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ABSTRACT

Scheduling problems are central to operations research because of their direct impact on
productivity, resource utilization, and system responsiveness. This study addresses a novel
tri-criteria and tri-objective model that provides an innovative framework for analyzing
complex single-machine scheduling problems of minimizing total completion time (}C;),
total earliness (3 E;), and maximum lateness (Ly,q,), as well as their aggregated form. The
problem remains computationally challenging for large job sizes (up to n = 8000). To
evaluate solution performance, three independent approaches were employed: the Branch
and Bound (BAB) algorithm and two local search methods, Tabu Search and the Bees
Algorithm. While BAB provides precise answers for small cases (n < 19) with low AAE, its
computational time increases significantly with problem size. Tabu Search balances solution
quality and computational effort to produce near-optimal solutions with modest execution
times for medium and large-scale examples (n = 500-8000). While the Bees Algorithm may
not match the precision of exact approaches, it offers faster computation and produces a
variety of solution patterns. These features make it especially appropriate for large-scale
problems or situations with restricted computational time. Moreover, this study offers
practical insights to support the selection of suitable solution techniques, taking into account
problem size, available computational resources, and the required balance between
efficiency and solution quality.

Keywords: Branch and bound, Bees algorithm, Tabu search, Local search, Single-machine
scheduling.

1. INTRODUCTION

Multi-objective and multi-criteria scheduling problems (MSPs) are essential topics in
operations research because they help improve scheduling efficiency, reduce operational
costs, and better utilize resources (Luo, 2023; Zhang, 2025; Costa et al,, 2025; Abbas and
Ghayyib, 2024). Single-Machine Scheduling Problems (SMSPs) are among the most
important models used in the real world, including service systems, computing
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environments, and industrial operations (Pinedo, 2008; Abdulgqader and Ali, 2023;
Hassan et al,, 2022). As scheduling environments become more complex, with changing
conditions, diverse constraints, and conflicting operational goals, traditional single-objective
models are becoming less useful for solving real-world problems (Motair, 2017; Chachan
and Hameed, 2019; Ali and Jawad, 2020; Sameer, 2023).

Recent studies have highlighted a clear research gap in the single-machine scheduling
literature regarding models formulated with tri-criteria and tri-objective models,
particularly in terms of applying and comparing exact and local search solution approaches
(Ibrahim and Ali, 2022; Yousif et al,, 2023; Neamah and Kalaf, 2024a; Neamah and
Kalaf, 2024b). This gap motivates the present study, which addresses this limitation by
proposing two novel scheduling formulations, namely TC-SCSELm and TO-SCSELm. In the
TC-SCSELm model, the three objectives are total completion time (}.(;), total earliness (Y E;),
and maximum lateness (L,,4,) are treated independently, whereas the TO-SCSELm model
aggregates these objectives into a single scalarised objective function( Fr, in Equation 2) to
enable effective comparison. The two models are NP-hard. The objectives are considered
without predefined weights to ensure a fair evaluation of all criteria.

This study examines three methods for multi-criteria scheduling due to their computational
complexity. The exact Branch-and-Bound (BAB) provides optimal solutions for small
instances (Ahmed and Ali, 2022; Abbass, 2019). Two independent local search algorithms
are also considered: TLSM-A, using memory-based strategies to escape local optima
(Glover, 1989), and BLSM-A, inspired by swarm foraging, balancing global exploration with
local exploitation (Pham et al., 2009; Aurasopon et al., 2025). All methods were applied
in their original forms, allowing a fair comparison of solution quality, runtime, and stability
across problem sizes.

2. MACHINE SCHEDULING PROBLEMS CONCEPTS

In this study, we focus on a single-machine tri-criteria and tri-objective problem. The
following notations:

p;: Represents the processing time required to complete job j.
d; :Indicates the due date assigned to job j.

sj: Slack time of job j, s.t.s; = d; - p; .

C;: The completion time of job j, such that ¢; = Z{;zlpk.

2.Cj: Total completion time.

L;: Lateness time for eachj, s.t. Li=C - dj.

Linax: Maximum of lateness time, s.t. L, q,= max{Lj}.

Ej: Earliest time for each j, such that E; = max {-L;, 0}.

.E; : Total earliness time.

¢ EDD Rule (Khusna and Prabowo, 2025, Peng et al., 2021; Dos Santos et al., 2024): The
1// Ljax The problem is solved by sequencing jobs according to the earliest-due-date
(EDD) rule, arranging them in ascending order of their due dates d;,

e SPT Rule (Jamalabadi and Schwiegelshohn, 2023; Yang et al., 2025): The 1// £C; The

scheduling problem can be optimally solved by arranging the jobs in ascending order of
their processing time, following the Shortest Processing Time (SPT) rule.
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3. TRIPLE-CRITERION and TRIPLE-OBJECTIVE MATHEMATICAL FORMULATION

This section presents the mathematical model of the Triple-Criteria Single-Machine
Scheduling Problem (TC-SCSELm) and it scalarized Triple-Objective formulation (TO-
SCSELm). The goal is to minimize three conflicting objectives simultaneously: total
completion time (3.C;), total earliness (}E;) and maximum lateness (Lyqyx)-

Frc = min(3C;, YE;, Linax) )
s.t.

€y = Po(n)

G = G-1 % Doy, J=23,,n

L]=C]_d], j=1P2PJPn

Ej = Lj, j=12,,,n
Ej >0

¢ =0

~~

(1)

J
The model described by Eq. (1) is strongly NP-hard for several reasons. First, the number of
possible job sequences grows factorially with the number of jobs n, leading to a rapidly
expanding solution space. Second, adding the early objective (3 E;) introduces another layer
of combinations, making the problem even harder to solve. The scalarized objective function
in Eq. (2) combines the three objectives into one measure of how well they do. In this
formulation, the objectives are not given any weight. Instead, a simple summation is used to
combine them, not a weighted sum.

Fro = mln(ZC] +2E + Lmax) )

s.t.

C1 = Ps(1)

C':C‘_ + iy ':2I3liln

T 240) ]__ ! (2)
L]_C}_d]’ _]_1P2PIIn

E_'j 2 le j= 1,2,;;”

E >0

Cj >0 y

4. PROPOSED SOLUTION TECHNIQUES FOR TC-SCSELM AND TO-SCSELM MODELS

Since both the TC-SCSELm and TO-SCSELm models are computationally intensive. This
section presents three solution methods; each applied to both models separately. To ensure
a fair comparison of the performance of the TC-SCSELm and TO-SCSELm models across
varying problem sizes, all three algorithms are executed independently on each model.
Comprehensive explanations of each method are presented below.

4.1 Branch and Bound (BAB)

The Branch and Bound (BAB) algorithm is a classical, exact optimization method widely used
in scheduling problems (Ahmed and Ali, 2022; Abbass, 2019). It systematically explores
the solution space by dividing it into subproblems and eliminating non-promising branches
using bounding rules. In the TC-SCSELmM model, BAB optimizes each objective separately to
produce Pareto-efficient schedules. For TO-SCSELm, it minimizes a single aggregated objective,
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Fro. Although BAB provides optimal solutions, its high computational cost confines its use to
small instances, serving mainly as a benchmark for other methods

Algorithm 1: Branch and Bound (BAB) for TC-SCSELm and TO-SCSELm

o: Partial or complete job sequence.
§: Set of non-dominated sequences (Pareto-optimal solutions).
LB (o): Lower bound of sequence o.
UB (o): Upper bound of sequence o.

Procedure:
Step 1: Inputpj,d;jn, forj = 1,2,...,n, § = Q.
Step 2: For each partial sequence o:
a. Compute Fr¢(0) = (X ((0), X Ej(0) , Linax (0)).
b. Estimate Upper Bound (UB):
- If the model is TC-SCSELm, UBr¢= Fr¢(0)
- If the model is TO-SCSELm, generate the SPT sequence and compute
UBro = Fro(0) = (£ G(0) + 2 E;(0) + Lingx(0),
Step 3: For each node and partial sequence o;
a. Compute LB (o) = Cost of scheduled jobs + Cost of remaining jobs (SPT rule).
b. For TO-SCSELm: include both sequenced and un-sequenced jobs.
Step 4: Pruning: If LB (o) 2 UB (o): Discard branch # Remove non-promising sequences.
Step 5: Terminal nodes: If o is complete and non-dominated: Add o to § # Store non-
dominated solution. Remove dominated solutions from § # Keep only the best solutions.
Step 6: Continue steps 2-4 until no active nodes remain.
Step 7: Output 6.

4.2 Bees Algorithm

Nature-inspired metaheuristics efficiently address complex scheduling problems by
adapting search strategies. The Bees Algorithm (Pham et al., 2005) imitates honeybee
foraging, combining global exploration by scout bees with local search by workers to solve
combinatorial challenges (Li et al., 2011; Huang et al., 2025). In this study, the Bees Local
Search Method Algorithm (BLSM-A) is applied to single-machine scheduling with three
objectives: total completion time (3.C;), total earliness (}E;), and maximum lateness (L)
Each feasible solution represents a complete job sequence, evaluated within the
optimization framework.

e For the TC-SCSELm (multi-objective) model, solutions are compared using Pareto
dominance, and non-dominated schedules are retained.

e The TO-SCSELm (aggregated) model combines objectives into a scalar fitness function to
guide schedule improvement.

BLSM-A drives bees to search more intensively for possible solutions, while scout bees
explore new areas to maintain diversity. Adjusted algorithm parameters balance
convergence speed and local optima avoidance. Multi-objective and aggregated models can
be searched for more efficiently using the update technique, thereby improving solution

quality.
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Algorithm 2: Bees Local Search Method Algorithm (BLSM-A)
Input:
1. Number of bees B.
2. Number of elite sites E.
3. Number of selected sites (S).
4. Neighbourhood size NS.
5. Maximum iterations (MaxlIter)
6. Job set j = {1,2,..,n} with processing times p; and deadlines d;.
Output: Best-found schedule o*.
Procedure:
Step 1: Start with B random job sequences.
Step 2: For each solution o:
a. Evaluate Fr¢(o)or Fro (o) based on the model.
Step 3: Identify elite sites (E) and selected sites (S) based on:
a. Fr¢(0)in multi-objective mode
b. Fro (o) in scalar mode
Step 4: Set ¢*As the top solution in the original population.
Step 5: For iter = 1 to MaxlIter do:
a. Elite Site Search: For each elite site:
i. Recruit multiple bees
ii. Explore the neighborhood of size NS.
iii. Evaluate the solution using Fy-(o)or Fr (0).
iv. Retain the best solution at each elite site.
b. Selected Site Search: For each selected site:
i. Recruit fewer bees.
ii. Explore a reduced neighborhood.
iii. Evaluate the solution using Fr.(o)or Frq(0).
iv. Retain the best solution at the chosen site.
c. Scout Bee Search: Maintain population diversity by randomly searching the
surviving bees.
d. Update Global Best: Change o™ To the new solution, if it is superior .
Step 6: End
Step 7: Return o*.

4.3 Tabu Search

The Tabu Local Search Method Algorithm (TLSM-A), derived from Fred Glover’'s Tabu
Search, is widely employed in combinatorial optimization and has proven effective in
scheduling, particularly in flexible job-shop and complex production settings (Fekih et al.,
2020; Zhang, 2025; Xie et al,, 2019; Hajibabaei and Behnamian, 2021; Dabah et al.,
2019). This research utilizes TLSM-A to address a single-machine scheduling problem with
three objectives: total completion time (3.C;), total earliness (Y E;), and maximum lateness

(Lynax)- The algorithm has two ways to work:

1. Multi-objective (TC-SCSELm): Each goal is optimized on its own, and Pareto dominance is
used to find solutions that aren't dominated and weigh the pros and cons.
2. Aggregated (TO-SCSELm): All goals are put together into one scalar function to optimize
everything at once.
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Algorithm 3: TLSM-A (Tabu Local Search Algorithm)
0y Initial job sequence.
o: Current solution.
o*: The optimal solution discovered during the inquiry.
o': A potential solution based on ¢ (neighborhood).
Tabu List: Memory structure to avoid revisiting recent solutions.
Procedure:
Step 1: Input initial solution oy, Tabu tenure T, Maximum iterations MaxIter
Step 2: Initialize the current solution: Assign ¢ = o,
Step 3: Assess the goal function (F (o) either Fr¢ () or Fro (o)) and designate o* to the
present solution o.
Step 4: Initialize the Tabu List as empty
Step 5: For iteration = 1 to Maxlter, do:
a. Generate the neighborhood N(o) (e.g., via adjacent job swaps)
b. For each candidate ¢' € N(o0), where ¢'is a neighboring solution generated from
the current solution o.
c. If o' is not in TabuList OR F(¢') is better than F(o*), mark ¢' as admissible
d. Select the best admissible solution and assign it to o best
e. Update the current solution: set o equal to o _best
g. If F(o) is better than F(¢g*), update the best solution: set c*equal to o
h. Update the TabuList with g, removing expired entries
Step 6: End.
Step 7: Return (Best-found solution ¢*)

5. APPLICATION OF THE PROPOSED SOLUTION TECHNIQUES TO TC-SCSELM AND TO-
SCSELM MODELS

This part assesses how well the proposed solution techniques perform by reporting the
average execution time (in seconds) across all test cases. Execution time is a key
performance indicator because it directly shows how much work, efficiency, and scalability
the algorithms have as the problem size grows. Given the combinatorial nature of the TC-
SCSELm and TO-SCSELm models, runtime represents a consistent and practically
meaningful basis for comparing the exact BAB method with the two local search-based
procedures (BLSM-A and TLSM-A). For every test case, the MSP generates a random
processing time p; and d; s.t,, p; € [1,10] and

[1,30], 1<n<29
[1,40], 30<n<99
d;j €4[1,50], 100 <n <999
[1,70], otherwise

subject to condition dj 2 pj, for j =1, 2, .., n. The generated instances simulate real-world
single-machine scheduling scenarios, such as manufacturing lines or service operations,
ensuring practical relevance. All computational experiments were executed on a
workstation equipped with a 13th Gen Intel® Core™ i9-13900HX CPU (2.20 GHz) and 32 GB
of RAM, operating on Windows 11. To guarantee reliability and stability, each problem
instance of size n was executed five times independently, using the same settings each time.
The average of these runs reduces the impact of random variability common in local search

processes, yielding more accurate performance measures.
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The average runtime across all experiments ranged from R to 1800 seconds, depending on
the instance's complexity. This shows that each algorithm can be used in real life: BAB works
best for small cases (n < 19), TLSM-A finds the right balance between accuracy and cost for
medium and large instances (up to n = 8000), and BLSM-A works quickly with acceptable
solution quality for significant, time-sensitive problems. The following short forms are used
in this part:

ANES: The average number of solutions that work.

AEE: Average Absolute Error.

AT/S: The average number of seconds.

R: Areal number between 0 and 1 that shows minimal runtime values or fractional averages.

6. COMPARATIVE ANALYSIS OF BAB, BEES, AND TABU ALGORITHMS FOR MULTI-
OBJECTIVE SCHEDULING

This section compares three algorithms: Branch and Bound (BAB), Tabu Local Search
(TLSM-A), and Bees Local Search (BLSM-A), using experimental data reported in Tables 1
to 4. The analysis divides problems into three sizes: small (n= 10-19), medium, and large (n
= 500-8000). It evaluates solution quality (Fr. and Fr(), absolute average error (AAE), and
computing efficiency (AT/S).

6.1 Small Instances (n=10-19)

In Tables 1 and 3, the following can be seen:

e Solution Quality: BAB achieves the lowest aggregated objective value (572.9),
confirming it as the most accurate and reliable method. TLSM-A provides near-optimal
results (Frp=617.7), while BLSM-A shows slightly higher values (Fr;,=636.7).

e AAE: TLSM-A generally has lower AAE than BLSM-A (44.8 vs. 63.8), indicating higher
accuracy.

e Computational Efficiency: BAB run faster than TLSM-A and BLSM-A, which remains
costly even after normalization (average AT/S =72.7).

Implication: BAB is the best choice for small instances in terms of accuracy; TLSM-A balances

accuracy and runtime, while BLSM-A is suitable for faster but less precise solutions.

6.2 Medium to Large Instances (n=500-8000)

In Tables 2 and 4 we can see the following:
e Solution Quality: TLSM-A outperforms BLSM-A in combined objectives (average
Fro=64,007,879), offering better overall precision.
e ANES: TLSM-A maintains lower ANE than BLSM-A (2.8 vs. 3.6), showing more accurate
solutions.
o Computational Efficiency: BLSM-A runs significantly faster (AT/S = 38 vs. 1210 for
TLSM-A at n=8000), making it preferable for rapid computations.
Implication: TLSM-A is best for high-accuracy answers, and BLSM-A is best for fast,
approximate outcomes.
Key Insights:
» The BAB method works best for small cases (n<19), butit doesn't work well for larger ones.
e TLSM-A strikes a good balance between accuracy and runtime for all sizes.
e In scenarios with a lot of objects or big ones, BLSM-A is faster but less accurate.
e AAE reveals that TLSM-A is usually more accurate than BLSM-A.
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Table 1. The comparison results between the (BLSM-A, TLSM-A) and BAB methods

Ex BAB BLSM-A TLSM-A
n AV(Fro) AT/S | ANES AV(Fro) ANES AAE AV(Fro) ANES AAE

10 | (265.2,26.8,348) R 550 | (296.1,20.7,412) | 54 (30.9,6.1,64) | (257.443.234.7)| 28 (7.8,16.4,0.1)

11 | (314.9,30.7,38.1) R 432 | (364.7,20.645.7) | 54 (49.8,10.1,7.6) | (307.3,41.846.5) | 2.2 (7.6,11.1,8.4)

12 | (337.1,355405) | 24 | 108.6 | (413.9,245456) | 64 (76.8,11.0,5.1) | (340.552.1,47.1) | 3.8 (3:4,16.6,6.6)

13 | (372.1,27.746.4) R 58.0 | (447.1,24950.7) | 6.2 (75.0,2.843) | (391.643.849.6) | 3.0 (19.5,16.1,3.2)
14 | (438537.0,53.1) | 22 | 111.0 | (551.1,205592) | 48 | (112.6,1656.1) | (490.241.7,59.0) | 2.8 (51.7,4.7,5.9)

15 | (431.5413,52.8) | 38 | 752 | (639.527.4,682) | 54 | (208.0,13.9,154) | (561.1,46.0,70.8) | 3.4 | (223.54.7,18.0)
16 | (572.0,29.7,662) | 342 | 674 | (7215243,723) | 40 (149.55.4,6.1) | (644.7,47.7,70.8) | 3.2 (72.7,18.0,4.6)
17 | (620.534.7,68.0) | 795 | 105.4 | (804.521.6,77.7) | 48 | (184.0,13.19.7) | (704849.4,783) | 3.2 | (84.3,14.7,10.3)
18 | (689.5,32.4,735) | 267.3 | 746 | (883.1,263,755) | 48 (193.6,6.1,2.0) | (777.4,35.3,78.6) | 3.6 (87.9,2.9,5.1)

19 | (851.1,32.1,87.9) | 337.6 | 61.2 | (957.226.1,875) | 46 (106.1,6.0,04) | (879.4,43.1,88.6) | 2.8 (28.3,11.0,0.7)
AV | (489.2,32.7,55.7) | 72.7 | 75.9 | (607.8,23.7,62.4) | 5.8 | (118.63,9.1,6.31) (535.44,44.41) | 3.08 | (58.67,11.62,6.29)

Remark (1). In Table 1, AT/S for BLSM-A and TLSM-A is equal to R for n = 10: 19.

Table 2. Results of the comparison of (BLSM-A and TLSM-A) for n = 500:8000.

Ex BLSM-A TLSM-A
N AV(Frc ) AT/S | ANES AV( Fr¢) AT/S | ANES
500 (673991.8,43.5,2695.3) 3.6 3.8 (655457.4,113.0,2701.6) 4.5 3.0
1000 (2736856.1,106.7,5491.0) 4.7 5.0 (2699755.7,178.0,5490.4) 6.9 3.0
1500 (6109015.3,97.0,8162.6) 9.8 3.6 (6020509.0,123.0,8153.6) 19.0 3.0
2000 (10937896.9,86.7,11011.3) 7.8 3.2 (10853858.5,181.1,11013.9) 18.1 3.0
2500 | (17047935.3,104.3,13713.4) 11.1 34 (16951533.0,158.2,13716.6) 47.0 3.6
3000 | (24644942.7,114.1,16478.5) 20.7 4.0 (24438046.2,120.5,16481.7) 45.0 2.8
3500 (33571383.8,97.4,19253.2) 20.5 4.2 (33296015.6,157.4,19252.0) 96.0 3.4
4000 (44093442.3,84.1,22096.2) 33.4 3.6 (43790807.3,126.7,22096.6) 99.8 3.6
4500 (55412730.7,91.2,24709.3) 23.4 3.2 (54949158.6,130.4,24705.0) 122.2 2.8
5000 | (68707016.1,108.3,27590.2) 21.8 3.6 (68288922.1,163.5,27595.6) 213.2 3.4
5500 (83023989.3,13.0,30277.0) 34.0 3.2 (82503994.2,57.5,30271.7) 331.7 2.6
6000 (98395188.3,21.1,32890.7) 34.0 3.6 (97753233.7,30.0,32886.6) 359.8 2.6
6500 | (115386660.0,12.3,35644.4) 38.1 3.2 (114972908.5,21.7,35643.8) | 1065.1 2.0
7000 | (134156765.4,15.0,38443.2) 17.3 3.2 (133541089.8,27.1,38443.2) 643.5 2.2
7500 | (154329166.5,14.2,41281.2) 38.4 3.0 (153705918.8,20.5,41282.4) 591.3 2.6
8000 | (174899091.3,15.5,43862.0) 47.0 4.8 (174136166.6,32.9,43861.0) | 775.0 2.0
AV (64007879.5, 52.6, 22.8 3.6 (62132458.0,91.2, 277.4 2.8
23349.9) 23349.7)
Table 3. A comparison of the BLSM-A, TLSM-A, and BAB approaches for n =10:19.
Ex BAB BLSM-A TLSM-A
n | AV(Fro) | AT/S | AV(Fro ) | AT/S | AAE AV(Fro) | AT/S AAE
10 322.2 R 327.6 R 5.4 324.8 R 2.6
11 380.6 R 393.4 R 12.8 380.6 R 0.0
12 415.4 R 426.6 R 11.2 416.4 R 1.0
13 447.0 R 474.6 R 27.6 456.4 R 9.4
14 527.8 R 575.8 R 48.0 565.0 R 37.2
15 533.0 R 676.4 R 143.4 651.2 R 118.2
16 669.4 R 768.8 R 99.4 739.8 R 70.4
17 720.0 R 828.4 R 108.4 810.4 R 90.4
18 744 .4 121 906.8 R 162.4 846.2 R 101.8
19 969.4 12.4 988.4 R 19.0 986.6 R 17.2
AV 572.9 24 636.7 R 63.8 617.7 R 44.8
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Table 4. Comparison of BLSM-A and TLSM-A for n = 500:8000

Ex BLSM-A TLSM-A

N AV(Fr) [AT/S| AV(Fro) AT/S
500 664425.0 2.0 670734.4 2.9
1000 2710639.4 | 45 | 27335526 13.4
1500 60640924 | 68 | 61006988 19.3
2000 10896430.0 | 10.2 | 10939815.6 435
2500 169902038 | 55 | 17056215.0 45.0
3000 24509032.4 | 12.4 | 24639116.4 114.8
3500 33440691.0 | 15.1 | 33636960.0 1363
4000 437914502 | 15.8 | 440672888 1223
4500 55263616.4 | 11.3 | 55368038.6 248.9
5000 68467812.6 | 17.6 | 68720970.6 207.6
5500 82624193.0 | 257 | 82984987.8 360.0
6000 98036955.8 | 17.6 | 98492272.8 761.8
6500 115150250.0 | 26.9 | 115491380.8 365.7
7000 133690988.8 | 24.1 | 133953551.6 750.4
7500 154045452.0 | 43.5 | 154348179.2 600.7
8000 174488641.0 | 38.3 | 174883814.6 1210.4

AV 63802179.6 | 17.3 | 64005473.6 312.7

7. CONCLUSIONS

This study compared three approaches to tri-objective (TO-SCSELm) and tri-criteria (TC-
SCSELm) single-machine scheduling: BAB, TLSM-A, and BLSM-A. Performance was
evaluated using Scalability, runtime, solution quality, and AAE were the metrics utilized to
measure performance. BAB provided the best solutions for minor situations (n < 19);
however, for larger cases, a lot of processing effort is required. In cases with 8000-8000
variables, TLSM-A achieved superior outcomes with alower AAE. For jobs that require speed
rather than accuracy, BLSM-A is the way to go. New tri-criteria and tri-objective models are
the main contribution of the work, which also includes the first complete evaluation of exact
and local search strategies. Finding the optimal solution for your problem size may be easier
now that you know there is a trade-off between computation cost and precision. Findings
apply to production scheduling, cloud computing, and service operations, and provide a foundation
for future hybrid approaches combining Tabu Search and the Bees Algorithm to improve solution

quality and convergence.
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