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ABSTRACT

This paper investigates the thermal buckling of laminated composite plates based on a
refined plate theory that incorporates four variables, using hyperbolic and polynomial shear
strain functions for the first time to analyze thermal buckling of a laminated plate with all
edges simply supported. The proposed shear function incorporates the variation of
transverse shear stress over the thickness of the plate in a parabolic form and achieves zero
traction on the upper and bottom surfaces of the plate without implementing a shear
correction factor. Equations of motion are derived according to the principle of virtual
displacement. The analytical solution is carried out using Navier’s solution. The numerical
results of the orthotropic properties of both cross-ply and angle-ply laminates are calculated
by programming a MATLAB code. In the present study, the influence of changing various
design parameters, such as aspect ratio (a/b), orthotropic ratio (E1/E2), thickness ratio
(a/h), and thermal expansion coefficient ratio (az/ a1), for symmetric and antisymmetric
laminated composite plates is analyzed. The results are evaluated by the assumption of
uniform temperature variation through the plate, which exhibits good agreement for both
thick and thin plates compared with previous studies.

Keywords: Thermal buckling, Composite plates, Refined shear theory.

1. INTRODUCTION

The broad use of laminated composite plates in modern manufacturing and technological
fields, especially aerospace, automotive, and renewable energy, is due to their anisotropic,
tailorable, and high-stiffness to light-weight properties, unlike traditional metals (Elsisi et
al,, 2025). However, these benefits come with significant complexities in analysis. Many
theories have been made to come up with simple yet exact analytical methods and closed-
form solutions. Many applications of these laminates composite used in structures that
subjected to wide variation of temperature values caused by surrounding atmosphere which
affect the exposure layers of plate and causes serious stresses, to overcome this situation,
it's necessary to manufacture those plates using many thin orthotropic bonded layers with
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varying material properties, which require precise mathematical modelling theories to
account for thermal environment and its effect on those laminated plates (Khandan et al.,
2012; Odeh et al., 2024; Qian et al,, 2024). (Xing and Wang, 2017) conducted a study
using a Graded composite thin plate varying according to a power law through its thickness
as amodel to investigate the Thermal bifurcation point with a variety of boundary conditions
under the influence of both linear and nonlinear temperature environments. The separation-
of-variables method was applied, and a new mathematical solution was also proposed.
(Torabi et al., 2019) adopted higher order deformation theory for investigating thermal
buckling for a different shape of nanotube reinforced composite (FG-CNTRC) plates
influenced by thermal loads, considering material thermo-mechanical properties affected by
temperature. (Abdulrazzaq et al., 2020) investigated thermo-elastic buckling of small-
scale functionally graded material (FGM) nano-size plates with clamped edge conditions
resting on an elastic substrate, subjected to both linear and non-linear temperature
distributions. In the study, the FGM had an exponential gradient across its thickness. (Daikh
et al,, 2020) applied TOT in the study of thermal buckling and natural vibration of single-
walled carbon nanotubes reinforced laminates using (FGM). A study by (Nguyen et al,,
2020) developed a new higher-order shear deformation theory and used a novel
exponential shape function within the Ritz method. The effect of geometrical nonlinearities
due to pressure load on the thermal buckling and dynamic characteristics of composite
plates using (FSDT) was investigated by (Yang et al., 2020). Based on five variables, the
refined plate theory based on parabolic form shape function (Hashim and Sadiq, 2021)
conducted a study to investigate thermal buckling. (Li et al., 2021) carried out a
thermomechanical buckling analysis of sandwich plates using four variables, the shear
deformation theory of (FGM). The optimization study of design and control of thermal
buckling of piezoelectric fibre reinforced composite actuators using four variable shear
deformation theory and accounting for stress variation through thickness by a trigonometric
function was conducted by (Xue et al., 2021). (Yahea and Majeed, 2021) studied thermal
buckling of (SS) cross and angle composite plate in the framework of four variable
trigonometric functions. Modern studies, such as the work of (Anandan et al., 2022) uses
models of composite plates reinforced by natural fibres like Flax and test them numerically
under thermal loads according to finite element analysis runs in ANSYS Workbench. Another
approach is the use of (FSDT) in the process of analysing thermal buckling of reinforced
laminated composite plates with cutouts using level sets, a novel method evolved by
(Devarajan and Kapania, 2022).

(Hajlaoui and Dammak, 2022) investigated thermal post-buckling of (FG) plates with two
material properties based on temperature decency (dependent and independent) in three-
dimensional coordinates through the use of a modified first-order enhanced solid shell
element. The work of (Ma and Jin, 2022) focused on the analysis of the thermal buckling of
graphene-reinforced composite (FG-GRC) laminated thick plates using the seven-unknown
theory. A study by (Kareem, 2024; Majeed and Sadiq, 2022) developed thermal buckling
analyses of laminated plates based on improved higher-order shape functions with
parameter “m”; the improvement extends the theory to mathematically modelling thin and
thick plates. (Miglani et al., 2022) investigated the bending and buckling of composite
plates due to thermal load using high-order shear deformation theory of a six-variable quasi-
3D model. The use of high-order shear deformation theory to represent the effect of thermal
buckling on porous thick rectangular plates made of FGM was conducted by (Saad and
Hadji, 2022). (Varelis and Saravanos, 2022) presented a nonlinear model for
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piezoelectric laminated plates that couples thermal, electrical, and mechanical fields. Using
a developed finite element, it quantifies how pyroelectric and piezoelectric effects impact
thermal buckling and the nonlinear response of smart composite plates under different
temperature conditions. Thermal buckling analyses of cylindrical micro shells made of
(FGM) were conducted by (Mehditabar et al., 2023) using classical high-order shear
deformation theory. A study by (Moradi Haghighi and Alibeigloo, 2023) was conducted
on rectangular carbon nanotubes using third-order shear deformation theory to investigate
thermal buckling and free vibration of (FGM) Further application of high-order theories
utilized by (Bracaglia et al., 2024) in the thermal buckling of Variable Angle Tow (VAT)
composite plates, assuming linear pre-buckling, proposes linear eigenvalue analysis.
(Majeed and Sadiq, 2025) proposed the same theory and the same shape function used in
this paper, but to investigate the mechanical buckling of rectangular laminated plates with
all supported edges.

In the present work function, is used to investigate thermal buckling of both cross-ply and
angle-ply laminated plate for the first time, which is a combination of hyperbolic and
polynomial and this shape function satisfies the zero strain on the free surfaces of the plate
without the need for shear correction factor, also has only four unknown variables, which
are less than variables used by high order shear deformation. The governing equations of
motion are derived from Hamilton's principle of total potential energy and solved for simply
supported boundary conditions using the Navier series. The accuracy of the results was
validated by comparing them to other results from different theories.

2. THEORY AND FORMULATION

In the present study formulation of the problem considers a composite plate subjected to a
system of in-plane compressive loads due to thermal effects.

2.1 Kinematics

Based on the work of (Ebrahimi et al., 2021), the displacement field of the model is
represented as :

owb ows
Uryz) = Uo(xy) T2 (_ W) +F(2) (_ _x) (1)
awb ow’
Vyz) = Voyyy T2 (_ W) +F(2) (_ E> (2)
Wieyz) = W2y + Wiy (3)

Where uo, vo, wP, and ws are the four displacement components, F(z) represents the shape
function, which describes the transverse shear stress through the thickness, achieving zero
stress at the free edges of the plate. For the present study, it was described according to
(Kada and Abdelouahed, 2022) as below:

F@) =2 - h(sin (3)) + ((32) cosno)) )
2.2 Strain Relations

Formulating the linear strain-displacement relations correlated to the displacement field
(Reddy, 2003) just as:
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0 1 2
Exx Exx Exx Exx
0 1 2
0 1 2
Vxy Vxy Yy Yxy
Where:

&ij = %(Ui.j + Uj)

0 3
yyz {yyz} , {yyz}
= +F'(z
{sz} Vyr Dy

yz

ows
Vyz _ dy
(7 =9@i 2

ax
Where:

l; Z 472

g(z) =1—F'(z) = cosh (E) + (F) cosh (0.5)
€2 =0

2.3 Equations of Motion
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(5)

(6)
(7)

(8)

(9)
(10)

This section applies the Hamilton principle to formulate the governing equations of motion.

0= fé‘o (8U + 8V)dv

(11)

Where 6U and 6V are Virtual strain energy and Virtual external work done due to thermal

effect, respectively.

k
Oxx 6£xx k
_ (K Z) Uyz 5yyz
(SU_fQO ka +1 {ny}{&fyy} +{0xz}{6y } dzdxdy

o'xy 6)/xy XZ
K k k
. Ny, (0e2x M2 (8¢l M:.\ (6e2y o1 (870 X
U = fﬂo Nyy t{8epy b +{Mpy t48eyy b +{Myy ti8e5,t + {Qy} {5 3:)Z} dxdy
Ny ) \ovd M2y ) \&vzy My ) \Svsy O
obug ¥ a2owt ) 22w\
Ny ax M2, ax? M5, ax? asws\ ¥
ok a8vy b | | a2swb 226w’ Q 2
6U = fﬂo {Nyy} 3y - {Myy oy [ T Mszy 9y2 +{QZ} asis dxdy
xy) | 98u , 98w Mzy) | o2wb Mey) | a2sws Tox
oy 0x axdy 0xdy
Where:
(N, MP,M7) = 3, fzzkkﬂ of(Lz, F(2)dz , i=(xyyxy)
Z) .
(@) =%k [, ofs g2z . =00

5 Lk
Ny ((?TV:)Z ]
8V =—3 f!fo {N{y}é (Z_VyV) dxdy
xy (f’_Wa_W)

dx 0y
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XX x
_ 1% [INT aw) (28w
V' ==3la, xﬁy ’ ("’y)( y ) dxdy (18)
xy 5w aw aw dsw
( ax ay) + (ax 6y)
[ (6(wb+w5)> (6(6wb+8w5)> 3
NxTx { dx dx ]
b b b s
ov =—fx N (a(wa;w )> (6(5W6;5W ) dxdy (19)
T
Ny (wP+w®) 0(6wP+8w%) | d(wP+w’) d(Swl+SwS)
+
dy ax 0x oy

Where (w) is assumed to be the algebraic sum of the deflection caused by bending and shear
modes through the thickness of the plate (Ebrahimi et al., 2021).

Zy s e i
Ny Q6 Q26 WQes
substituting Eqs. (14) and (19) into Eq. (11), integrating by parts and using divergence
theory, then setting coefficients of (Suo, dvo, 6wP, ws) to zero to evaluate governing

equations as below:
ONyx 6ny

Nﬁgrx , Q_11 Q_12 Q16 XX
Nyy ¢ = II¥=1 ot Q12 Q22 0 {ayy }ATCTdZ (20)

Sugs 4+ T =0 (21)
] 6Nyy any
bvt SR+ TE =0 (22)
2nb 92 92 D 2 b S 2 b s S
wa:(aa’:’j’f + a“gy +252 y) + (NxTx—a W) 4 g, T 4 g, 2Ot (” o )) 0 (23)
2 92MS 92MS b 9 s 92 b s
SwS: (aaM;“‘ + R 2 Qy + an) (N,Ix —(V; i ) 4 Ny, —(";ij ) 4
a2(wh +ws))
T —_ ) =
2Ny, =5 0 (24)

2.4 Constitutive Equations

Based on linear solids' constitutive equations, elastic stress-strain relationships are
represented. (Ebrahimi et al., 2021).

vi2Ep E;

1-v12v21

y Q2 =

Qll  1-v5,vp 1-v12V2q sz - (25)

Qo6 = G12 , Q4a =Gz3 , Qs5 = G13 (26)

Where Gij, Eij and v;j, are the shear modulus, Young's modulus, and Poisson's ratio of the
plate in different planes.

01 Qi1 Q12 0 7(&

{02} = [Q12 Q2 O ]{52} (27)
03 0 0 Qss

o 017

{Ui} - [QéM st] {5:} -
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Oxx Qi1 Qiz Qi (&xx
{Uw}: 012 Q_zz Q_26 gyy} (29)
Q16 Q26 Qosl\Vov
Ajn A1z Age] Exx [B11 Biz Big Exx Eyn Eip Ege] Ex
{ = 1412 Azz Aze {‘%ey +|B12 Bz By 53173/ +|E12 Ezz Eze ‘932/3/ (30)
A1e Az Agel yﬁy [B1s Bz6 Bes Yay Ei¢ Eze Egel y,fy
[B11 Biz  Big] Exx D11 D12 Dis Exx Fi1 Fiz  Fig] Ex
{ =|Bi2 B2z Bz {Eggy +|D12 D3z Dy gglzy +|Fi2 Faz Fie ‘932/3/ (31)
Bise Bas Beol |y, D16 D26 Desl \y, Fie Fas Feel \y2,
Mﬁx [E11 E12 Eie Exx Fi1 Fi; Fig Exx Hyy Hiz Hyel Ex
{ =|E1z Ez2 Eze {‘%ey + |Fi2 Fa er] 53173/ +|Hi2 Hzz Hye ‘932/3/ (32)
Eyg Eae Eeol |y, Fie Fae Feol \y}, Hig Hze Heel (y2,
Lys Lys Vj(z)z
Qx} [L45 Lss] {y,?z} (33)
(Aij,BU,DU,EU,FU,HU] /Zk“ Qij(1,2,2*,F(2),z - F(2),(F(2))*)dz,i = (1,2,6) (34)
Liy = [ Qiy(g(@)?dz , ij = (45) (35)

2.5 Equations of Motion in Terms of Displacements

Substituting Egs. (30) to (33) into Egs. (21) to (2) to depict the governing equations (Reddy,
2003):

A (52) + 216 (S50) + e (55) + Ase (52) + (oa + o) (552) A (52) +

2416 (552) + e (55) + s (522) + sz + Ase) (5552) + Az (532) = Bus (535 -
3816 (5a53) — (Bua + 2660) (T353) = Bae (5) = 36se (5355) = iz + 266 (3355) =
E,e (aa3y3) =0 (36)

oo (T2) + G+ 40e) (3552) + e (52) + e (532) + 226 (3532) + 4 (552) -
()~ G 2000 (222) 300 (222) - 2 (52) e (52) -

(E12 + 2E¢6) ( zay) 3E76 (aama—wyz) — Ey (a;_;;s) =0 (37)

Bir (522) + 3B16 (22 ) + (Brz + 2Be) (o) + Bus (52) + Bus (52) +

(Bua + 2800) (5357) + 38 (553) + Baa (552) = 0 (550 = 4016 (5555) -
4 4 4 4
201z +2056) (33573) = 4026 (55355) ~Daa (557) = Fis (aax4b) 4 (Fsy) -
4 4 2 2
2P+ 2Fs6) (55573) = 4F2s (ys) — Foe (57) + o (G) + MV (55) +

N3 (5) + M5y (5r) + 283, () + 20, (5m) = 0 (38)
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By (522) + 3By (o) + (Brz + 2Fes) (o) + Bao (52) + Fue (52) +
B 250 (2220 £ 950 (2] 52 (52) - s (520) -, (22 -

2Py + 2Fse) () — AFas (o) —Fa (52) — Hiy (525) — 46 () -

2(Hyz + 2Heo) (55,7 zay) 4y (3m505) = Haz (5) + Los (55) + 2Las (5 +
Lua (525) + NI (522) + V5 (525) + 5 (52) + 5 (52) + 28, () +
2Ny, (Zx;”y) =0 (39)

2.6 Analytical Solution

The simply supported boundary conditions of the composite plate model were implemented
to evaluate the analytical solution of the governing equations based on Navier’s method, so
the following expansions of displacements have been assumed for cross-ply and angle-ply
laminates, respectively (Ebrahimi et al., 2021):

atx=0andx = a:vy =w, =w, = M2 =M =0 (40)
aty=0andy = a:ug =w, =w; =My =My =0 (41)
Up(X,Y,t) = Xin=1 Xm=1 UmnC0s axsin By (42)
0o (X, /) = 35y Teney Vpnsin axcos By (43)
wP(x,y,t) = Lozt Zm=1 Wipnsin axsin By (44)
WSy, 0) = S2, Yon; Wiinsin axsin By (45)
atx=0andx =a:u,=wp, =ws =M =M =0 (46)
aty =0andy = a:vy =wp, =ws =My =My =0 (47)
Uo(X,Y,t) = Xin=1 Xm=1 UmnsSin axcos By (48)
Vo (%, ¥,t) = Ln=1 Xm=1 VmnCOs axsin By (49)
wP(x,y,t) = Znzy Zm=1 Wipnsin axsin By (50)
WSy, 0) = Souy Yon; Wiinsin axsin By (51)

2.7 Thermal Buckling Analysis

Inserting Egs. (42) to (4) and Egs. (48) to (5) into Egs. (3) to (39), The eigenvalue problem
for cross-ply and angle-ply is formulated, respectively (Yahea and Majeed, 2021):

Ki1 Kz K3 K14 Umnn 0
Ki, K K33 K24 Vinn 0 52
Ki3 Ky —(NxTxa2+NyTyﬁ2)AT K3, — (N a? + N, B?)AT wk (7)o (52)
Kis Kju ( ex +N5y.32)AT Ky — ( ox +N;yﬁz)AT Winn 0

3. RESULTS AND DISCUSSION

In the present study, hyperbolic and polynomial shape functions (Kada and Abdelouahed,
2022) are used for the first time in thermal buckling analysis of laminated composite plates
based on a four-variable refined theory. The numerical result was evaluated by
programming a code for MATLABR2024a software to compute the critical buckling
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temperature. Two types of laminated schemes (cross and angle) were investigated for two
types of plate shapes (square and rectangular).

3.1 Validation of Results

Numerical values of Critical buckling temperature are computed based on changing various
parameters such as thickness ratio (a/h), aspect ratio (a/b), orthotropic ratio (E1/Ez2), and
thermal expansion coefficient ratio (az2/a1), and compared with previous study results of the
same field, showing good agreement.

3.1.1 Model Material Constants

Three models of material constants are to be used as follows (Yahea and Majeed, 2021):
Material 1: E1/E2=25, G12=G13=0.5E2, G23=0.2E2, v12=0.25, oa2/a1=3, E2=1Gpa, ai1=1.
Material 2: E1/E0=30, E2/Eo=1, G12=G13=0.65E0, G23=0.639E0, v12=0.21, a2/a0=16,
a1/a0=-0.21, Eo=10Gpa, ao=10-¢.

Material 3: E1/Eo=15, G12=G13=0.5E0, G23=0.3356, v12=0.3, oaz/00=1, ai1/0a0=0.015,
Eo=1Gpa, ao=10-¢.

3.1.2 Cross-Ply Composite Plates

Numerical findings of normalized critical buckling temperature on the form
(ATcr=T*a2?*h/m2*D22) and using material 1 for Table 1, while using material 3 for (Table 2
to 4) and nondimensional critical temperature (ATcr=T*ao) as follows (Yahea and Majeed,
2021).

Critical temperature evaluated in Table 1 The cross-ply laminate plate is compared with the
results from previous studies. In this analysis, a symmetric scheme of laminates is used for
a square composite plate. The numerical values of (ATcr) obtained based on this study
showed good agreement with other theories, and it is closer to those obtained from (TSDT?)
for both thick and thin plates. It also shows the effect of the number of layers and thickness
on the critical buckling temperature. The increase in laminates produces an increase in
buckling critical temperature; furthermore, as thickness increases, (ATcr) decreases due to
diminution in stiffness (the reverse results due to dividing (ATcr) by D22).

Table 1. Dimensionless buckling temperature (ATcr) of a square simply supported plate cross-ply
scheme for various values of thickness ratios (a/h) (Shu and Sun, 1994;Yahea and Majeed, 2021)

Lay-up a/h TOT? RPT TSDT? Present
(0/90)s 4 0.0575 0.07115 0.07155 0.071150
10 0.1522 0.17492 0.175 0.174918

100 0.2435 0.24405 0.244 0.244050

1000 0.245 0.2451 0.245 0.245023

(0/90)2s 4 0.0315 0.03348 0.03367 0.033482
10 0.0797 0.08231 0.08237 0.082314

100 0.1148 0.11485 0.11484 0.114847

1000 0.1153 0.11530 0.1153 0.115305

(0/90)ss 4 0.0247 0.02541 0.02555 0.025411
10 0.0621 0.06247 0.06251 0.062471

100 0.0872 0.08716 0.08716 0.087161

1000 0.0875 0.08759 0.08750 0.087508
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Based on the numerical values of (ATcr) evaluated in Table 2. which explains the correlation
of (ATcr) with both aspect ratios (a/b) and thickness ratio (a/h), for both symmetric and
antisymmetric laminated plates. (ATcr) decreases when (a/h) increases, due to thickness
reduction. On the other hand, (ATcr) increases when (a/b) increases, referring to stiffness
changes when changing these design parameters.

Table 3 shows the correlation between the normalized critical buckling temperature with
both different thermal expansion coefficient ratios (a2/ a1) and thickness ratio (a/h). Results
revealed that the increase of (az/ a1) produces a decrease in (ATcr) for (0/90)s and (0/90)3
laminates. This increase in (az/ a1) produces a greater mismatch in how different plies want
to expand. This mismatch directly translates into higher internal compressive stresses,
which drive buckling, leading to a lower (ATcr).

Table 2. Normalized critical buckling temperature (ATcr) of cross-ply composite plate for both
symmetric and antisymmetric laminates with different aspect ratios (a/b) and thicknesses (a/h).

layup a/b ATcr
a/h
4 6 10 30 100

(0/90)s 1 0.2649 0.1726 0.0819 0.0108 0.0010

3 0.3440 0.2710 0.1661 0.0288 0.0028

6 0.4430 0.3792 0.2985 0.0917 0.0104

8 0.5052 0.4216 0.3456 0.1385 0.0181

(0/90)3 1 0.2555 0.1652 0.0778 0.0102 0.0009

3 0.4408 0.3737 0.2722 0.0650 0.0067

6 0.6182 0.4978 0.4074 0.1854 0.0268

8 0.7764 0.5759 0.4555 0.2509 0.0458

Table 4 demonstrate the relation between the normalized critical buckling temperature and
both orthotropy ratio (E1/E2) and thickness ratio (a/h). An increase in (E1/E2) makes the
laminates much stiffer in bending. A stiffer structure can withstand higher compressive
loads (thermal loads) before it becomes unstable and buckles; that is, higher (ATcr). Also,
this behavior is shown in Fig. 1 for different cross plies. Different buckling modes (deformed
shape) of square, symmetric cross-ply (0/90)ss, with thickness ratio a/h=10, are drawn in

Figure 2, which have the same behavior, resulted from other theories.

Table 3. Normalized critical temperature (ATcr) of cross-ply square composite plate for both

symmetric and antisymmetric laminates with different thermal expansion coefficient ratio (a2/ a1).

layup o2/ o1 ATcr
a/h
4 6 10 30 100

(0/90); 4 1.3177 0.8583 0.4074 0.0539 0.0050

6 1.1694 0.7617 0.3616 0.0478 0.0044

8 1.0511 0.6846 0.3250 0.0430 0.0040

10 0.9545 0.6217 0.2951 0.0391 0.0036

(0/90)3 4 1.2711 0.8217 0.3870 0.0509 0.0047

6 1.1280 0.7292 0.3434 0.0452 0.0042

8 1.0139 0.6554 0.3087 0.0406 0.0037

10 0.9207 0.5952 0.2803 0.0369 0.0034
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Table 4. Normalized critical temperature (ATcr) of cross-ply square composite plate for different

orthotropy (E1/E2).
layup a/h ATcr
E1/E;
10 15 25 30 40
(0/90) 4 0.1782 0.1893 0.2036 0.2081 0.2134
10 0.0403 0.0443 0.0506 0.0532 0.0575
20 0.0107 0.0119 0.0138 0.0146 0.0160
100 0.0004 0.0005 0.0006 0.0006 0.0007
(0/90): 4 0.2233 0.2445 0.2624 0.2649 0.2636
10 0.0597 0.0727 0.0917 0.0987 0.1088
20 0.0165 0.0207 0.0277 0.0306 0.0354
100 0.0007 0.0009 0.0012 0.0013 0.0016
(0/90)4 4 0.2357 0.2596 0.2793 0.2819 0.2803
10 0.0645 0.0796 0.1014 0.1093 0.1205
20 0.0180 0.0229 0.0311 0.0345 0.0401
100 0.0007 0.0010 0.0013 0.0015 0.0018
© 0.15
S
=
= 013
g
w 0.11
T § 0.09
E 2
5 2 007 (0/90)2s
T5 (0/90)2
= = 0.05 (0/90)4
£
5 0.03 + : : : : : : : | : |
= 1 2 3 4 5

E,/E, (dimensionless)

Figure 1. Normalized critical buckling temperature (ATcr=T*ao) for symmetric and
antisymmetric cross-ply plates for different orthotropy ratios (E1/E2) using material 3 and
thickness a/h=10.
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Figure 2. Thermal buckling mode of square plate, symmetric cross-ply (0/90)4s,a/h=10.
3.1.3 Angle-Ply Composite Plates

The analysis of normalized critical buckling temperature (ATcr=T*a0*103) using material 2
for (Table 5 and 6) of antisymmetric angle-ply composite plates is performed in this section.
In Table 5. critical buckling temperature of square antisymmetric angle-ply (45/-45) with a
thickness ratio of (a/h=10) is calculated for various values of thermal expansion coefficient
ratio, results showed inverse relation between (az/ a1) and (ATcr), the present work results
also showed less than (2.78*10-3%) discrepancy as compared with TOST (Lee, 1997) and
good agreement with other theories, while calculating (ATcr) based on various values of
modulus (E1/Ez2) ratio, and comparing results with other theories was conducted in Table 6.
(ATcr) of moderate thickness (a/h=10) antisymmetric laminate plate results showed a
directrelation between (ATcr) and (E1/E2), which is physically correct as the higher stiffness
influenced by increased (E1/Ez2) causes an increase in (ATcr). Results of the present work
compared with TOST show a maximum discrepancy of (0.00243%).

Table 5. Normalized critical buckling temperature (ATcr) of antisymmetric (45/-45)s simply
supported square composite plate. (Lee, 1997; Yahea and Majeed, 2021)

- LWT! TOST? RPT TSDT3 | Present| Discrep DQ results
i (13x13) ancy GRT (9%9
S *10-3% P=3 P=5 =7
(TOT)

1 | 9.3134 | 10.3868 | 10.385 | 10.3877 | 10.3867| 0.96 10.387 | 10.471 | 10.564
5 | 8.0703 | 9.0003 | 89991 | 9.0011 | 9.0002 1.11 9.0003 | 9.0730 | 9.1537
10 | 69163 | 7.7134 | 7.7123 7.714 7.7133 1.30 7.7133 | 7.7757 | 7.8448
20 | 5.3782 5.998 59972 | 59985 | 5.9979 1.67 5.9980 | 6.0465 | 6.1002
30 | 43998 | 4.9068 | 4.9062 | 49072 | 4.9067 2.04 4.9068 | 4.9464 | 4.9904
40 | 3.7225 | 4.1515 | 4.151 4.1519 | 4.1515 0 4.1515 | 4.1851 | 4.2223
50 | 3.226 3.5978 | 3.5973 3.598 3.5977 2.78 3.5977 | 3.6268 | 3.6591
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Table 6. Normalized critical temperature (ATcr) for various values of modulus ratio (E1/E>) for
antisymmetric angle-ply (45/-45)3 square laminate composite plate. (Lee, 1997; Yahea and

Majeed, 2021)

LWT!® | TOST? RPT TSDT3 | Present & o DQ results
EN (13x13) ® e GRT (9x9)
5 282 [ P=3 | P=5 | P=7

|2 * | (TOST)

2 | 24672 | 24721 24721 24722 | 24721 0 24721 |2.4744 |2.4771
5 |4.6703 |4.7728 47728 |4.7730 | 4.77284 0.84 47728 |4.7823 | 4.7928
10 | 8.1229 |8.5390 8.5386 |8.5391 | 8.53899 0.12 8.5390 |8.5697 |8.6029
15 | 11.507 |12.352 | 12.3509 |12.3518 | 12.3517 2.43 12.3517 | 12.413 |12.4799
20 | 14954 |16.309 | 16.3079 |16.3094 | 16.3090 0 16.3090 | 16.409 |16.5195
30 | 22.482 | 25.073 | 25.0700 |25.0756 | 25.0732 0.8 25.0733 |25.2756 |25.5007
40 | 31.711 |35.904 | 35.8980 |35.9117 | 35.9040 0 35.9041 |36.2438 |36.6308
50 | 44.290 |50.684 | 50.6737 |50.7028 | 50.6839 0.2 50.6840 |51.2138 |51.8351

Dimensionless critical buckling temperature (ATcr=T*ao0) of an antisymmetric ten-layer
simply supported composite plate of material 3 is shown in Table 7. Various values of
thickness ratios and fiber angles were taken into account for comparing (ATcr) evaluated
based on the present theory and compared with previous theories, showing a maximum
discrepancy of (13.09%) when compared with 3D! (Noor and Burton, 1992) and good
agreement with other theories. The maximum value of (ATcr) appears at (0 =45).

Table 7. Dimensionless buckling temperature (ATcr) of square simply supported antisymmetric
(86/-8)s angle-ply composite plate. (Noor and Burton, 1992; Babu and Kant, 2000; Matsunaga,
2006; Yahea and Majeed, 2021)

= | 0 3Dt TOT?2 GHOT3 TSDT* Present |Discrepancy| GRT
w % P=7
0 |7.463*10-4|7.470*%10-4 |7.463*10-4 | 7.469*10-4 | 7.4697*10-4 0.09 7.466*10-4
8 15 [1.115*10-3[1.116*10-3 |1.115*10-3 |1.1159*10-3 | 1.1159*10-3 0.08 1.115*%10-3
= | 30 |1.502*10-3|1.502*10-3 [1.502*10-3 | 1.502*10-3 | 1.5023*10-3 0.02 1.502*10-3
45 ]1.674*10-3 |1.675*10-3 |1.675*10-3 | 1.675*10-3 | 1.6750*10-3 0.06 1.675%10-3
0 |1.739*10-2 - 1.739%10-2 | 1.773*10-2 | 1.7729*10-2 1.95 1.757*10-2
o | 15 |2.528*10-2 - 2.531*%10-2 | 2.59*10-2 | 2.5906*10-2 2.48 2.562*%10-2
N 130 [3.446*10-2 - 3.456*10-2 | 3.477*10-2 | 3.4771*10-2 0.90 B.484*10-2
45 |3.81*10-2 - 3.826%10-2 | 3.844*10-2 | 3.8438*10-2 0.89 3.859*%10-2
0 |5.782*10-2|5.778*10-2 |5.782*10-2 | 6.127*10-2 | 6.1250*10-2 5.93 5.963*10-2
o | 15 |7.904*10-2(7.920*10-2 |7.933*10-2 | 8.481*10-2 | 8.4779*10-2 7.26 B.211*10-2
130 0.1100 0.1108 0.1110 0.1130 0.112984 2.71 0.1137
45 | 0.1194 0.1208 0.1209 0.1225 0.122478 2.58 0.1240
0 0.1029 - 0.1029 0.1125 0.112412 9.24 0.1081
L] 15| 0.1322 - 0.1330 0.1468 0.146637 10.92 0.1399
Q| 30 | 0.1859 - 0.1888 0.1942 0.194005 4.36 0.1958
45 | 0.1981 - 0.2023 0.2065 0.206253 4.12 0.2101
0 0.1436 0.1417 0.1436 0.1593 0.159112 10.80 0.1524
w15 | 0.1753 0.1746 0.1765 0.1979 0.197465 12.64 0.1874
30 | 0.2377 0.2421 0.2432 0.2604 0.259755 9.28 0.2575
45 - 0.2651 0.2656 0.2728 0.272072 - 0.2777
Tl 0.1777 - 0.1777 0.1980 0.197419 11.10 0.1893
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15 0.2087 - 0.2103 0.2370 0.236027 13.09 0.2239
30 - - 0.2754 0.3105 0.309211 - 0.2922
45 - - 0.3114 0.3221 0.320564 - 0.3266
0 0.2057 - 0.2057 0.2287 0.227717 10.70 0.2190
L |15 0.2347 - 0.2367 0.2668 0.265114 12.96 0.2518
2130 - - 0.2988 0.3413 0.337603 - 0.3170
45 - - 0.3443 0.3592 0.356640 - 0.3614

Table 8 demonstrate the effect of both aspect ratio (a/b) and thickness ratio (a/h) on
normalized critical buckling temperature (ATcr=T*ao) of antisymmetric laminate plates
[(45/-45)2, (45/-45)3] using material 3, as the thickness ratio (a/h) increases critical
temperature decrease due to thickness reduction, on the other hand Increase in aspect ratio
(a/b) causes increase in (ATcr), while buckling temperature comparison between angle and
cross plates is shown in Fig. 3.

Table 8. Normalized critical buckling (ATcr) temperature of antisymmetric laminate
composite plate for various aspect ratios (a/b) and thickness ratios (a/h).

Lay up a/b ATcr
a/h
4 10 20 100
(45/-45): 1 0.300352 0.110221 0.033973 0.001469
2 0.371143 0.183217 0.066577 0.003119
3 0.416061 0.244054 0.103787 0.005373
4 0.453709 0.293141 0.143665 0.008375
(45/-45)3 1 0.313338 0.118319 0.036927 0.001605
2 0.383853 0.194093 0.071819 0.003399
3 0.428967 0.255853 0.111058 0.005838
4 0.467693 0.305075 0.152618 0.009080
0.35
£
£ 03 (0/90)2
St
2 025 (574572
£ 2
55
.g £ 0.15
= g 0.1
s
g 0.05
St
‘I
4 6 10 30 100

a/h (dimensionless)

Figure 3. Normalized critical buckling temperature (ATcr=T*uo) for cross-ply (0/90)2 and
angle-ply (45/-45)2 plates for different thickness (a/h) values using material 3.
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Figure 4. Flow chart for computer programming to calculate critical buckling temperature.

4. CONCLUSIONS

This study introduces, for the first time, a refined hyperbolic shear deformation theory to
analyze the thermal buckling of simply-supported cross-ply and angle-ply laminated plates
d. The theory uses a four-variable displacement field with a hyperbolic function to accurately
represent transverse shear strain across the thickness, eliminating the need for a shear
correction factor. Based on Hamilton's principle and solved via Navier's method, the model's
results are validated against other shear deformation theories. The numerical findings
demonstrate that this new theory excels at predicting the critical buckling load of laminated
plates, showing good agreement with more complex higher-order models. Another
conclusion is that the thermal buckling resistance is not an inherent property of the
constituent materials alone but is a complex, coupled function of the laminate's stacking
sequence, the number of layers, and the orthotropic characteristics of the material, as
expected. The key findings can be summarized as follows:

e Increasing the number of layers (increasing thickness) naturally increases (ATcr) for a
fixed thickness. Laminates with a greater number of thinner plies (allowing for more
refined angle transitions) offered a performance advantage over those with fewer.

e Symmetric laminates consistently outperform antisymmetric ones by eliminating
detrimental bending-extension coupling, leading to higher critical buckling
temperatures.

e Angle-ply schemes (6/-6)n often provide superior, tunable buckling resistance compared
to cross-ply (0/90)n, by aligning fibers with the dominant thermal stress.

e A high fiber-direction stiffness (E;) and a low coefficient of thermal expansion («;) are
key. The material's anisotropy (E;/E;) dictates the optimal stacking sequence and the
higher critical temperature.

NOMENCLATURE
Symbol Description Symbol Description
a,b Plate length and width (m) | Ny,Nyy,Nyy | membrane forces (N/m)
A;;,Bi;,D;,Ey,| Stiffness terms (N/m) NT,,NTyy, | Thermally induced membrane forces
Fij, Hij L NTyy (N/m)
E1,EzE3 Youngs modulus (GPa) Wh,Ws displacement in bending, shear, respectively|
h Plate thickness (m) XY, Z Coordinate axes
k Number of plate layers € &y, & Strain components (m/m)
Mpby,,Mby,, | Bending moment per unit VyzY x Transverse shear strain (m/m)
Mby, length (N.m/m)
Msyy, Msyy, | Moment per unit length due | Gy Stress components (GPa)
Msyy to shear (N.m/m)
Qy, Qx Transverse shear force (N) | viz, vi2 Poison’s ratio
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Appendix

1. Stiffness matrix elements for cross-ply laminates:

ke
|

= (Ap1a® +AgeB?)  ,  Kiz = (Aip + Age)af

Ki3 = —(B11a® + (Byz + 2Bgg)af?) , Kip = —(Eq1a® + (Eqp + 2Ege)af?)

K2z = (Ass®® + A328%), Kz3 = —(Bya B> + (Biz + 2Bgg)a* )

Kza = —(EpB° + (E1z + 2Es6)a?PB)

K33 = (Dy1a* + 2(D1; + 2Dgg)a?B? + Dy 8%)

K3y = (Fiia* + 2(Fip + 2Fg6)a? B + Fpp8%)

Ksa = (Hypa* + 2(Hyp + 2Hgg)a®B? + Hppf* + Lssa® + LayS?)

A1 = Az = B1g = Bag = D16 = Dy = E16 = Ez6 = F16 = F26 = H16 = Hze = L4ys = 0

2. Stiffness matrix elements for Angle-ply laminates:

K1 = (A110® + AgeB?), K1z = (A1 + Age)afB

Ki3 = —(3B16a*B + Byf3%), K14 = —(3A160*B + Ez6>)

Kyp = (Age@® + Az28%),Kp3 = —(Bisa® + 3Bygaf?)

Kyy = —(E160® + 3E36a?)

K33 = (Dy1a* + 2(Dyp + 2Dgg)a®B? + Dy f*)

K3y = (Fyya* + 2(Fi; + 2Fs)a®B? + Fpp %)

Kia = (Hipa* + 2(Hyp + 2Hgg)a?B% + Hppf* + Lssa® + Lysf?)

A1 = Aze = B11 = Bz = Byy = Beg = D16 = D2 = E11 = E1p = E3p = Eg6 = Fis
=Fy6 = Hig = Hyg = Lys = 0
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