18.1 3.0 
2500 (17047935.3,104.3,13713.4) 11.1 3.4 (16951533.0,158.2,13716.6) 47.0 3.6 
3000 (24644942.7,114.1,16478.5) 20.7 4.0 (24438046.2,120.5,16481.7) 45.0 2.8 
3500 (33571383.8,97.4,19253.2) 20.5 4.2 (33296015.6,157.4,19252.0) 96.0 3.4 
4000 (44093442.3,84.1,22096.2) 33.4 3.6 (43790807.3,126.7,22096.6) 99.8 3.6 
4500 (55412730.7,91.2,24709.3) 23.4 3.2 (54949158.6,130.4,24705.0) 122.2 2.8 
5000 (68707016.1,108.3,27590.2) 21.8 3.6 (68288922.1,163.5,27595.6) 213.2 3.4 
5500 (83023989.3,13.0,30277.0) 34.0 3.2 (82503994.2,57.5,30271.7) 331.7 2.6 
6000 (98395188.3,21.1,32890.7) 34.0 3.6 (97753233.7,30.0,32886.6) 359.8 2.6 
6500 (115386660.0,12.3,35644.4) 38.1 3.2 (114972908.5,21.7,35643.8) 1065.1 2.0 
7000 (134156765.4,15.0,38443.2) 17.3 3.2 (133541089.8,27.1,38443.2) 643.5 2.2 
7500 (154329166.5,14.2,41281.2) 38.4 3.0 (153705918.8,20.5,41282.4) 591.3 2.6 
8000 (174899091.3,15.5,43862.0) 47.0 4.8 (174136166.6,32.9,43861.0) 775.0 2.0 

AV (64007879.5, 52.6, 
23349.9) 

22.8 3.6 (62132458.0, 91.2, 
23349.7) 

277.4 2.8 

 
Table 3. A comparison of the BLSM-A, TLSM-A, and BAB approaches for 𝑛 =10:19. 

 

Ex BAB BLSM-A TLSM-A 
n AV( 𝑭𝑻𝑪) AT/S ANES AV( 𝑭𝑻𝑪) ANES AAE AV( 𝑭𝑻𝑪) ANES AAE 

10 (265.2, 26.8, 34.8) R 55.0 (296.1, 20.7, 41.2) 5.4 (30.9, 6.1, 6.4) (257.4,43.2,34.7) 2.8 (7.8,16.4,0.1) 

11 (314.9,30.7,38.1) R 43.2 (364.7,20.6,45.7) 5.4 (49.8,10.1, 7.6) (307.3,41.8,46.5) 2.2 (7.6,11.1,8.4) 
12 (337.1,35.5,40.5) 2.4 108.6 (413.9,24.5,45.6) 6.4 (76.8,11.0, 5.1) (340.5,52.1,47.1) 3.8 (3.4,16.6,6.6) 
13 (372.1,27.7,46.4) R 58.0 (447.1,24.9,50.7) 6.2 (75.0, 2.8,4.3) (391.6,43.8,49.6) 3.0 (19.5,16.1,3.2) 
14 (438.5,37.0,53.1) 2.2 111.0 (551.1,20.5,59.2) 4.8 (112.6,16.5,6.1) (490.2,41.7,59.0) 2.8 (51.7,4.7,5.9) 

15 (431.5,41.3,52.8) 3.8 75.2 (639.5,27.4,68.2) 5.4 (208.0,13.9,15.4) (561.1,46.0,70.8) 3.4 (223.5,4.7,18.0) 

16 (572.0,29.7,66.2) 34.2 67.4 (721.5,24.3,72.3) 4.0 (149.5,5.4,6.1) (644.7,47.7,70.8) 3.2 (72.7 ,18.0,4.6) 

17 (620.5,34.7,68.0) 79.5 105.4 (804.5,21.6,77.7) 4.8 (184.0,13.1,9.7) (704.8,49.4,78.3) 3.2 (84.3,14.7,10.3) 
18 (689.5,32.4,73.5) 267.3 74.6 (883.1,26.3,75.5) 4.8 (193.6,6.1,2.0) (777.4,35.3,78.6) 3.6 (87.9,2.9,5.1) 
19 (851.1,32.1,87.9) 337.6 61.2 (957.2,26.1,87.5) 4.6 (106.1,6.0,0.4) (879.4,43.1,88.6) 2.8 (28.3,11.0,0.7) 

AV (489.2, 32.7, 55.7) 72.7 75.9 (607.8, 23.7, 62.4) 5.18 (118.63,9.1,6.31) (535.44,44.41) 3.08 (58.67,11.62,6.29) 

Ex BAB BLSM-A TLSM-A 

n AV ( 𝑭𝑻𝑶) AT/S AV( 𝑭𝑻𝑶  ) AT/S AAE AV( 𝑭𝑻𝑶) AT/S AAE 

10 322.2 R 327.6 R 5.4 324.8 R 2.6 

11 380.6 R 393.4 R 12.8 380.6 R 0.0 

12 415.4 R 426.6 R 11.2 416.4 R 1.0 

13 447.0 R 474.6 R 27.6 456.4 R 9.4 

14 527.8 R 575.8 R 48.0 565.0 R 37.2 

15 533.0 R 676.4 R 143.4 651.2 R 118.2 

16 669.4 R 768.8 R 99.4 739.8 R 70.4 

17 720.0 R 828.4 R 108.4 810.4 R 90.4 

18 744.4 12.1 906.8 R 162.4 846.2 R 101.8 

19 969.4 12.4 988.4 R 19.0 986.6 R 17.2 
AV 572.9 2.4 636.7 R 63.8 617.7 R 44.8 
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Table 4. Comparison of BLSM-A and TLSM-A for 𝑛 = 500:8000 

Ex BLSM-A TLSM-A 
N AV( 𝑭𝑻𝑶) AT/S AV( 𝑭𝑻𝑶) AT/S 

500 664425.0 2.0 670734.4 2.9 

1000 2710639.4 4.5 2733552.6 13.4 

1500 6064092.4 6.8 6100698.8 19.3 

2000 10896430.0 10.2 10939815.6 43.5 

2500 16990203.8 5.5 17056215.0 45.0 

3000 24509032.4 12.4 24639116.4 114.8 

3500 33440691.0 15.1 33636960.0 136.3 

4000 43791450.2 15.8 44067288.8 122.3 

4500 55263616.4 11.3 55368038.6 248.9 

5000 68467812.6 17.6 68720970.6 207.6 

5500 82624193.0 25.7 82984987.8 360.0 

6000 98036955.8 17.6 98492272.8 761.8 

6500 115150250.0 26.9 115491380.8 365.7 

7000 133690988.8 24.1 133953551.6 750.4 

7500 154045452.0 43.5 154348179.2 600.7 

8000 174488641.0 38.3 174883814.6 1210.4 

AV 63802179.6 17.3 64005473.6 312.7 

7. CONCLUSIONS 
 

This study compared three approaches to tri-objective (TO-SCSELm) and tri-criteria (TC-
SCSELm) single-machine scheduling: BAB, TLSM-A, and BLSM-A. Performance was 
evaluated using  Scalability, runtime, solution quality, and AAE were the metrics utilized to 
measure performance. BAB provided the best solutions for minor situations (n < 19); 
however, for larger cases, a lot of processing effort is required. In cases with 8000-8000 
variables, TLSM-A achieved superior outcomes with a lower AAE. For jobs that require speed 
rather than accuracy, BLSM-A is the way to go. New tri-criteria and tri-objective models are 
the main contribution of the work, which also includes the first complete evaluation of exact 
and local search strategies. Finding the optimal solution for your problem size may be easier 
now that you know there is a trade-off between computation cost and precision. Findings 
apply to production scheduling, cloud computing, and service operations, and provide a foundation 
for future hybrid approaches combining Tabu Search and the Bees Algorithm to improve solution 
quality and convergence. 
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 مناهج البحث المحلي لحل مشكلات جدولة الآلات ذات المعايير الثلاثية والأهداف الثلاثية 
 

 *²، فضاء عثمان سمير¹زينب ولي مراد
 

 ¹قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق
 2العلوم، جامعة بغداد، بغداد، العراق، كلية  للمناطق الحارة  البيولوجية الأبحاث  وحدة   

 
 الخلاصة

 تُعدّ مشكلات الجدولة محورًا أساسيًا في بحوث العمليات نظرًا لتأثيرها المباشر في الإنتاجية، واستغلال الموارد، واستجابة الأنظمة.
دة، تتناول هذه الدراسة نموذجًا جديدًا ثلاثيَّ المعايير وثلاثيَّ الأهداف يقدّم إطارًا مبتكرًا لتحليل مشكلات جدولة آلة واحدة المعقّ 

، إضافةً إلى صورتها التجميعية. (𝐿𝑚𝑎𝑥)، وأقصى تأخير  (𝐸𝑗∑)، ومجموع التبكير  (𝐶𝑗∑)هدف تقليل زمن الإكمال الكلي  ب
ولتقييم أداء الحلول، تم اعتماد ثلاث    . (n=8000)ىكبيرة حتوتبقى هذه المشكلة ذات تعقيد حسابي مرتفع عند أحجام وظائف  

 Tabu) وطريقتا بحث محلي هما البحث المحظور (Branch and Bound – BAB) مقاربات مستقلة: خوارزمية الفرع والحد
Search) وخوارزمية النحل (Bees Algorithm). فعلى الرغم من أن خوارزمية BAB توفّر حلولًً دقيقة للحالًت الصغيرة 
(n≤19) متوسط خطأ مطلق منخفض  مع (AAE) إلً أن زمنها الحسابي يزداد بشكل ملحوظ مع زيادة حجم المشكلة. في ،

المقابل، يحقق البحث المحظور توازنًا بين جودة الحل والجهد الحسابي، إذ ينتج حلولًً قريبة من المثلى مع أزمنة تنفيذ معتدلة  
وارزمية النحل، فرغم أنها قد لً تضاهي دقة الطرائق الدقيقة، فإنها تمتاز  أما خ .(n=500–8000) للمسائل المتوسطة والكبيرة

بسرعة الحساب وتوليد أنماط متنوعة من الحلول، مما يجعلها مناسبة بشكل خاص للمشكلات واسعة النطاق أو في الحالًت التي  
ال  .تكون فيها الموارد الزمنية أو الحسابية محدودة دراسة رؤى تطبيقية تدعم اختيار تقنيات الحل علاوةً على ذلك، توفّر هذه 

 .المناسبة، مع الأخذ بنظر الًعتبار حجم المشكلة، والموارد الحسابية المتاحة، والتوازن المطلوب بين الكفاءة وجودة الحل
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