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ABSTRACT 

This paper investigates the thermal buckling of laminated composite plates based on a 

refined plate theory that incorporates four variables, using hyperbolic and polynomial shear 
strain functions for the first time to analyze thermal buckling of a laminated plate with all 
edges simply supported. The proposed shear function incorporates the variation of 
transverse shear stress over the thickness of the plate in a parabolic form and achieves zero 
traction on the upper and bottom surfaces of the plate without implementing a shear 
correction factor. Equations of motion are derived according to the principle of virtual 
displacement. The analytical solution is carried out using Navier’s solution. The numerical 
results of the orthotropic properties of both cross-ply and angle-ply laminates are calculated 
by programming a MATLAB code. In the present study, the influence of changing various 
design parameters, such as aspect ratio (a/b), orthotropic ratio (E1/E2), thickness ratio 
(a/h), and thermal expansion coefficient ratio (α2/ α1), for symmetric and antisymmetric 
laminated composite plates is analyzed. The results are evaluated by the assumption of 
uniform temperature variation through the plate, which exhibits good agreement for both 
thick and thin plates compared with previous studies. 
 
Keywords: Thermal buckling, Composite plates, Refined shear theory. 
 

1. INTRODUCTION 
 

The broad use of laminated composite plates in modern manufacturing and technological 
fields, especially aerospace, automotive, and renewable energy, is due to their anisotropic, 
tailorable, and high-stiffness to light-weight properties, unlike traditional metals (Elsisi et 
al., 2025). However, these benefits come with significant complexities in analysis. Many 
theories have been made to come up with simple yet exact analytical methods and closed-
form solutions. Many applications of these laminates composite used in structures that 
subjected to wide variation of temperature values caused by surrounding atmosphere which 
affect the exposure layers of plate and causes serious stresses, to overcome this situation, 
it’s necessary to manufacture those plates using many thin orthotropic bonded layers with 
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varying material properties, which require precise mathematical modelling theories to 
account for thermal environment and its effect on those laminated plates (Khandan et al., 
2012; Odeh et al., 2024; Qian et al., 2024). (Xing and Wang, 2017) conducted a study 
using a Graded composite thin plate varying according to a power law through its thickness 
as a model to investigate the Thermal bifurcation point with a variety of boundary conditions 
under the influence of both linear and nonlinear temperature environments. The separation-
of-variables method was applied, and a new mathematical solution was also proposed. 
(Torabi et al., 2019) adopted higher order deformation theory for investigating thermal 
buckling for a different shape of nanotube reinforced composite (FG-CNTRC) plates 
influenced by thermal loads, considering material thermo-mechanical properties affected by 
temperature. (Abdulrazzaq et al., 2020) investigated thermo-elastic buckling of small-
scale functionally graded material (FGM) nano-size plates with clamped edge conditions 
resting on an elastic substrate, subjected to both linear and non-linear temperature 
distributions. In the study, the FGM had an exponential gradient across its thickness. (Daikh 
et al., 2020) applied TOT in the study of thermal buckling and natural vibration of single-
walled carbon nanotubes reinforced laminates using (FGM). A study by (Nguyen et al., 
2020) developed a new higher-order shear deformation theory and used a novel 
exponential shape function within the Ritz method. The effect of geometrical nonlinearities 
due to pressure load on the thermal buckling and dynamic characteristics of composite 
plates using (FSDT) was investigated by (Yang et al., 2020). Based on five variables, the 
refined plate theory based on parabolic form shape function (Hashim and Sadiq, 2021) 
conducted a study to investigate thermal buckling. (Li et al., 2021) carried out a 
thermomechanical buckling analysis of sandwich plates using four variables, the shear 
deformation theory of (FGM). The optimization study of design and control of thermal 
buckling of piezoelectric fibre reinforced composite actuators using four variable shear 
deformation theory and accounting for stress variation through thickness by a trigonometric 
function was conducted by (Xue et al., 2021). (Yahea and Majeed, 2021) studied thermal 
buckling of (SS) cross and angle composite plate in the framework of four variable 
trigonometric functions. Modern studies, such as the work of (Anandan et al., 2022) uses 
models of composite plates reinforced by natural fibres like Flax and test them numerically 
under thermal loads according to finite element analysis runs in ANSYS Workbench. Another 
approach is the use of (FSDT) in the process of analysing  thermal buckling of reinforced 
laminated composite plates with cutouts using level sets, a novel method evolved by 
(Devarajan and Kapania, 2022).  
(Hajlaoui and Dammak, 2022) investigated thermal post-buckling of (FG) plates with two 
material properties based on temperature decency (dependent and independent) in three-
dimensional coordinates through the use of a modified first-order enhanced solid shell 
element. The work of (Ma and Jin, 2022) focused on the analysis of the thermal buckling of 
graphene-reinforced composite (FG-GRC) laminated thick plates using the seven-unknown 
theory. A study by (Kareem, 2024;  Majeed and Sadiq, 2022) developed thermal buckling 
analyses of laminated plates based on improved higher-order shape functions with 
parameter ‘’m’’; the improvement extends the theory to mathematically modelling thin and 
thick plates. (Miglani et al., 2022) investigated the bending and buckling of composite 
plates due to thermal load using high-order shear deformation theory of a six-variable quasi-
3D model. The use of high-order shear deformation theory to represent the effect of thermal 
buckling on porous thick rectangular plates made of FGM was conducted by (Saad and 
Hadji, 2022). (Varelis and Saravanos, 2022) presented a nonlinear model for 
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piezoelectric laminated plates that couples thermal, electrical, and mechanical fields. Using 
a developed finite element, it quantifies how pyroelectric and piezoelectric effects impact 
thermal buckling and the nonlinear response of smart composite plates under different 
temperature conditions. Thermal buckling analyses of cylindrical micro shells made of 
(FGM) were conducted by (Mehditabar et al., 2023) using classical high-order shear 
deformation theory. A study by (Moradi Haghighi and Alibeigloo, 2023) was conducted 
on rectangular carbon nanotubes using third-order shear deformation theory to investigate 
thermal buckling and free vibration of (FGM) Further application of high-order theories 
utilized by (Bracaglia et al., 2024) in the thermal buckling of Variable Angle Tow (VAT) 
composite plates, assuming linear pre-buckling, proposes linear eigenvalue analysis. 
(Majeed and Sadiq, 2025) proposed the same theory and the same shape function used in 
this paper, but to investigate the mechanical buckling of rectangular laminated plates with 
all supported edges.  
 In the present work function, is used to investigate thermal buckling of both cross-ply and 
angle-ply laminated plate for the first time, which is a combination of hyperbolic and 
polynomial and this shape function satisfies the zero strain on the free surfaces of the plate 
without the need for shear correction factor, also has only four unknown variables, which 
are less than variables used by high order shear deformation. The governing equations of 
motion are derived from Hamilton's principle of total potential energy and solved for simply 
supported boundary conditions using the Navier series. The accuracy of the results was 
validated by comparing them to other results from different theories. 
 

2. THEORY AND FORMULATION 
 

In the present study formulation of the problem considers a composite plate subjected to a 
system of in-plane compressive loads due to thermal effects. 
 

2.1 Kinematics 
 

Based on the work of (Ebrahimi et al., 2021), the displacement field of the model is 
represented as : 
 

𝑢(𝑥,𝑦,𝑧) = 𝑢0(𝑥,𝑦) + 𝑧 (−
𝜕𝑤𝑏

𝜕𝑥
) + 𝐹(𝑧) (−

𝜕𝑤𝑠

𝜕𝑥
)                         (1) 

 

𝑣(𝑥,𝑦,𝑧) = 𝑣0(𝑥,𝑦) + 𝑧 (−
𝜕𝑤𝑏

𝜕𝑦
) + 𝐹(𝑧) (−

𝜕𝑤𝑠

𝜕𝑦
)                                                  (2) 

 
 𝑤(𝑥,𝑦,𝑧) = 𝑤

𝑏
(𝑥,𝑦) + 𝑤

𝑠
(𝑥,𝑦)                                                                                                                      (3) 

 

Where u0, v0, wb, and ws are the four displacement components, F(z) represents the shape 
function, which describes the transverse shear stress through the thickness, achieving zero 
stress at the free edges of the plate. For the present study, it was described according to 
(Kada and Abdelouahed, 2022) as below: 

𝐹(𝑧) = 𝑧 − ℎ (sinh (
𝑧

ℎ
)) + ((

4𝑧3

3ℎ2
) cosh(0.5))                         (4) 

2.2 Strain Relations 
 

Formulating the linear strain-displacement relations correlated to the displacement field 
(Reddy, 2003) just as:  
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{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} = {

𝜀𝑥𝑥
0

𝜀𝑥𝑥
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝜀𝑥𝑥
1

𝜀𝑥𝑥
1

𝛾𝑥𝑦
1

} + 𝐹(𝑧) {

𝜀𝑥𝑥
2

𝜀𝑦𝑦
2

𝛾𝑥𝑦
2

}                          (5) 

 
Where: 

𝜀𝑖𝑗 =
1

2
(𝑈𝑖,𝑗 + 𝑈𝑗,𝑖)                             (6) 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = {

𝛾𝑦𝑧
0

𝛾𝑦𝑧
0 } + 𝐹

′(𝑧) {
𝛾𝑦𝑧
3

𝛾𝑦𝑧
3 }                            (7) 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑔(𝑧) {

𝜕𝑤s

𝜕𝑦

𝜕𝑤s

𝜕𝑥

}                             (8) 

Where: 

𝑔(𝑧) = 1 − 𝐹′(𝑧) = cosh (
𝑧

ℎ
) + (

4𝑧2

ℎ2
) cosh (0.5)                         (9) 

𝜀𝑧𝑧 = 0                            (10) 
 

2.3 Equations of Motion 
 

This section applies the Hamilton principle to formulate the governing equations of motion. 

0 = ∫  
𝑘

Ω0
  (𝛿𝑈 + 𝛿𝑉)𝑑𝑣                           (11) 

 

Where δU and δV are Virtual strain energy and Virtual external work done due to thermal 
effect, respectively. 
 

𝛿𝑈 = ∫  
𝐾

Ω0
 ∫  
𝑧𝑘+1
𝑧𝑘

  [{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} {

𝛿𝜀𝑥𝑥
𝛿𝜀𝑦𝑦
𝛿𝛾𝑥𝑦

}

𝑘

+ {
𝜎𝑦𝑧
𝜎𝑥𝑧

} {
𝛿𝛾𝑦𝑧
𝛿𝛾𝑥𝑧

}
𝑘

] 𝑑𝑧𝑑𝑥𝑑𝑦                     (12) 

 

𝛿𝑈 = ∫  
𝐾

𝛺0
  [{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

}{

𝛿𝜀𝑥𝑥
0

𝛿𝜀𝑦𝑦
0

𝛿𝛾𝑥𝑦
0

}

𝑘

+ {

𝑀𝑥𝑥
𝑏

𝑀𝑦𝑦
𝑏

𝑀𝑥𝑦
𝑏

}{

𝛿𝜀𝑥𝑥
1

𝛿𝜀𝑦𝑦
1

𝛿𝛾𝑥𝑦
1

}

𝑘

+ {

𝑀𝑥𝑥
𝑠

𝑀𝑦𝑦
𝑠

𝑀𝑥𝑦
𝑠
}{

𝛿𝜀𝑥𝑥
2

𝛿𝜀𝑦𝑦
2

𝛿𝛾𝑥𝑦
2

}

𝑘

+ {
𝑄𝑦
𝑄𝑥
} {
𝛿𝛾𝑦𝑧

0

𝛿𝛾𝑥𝑧
0
}

𝑘

] 𝑑𝑥𝑑𝑦              (13) 

𝛿𝑈 = ∫  
𝑘

𝛺𝑜
 

[
 
 
 
 
 

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

}

{
 
 

 
 

𝜕𝛿𝑢0

𝜕𝑥
𝜕𝛿𝑣0

𝜕𝑦

𝜕𝛿𝑢0

𝜕𝑦
+

𝜕𝛿𝑣0

𝜕𝑥 }
 
 

 
 
𝑘

− {

𝑀𝑥𝑥
𝑏

𝑀𝑦𝑦
𝑏

𝑀𝑥𝑦
𝑏

}

{
 
 

 
 
𝜕2𝛿𝑤𝑏

𝜕𝑥2

𝜕2𝛿𝑤𝑏

𝜕𝑦2

2
𝜕2𝑤𝑏

𝜕𝑥𝜕𝑦}
 
 

 
 
𝑘

− {

𝑀𝑥𝑥
𝑠

𝑀𝑦𝑦
𝑠

𝑀𝑥𝑦
𝑠
}

{
 
 

 
 

𝜕2𝛿𝑤𝑠

𝜕𝑥2

𝜕2𝛿𝑤𝑠

𝜕𝑦2

2
𝜕2𝛿𝑤𝑠

𝜕𝑥𝜕𝑦 }
 
 

 
 
𝑘

+ {
𝑄𝑦
𝑄𝑥
} {

𝜕𝛿𝑤𝑠

𝜕𝑦

𝜕𝛿𝑤𝑠

𝜕𝑥

}

𝑘

]
 
 
 
 
 

𝑑𝑥𝑑𝑦              (14) 

Where: 

(𝑁𝑖 , 𝑀𝑖
𝑏 , 𝑀𝑖

𝑠) = ∑  𝑁
𝑘=1  ∫  

𝑧𝑘+1
𝑧𝑘

 𝜎𝑖
𝑘(1, 𝑧, 𝐹(𝑧))𝑑𝑧       ,      𝑖 = (𝑥𝑥, 𝑦𝑦, 𝑥𝑦)                    (15) 

 

(𝑄𝑗) = ∑  𝑁
𝑘=1  ∫ 𝜎𝑗𝑧

𝑘𝑧𝑘+1

𝑧𝑘
𝑔(𝑧)𝑑𝑧                 ,           𝑗 = (𝑦, 𝑥)                     (16) 

 

𝛿𝑉 = −
1

2
∫  
𝐾

𝛺0
 

[
 
 
 
 
 

{

𝑁𝑥𝑥
⊤

𝑁𝑦𝑦
⊤

𝑁𝑥𝑦
⊤

}𝛿

{
 
 

 
 (

𝜕𝑤

𝜕𝑥
)
2

(
𝜕𝑤

𝜕𝑦
)
2

(
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
)}
 
 

 
 
𝑘

]
 
 
 
 
 

𝑑𝑥𝑑𝑦                       (17) 
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𝛿𝑉 = −
1

2
∫  
𝐾

𝛺0
 

[
 
 
 
 
 

{

𝑁𝑥𝑥
⊤

𝑁𝑦𝑦
⊤

𝑁𝑥𝑦
⊤

}

{
 
 

 
 2(

𝜕𝑤

𝜕𝑥
) (

𝜕𝛿𝑤

𝜕𝑥
)

2 (
𝜕𝑤

𝜕𝑦
) (

𝜕𝛿𝑤

𝜕𝑦
)

(
𝜕𝛿𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
) + (

𝜕𝑤

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑦
)}
 
 

 
 
𝑘

]
 
 
 
 
 

𝑑𝑥𝑑𝑦                       (18) 

 

𝛿𝑉 = −∫  
𝑘

𝛺0
 

[
 
 
 
 
 

{

𝑁𝑥𝑥
⊤

𝑁𝑦𝑦
⊤

𝑁𝑥𝑦
⊤

}

{
 
 

 
 (

𝜕(𝑤𝑏+𝑤𝑠)

𝜕𝑥
) (

𝜕(𝛿𝑤𝑏+𝛿𝑤𝑠)

𝜕𝑥
)

(
𝜕(𝑤𝑏+𝑤𝑏)

𝜕𝑦
) (

𝜕(𝛿𝑤𝑏+𝛿𝑤𝑠)

𝜕𝑦

𝜕(𝜔𝑏+𝜔𝑠)

𝜕𝑦

𝜕(𝛿𝜔𝑏+𝛿𝜔𝑠)

𝜕𝑥
+
𝜕(𝜔𝑏+𝜔𝑠)

𝜕𝑥

𝜕(𝛿𝜔𝑏+𝛿𝜔𝑠)

𝜕𝑦 }
 
 

 
 
𝑘

]
 
 
 
 
 

𝑑𝑥𝑑𝑦                    (19) 

 
Where (w) is assumed to be the algebraic sum of the deflection caused by bending and shear 
modes through the thickness of the plate (Ebrahimi et al., 2021). 
 

{

𝑁𝑥𝑥
⊤

𝑁𝑦𝑦
⊤

𝑁𝑥𝑦
⊤

} = ∑  𝑁
𝑘=1 ∫  

𝑍𝑘+1
𝑍𝑘

[

𝑄‾11 𝑄‾12 𝑄‾16
𝑄‾12 𝑄‾22 𝑄‾26
𝑄‾16 𝑄‾26 𝑄‾66

] {

𝛼𝑥𝑥
𝛼𝑦𝑦
2𝛼𝑥𝑦

} 𝛥𝑇𝑐𝑟 𝑑𝑧                      (20) 

 

substituting Eqs. (14) and (19) into Eq. (11), integrating by parts and using divergence 
theory, then setting coefficients of (δu0, δv0, δwb, δws) to zero to evaluate governing 
equations as below: 

𝛿𝑢0 :         
𝜕𝑁𝑥𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0                          (21) 

𝛿𝑣0 :         
𝜕𝑁𝑦𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
= 0                          (22) 

𝑆𝑤𝑏: (
𝜕2𝑀𝑥𝑥

𝑏

𝜕𝑥2
+
𝜕2𝑀𝑦𝑦

𝑏

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
) + (𝑁𝑥𝑥

𝑇 𝜕2(𝑤𝑏+𝑤𝑠)

𝜕𝑥2
+ 𝑁𝑦𝑦

𝑇 𝜕2(𝑤𝑏+𝑤𝑠)

𝜕𝑦2
+ 2𝑁𝑥𝑦

𝑇 𝜕2(𝑤𝑏+𝑤𝑠)

𝜕𝑥𝜕𝑦
) = 0            (23)                                                                                                                                              

𝛿𝑤𝑠 :     (
𝜕2𝑀𝑥𝑥

𝑠

𝜕𝑥2
+
𝜕2𝑀𝑦𝑦

𝑠

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+
𝜕𝑄𝑦

𝜕𝑦
+
𝜕𝑄𝑥

𝜕𝑥
) + (𝑁𝑥𝑥

⊤ 𝜕2(𝑤𝑏+𝑤𝑠)

𝜕𝑥2
+ 𝑁𝑦𝑦

⊤ 𝜕2(𝑤𝑏+𝑤𝑠)

𝜕𝑦2
+

2𝑁𝑥𝑦
⊤ 𝜕2(𝑤𝑏+𝑤𝑠)

𝜕𝑥𝜕𝑦
) = 0                           (24) 

 
2.4 Constitutive Equations  
 

Based on linear solids' constitutive equations, elastic stress-strain relationships are 
represented. (Ebrahimi et al., 2021). 
 

𝑄11 =
𝐸1

1−𝑣12𝑣21
  , 𝑄12 =

𝑣12𝐸2

1−𝑣12𝑣21
  , 𝑄22 =

𝐸2

1−𝑣12𝑣21
                      (25) 

 

𝑄66 = 𝐺12    ,    𝑄44 = 𝐺23   ,    𝑄55 = 𝐺13                       (26) 
 

Where Gij, Eij and 𝑣𝑖𝑗 , are the shear modulus, Young's modulus, and Poisson's ratio of the 

plate in different planes. 

{

𝜎1
𝜎2
𝜎3
} = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] {

𝜀1
𝜀2
𝜀3
}                         (27) 

 

{
𝜎4
𝜎5
} = [

𝑄44 0
0 𝑄55

] {
𝜀4
𝜀5
}                         (28) 
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{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} = [

𝑄‾11 𝑄‾12 𝑄‾16
𝑄‾12 𝑄‾22 𝑄‾26
𝑄‾16 𝑄‾26 𝑄‾66

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

}                         (29) 

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} = [

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

]{

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝛾𝑥𝑦
0

} + [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] {

𝜀𝑥𝑥
1

𝜀𝑦𝑦
1

𝛾𝑥𝑦
1

} + [

𝐸11 𝐸12 𝐸16
𝐸12 𝐸22 𝐸26
𝐸16 𝐸26 𝐸66

] {

𝜀𝑥𝑥
2

𝜀𝑦𝑦
2

𝛾𝑥𝑦
2

}               (30) 

{

𝑀𝑥𝑥
𝑏

𝑀𝑦𝑦
𝑏

𝑀𝑥𝑦
𝑏

} = [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

] {

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝛾𝑥𝑦
0

} + [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

] {

𝜀𝑥𝑥
1

𝜀𝑦𝑦
1

𝛾𝑥𝑦
1

} + [

𝐹11 𝐹12 𝐹16
𝐹12 𝐹22 𝐹26
𝐹16 𝐹26 𝐹66

]{

𝜀𝑥𝑥
2

𝜀𝑦𝑦
2

𝛾𝑥𝑦
2

}               (31) 

{

𝑀𝑥𝑥
𝑠

𝑀𝑦𝑦
𝑠

𝑀𝑥𝑦
𝑠
} = [

𝐸11 𝐸12 𝐸16
𝐸12 𝐸22 𝐸26
𝐸16 𝐸26 𝐸66

] {

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝛾𝑥𝑦
0

} + [

𝐹11 𝐹12 𝐹16
𝐹12 𝐹22 𝐹26
𝐹16 𝐹26 𝐹66

] {

𝜀𝑥𝑥
1

𝜀𝑦𝑦
1

𝛾𝑥𝑦
1

} + [

𝐻11 𝐻12 𝐻16
𝐻12 𝐻22 𝐻26
𝐻16 𝐻26 𝐻66

] {

𝜀𝑥𝑥
2

𝜀𝑦𝑦
2

𝛾𝑥𝑦
2

}               (32) 

{
𝑄𝑦
𝑄𝑥
} = [

𝐿44 𝐿45
𝐿45 𝐿55

] {
𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
}                         (33) 

 

( 𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐷𝑖𝑗 , 𝐸𝑖𝑗, 𝐹𝑖𝑗 , 𝐻𝑖𝑗) = ∫  
𝑧𝑘+1
𝑧𝑘

 𝑄‾𝑖𝑗(1, 𝑧, 𝑧
2, 𝐹(𝑧), 𝑧 ⋅ 𝐹(𝑧), (𝐹(𝑧))2)𝑑𝑧 , 𝑖 = (1,2,6)         (34) 

𝐿𝑖𝑗 = ∫  
𝑘𝑘+1
𝑧𝑘

 𝑄‾𝑖𝑗(𝑔(𝑧))
2𝑑𝑧        ,     𝑖, 𝑗 = (4,5)                       (35) 

 

2.5 Equations of Motion in Terms of Displacements 
 

Substituting Eqs. (30) to (33) into Eqs. (21) to (2) to depict the governing equations (Reddy, 
2003): 
 

𝐴11 (
𝜕2𝑢0

𝜕𝑥2
) + 2𝐴16 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
) + 𝐴66 (

𝜕2𝑢0

𝜕𝑦2
) + 𝐴16 (

𝜕2𝑣0

𝜕𝑥2
) + (𝐴12 + 𝐴66) (

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)𝐴11 (

𝜕2𝑢0

𝜕𝑥2
) +

2𝐴16 (
𝜕2𝑢0

𝜕𝑥𝜕𝑦
) + 𝐴66 (

𝜕2𝑢0

𝜕𝑦2
) + 𝐴16 (

𝜕2𝑣0

𝜕𝑥2
) + (𝐴12 + 𝐴66) (

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) + 𝐴26 (

𝜕2𝑣0

𝜕𝑦2
) − 𝐵11 (

𝜕3𝑤𝑏

𝜕𝑥3
) −

3𝐵16 (
𝜕3𝑤𝑏

𝜕𝑥2𝜕𝑦
) − (𝐵12 + 2𝐵66) (

𝜕3𝑤𝑏

𝜕𝑥𝜕𝑦2
) − 𝐵26 (

𝜕3𝑤𝑏

𝜕𝑦3
) − 3𝐸16 (

𝜕3𝑤𝑠

𝜕𝑥2𝜕𝑦
) − (𝐸12 + 2𝐸66) (

𝜕3𝑤𝑠

𝜕𝑥𝜕𝑦2
) −

𝐸26 (
𝜕3𝑤𝑠

𝜕𝑦3
) = 0                                  (36) 

 

𝐴16 (
𝜕2𝑢0

𝜕𝑥2
) + (𝐴12 + 𝐴66) (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
) + 𝐴26 (

𝜕2𝑢0

𝜕𝑦2
) + 𝐴66 (

𝜕2𝑣0

𝜕𝑥2
) + 2𝐴26 (

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) + 𝐴22 (

𝜕2𝑣0

𝜕𝑦2
) −

𝐵16 (
𝜕3𝑤𝑏

𝜕𝑥3
) − (𝐵12 + 2𝐵66) (

𝜕3𝑤𝑏

𝜕𝑥2𝜕𝑦
) − 3𝐵26 (

𝜕3𝑤𝑏

𝜕𝑥𝜕𝑦2
) − 𝐵22 (

𝜕3𝑤𝑏

𝜕𝑦3
) − 𝐸16 (

𝜕3𝑤𝑠

𝜕𝑥3
) −

(𝐸12 + 2𝐸66) (
𝜕3𝑤𝑠

𝜕𝑥2𝜕𝑦
) − 3𝐸26 (

𝜕3𝑤𝑠

𝜕𝑥𝜕𝑦2
) − 𝐸22 (

𝜕3𝑤𝑠

𝜕𝑦3
) = 0                    (37) 

 

𝐵11 (
𝜕3𝑢0

𝜕𝑥3
) + 3𝐵16 (

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
) + (𝐵12 + 2𝐵66) (

𝜕3𝑢0

𝜕𝑥𝜕𝑦2
) + 𝐵26 (

𝜕3𝑢0

𝜕𝑦3
) + 𝐵16 (

𝜕3𝑣0

𝜕𝑥3
) +

(𝐵12 + 2𝐵66) (
𝜕3𝑣0

𝜕𝑥2𝜕𝑦
) + 3𝐵26 (

𝜕3𝑣0

𝜕𝑥𝜕𝑦2
) + 𝐵22 (

𝜕3𝑣0

𝜕𝑦3
) − 𝐷11 (

𝜕4𝑤𝑏

𝜕𝑥4
) − 4𝐷16 (

𝜕4𝑤𝑏

𝜕𝑥3𝜕𝑦
) −

2(𝐷12 + 2𝐷66) (
𝜕4𝑤𝑏

𝜕𝑥2𝜕𝑦2
) − 4𝐷26 (

𝜕4𝑤𝑏

𝜕𝑥𝜕𝑦3
)−𝐷22 (

𝜕4𝑤𝑏

𝜕𝑦4
) − 𝐹11 (

𝜕4𝑤𝑠

𝜕𝑥4
) − 4𝐹16 (

𝜕4𝑤𝑠

𝜕𝑥3𝜕𝑦
) −

2(𝐹12 + 2𝐹66) (
𝜕4𝑤𝑠

𝜕𝑥2𝜕𝑦2
) − 4𝐹26 (

𝜕4𝑤𝑠

𝜕𝑥𝜕𝑦3
) − 𝐹22 (

𝜕4𝑤𝑠

𝜕𝑦4
) + 𝑁𝑥𝑥

⊤ (
𝜕2𝑤𝑏

𝜕𝑥2
) + 𝑁𝑥𝑥

⊤ (
𝜕2𝑤𝑠

𝜕𝑥2
) +

𝑁𝑦𝑦
⊤ (

𝜕2𝑤𝑏

𝜕𝑦2
) + 𝑁𝑦𝑦

⊤ (
𝜕2𝑤𝑠

𝜕𝑦2
) + 2𝑁𝑥𝑦

⊤ (
𝜕2𝑤𝑏

𝜕𝑥𝜕𝑦
) + 2𝑁𝑥𝑦

⊤ (
𝜕2𝑤𝑠

𝜕𝑥𝜕𝑦
) = 0                   (38) 
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𝐸11 (
𝜕3𝑢0

𝜕𝑥3
) + 3𝐸16 (

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
) + (𝐸12 + 2𝐸66) (

𝜕3𝑢0

𝜕𝑥𝜕𝑦2
) + 𝐸26 (

𝜕3𝑢0

𝜕𝑦3
) + 𝐸16 (

𝜕3𝑣0

𝜕𝑥3
) +

(𝐸12 + 2𝐸66) (
𝜕3𝑣0

𝜕𝑥2𝜕𝑦
) + 3𝐸26 (

𝜕3𝑣0

𝜕𝑥𝜕𝑦2
) + 𝐸22 (

𝜕3𝑣0

𝜕𝑦3
) − 𝐹11 (

𝜕4𝑤𝑏

𝜕𝑥4
) − 4𝐹16 (

𝜕4𝑤𝑏

𝜕𝑥3𝜕𝑦
) −

2(𝐹12 + 2𝐹66) (
𝜕4𝑤𝑏

𝜕𝑥2𝜕𝑦2
) − 4𝐹26 (

𝜕4𝑤𝑏

𝜕𝑥𝜕𝑦3
)−𝐹22 (

𝜕4𝑤𝑏

𝜕𝑦4
) − 𝐻11 (

𝜕4𝑤𝑠

𝜕𝑥4
) − 4𝐻16 (

𝜕4𝑤𝑠

𝜕𝑥3𝜕𝑦
) −

2(𝐻12 + 2𝐻66) (
𝜕4𝑤𝑠

𝜕𝑥2𝜕𝑦2
) − 4𝐻26 (

𝜕4𝑤𝑠

𝜕𝑥𝜕𝑦3
) − 𝐻22 (

𝜕4𝑤𝑠

𝜕𝑦4
) + 𝐿55 (

𝜕2𝑤𝑠

𝜕𝑥2
) + 2𝐿45 (

𝜕2𝑤𝑠

𝜕𝑥𝜕𝑦
) +

𝐿44 (
𝜕2𝑤𝑠

𝜕𝑦2
) + 𝑁𝑥𝑥

⊤ (
𝜕2𝑤𝑏

𝜕𝑥2
) + 𝑁𝑥𝑥

⊤ (
𝜕2𝑤𝑠

𝜕𝑥2
) + 𝑁𝑦𝑦

⊤ (
𝜕2𝑤𝑏

𝜕𝑦2
) + 𝑁𝑦𝑦

⊤ (
𝜕2𝑤𝑠

𝜕𝑦2
) + 2𝑁𝑥𝑦

⊤ (
𝜕2𝑤𝑏

𝜕𝑥𝜕𝑦
) +

2𝑁𝑥𝑦
⊤ (

𝜕2𝑤𝑠

𝜕𝑥𝜕𝑦
) = 0                           (39) 

 

2.6 Analytical Solution  
 

The simply supported boundary conditions of the composite plate model were implemented 
to evaluate the analytical solution of the governing equations based on Navier’s method, so 
the following expansions of displacements have been assumed for cross-ply and angle-ply 
laminates, respectively (Ebrahimi et al., 2021): 
 
at 𝑥 = 0 and 𝑥 = 𝑎: 𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝑀𝑥

𝑏 = 𝑀𝑥
𝑠 = 0                     (40) 

at 𝑦 = 0 and 𝑦 = 𝑎: 𝑢0 = 𝑤𝑏 = 𝑤𝑠 = 𝑀𝑦
𝑠 = 𝑀𝑦

𝑠 = 0                     (41) 

𝑢0(𝑥, 𝑦, 𝑡) = ∑  ∞
𝑛=1 ∑  ∞

𝑚=1 𝑈𝑚𝑛𝑐𝑜𝑠 𝛼𝑥𝑠𝑖𝑛 𝛽𝑦                      (42) 
𝑣0(𝑥, 𝑦, 𝑡) = ∑  ∞

𝑛=1 ∑  ∞
𝑚=1 𝑉𝑚𝑛𝑠𝑖𝑛 𝛼𝑥𝑐𝑜𝑠 𝛽𝑦                      (43) 

𝑤𝑏(𝑥, 𝑦, 𝑡) = ∑  ∞
𝑛=1 ∑  ∞

𝑚=1 𝑊𝑚𝑛
𝑏 𝑠𝑖𝑛 𝛼𝑥𝑠𝑖𝑛 𝛽𝑦                      (44) 

𝑤𝑠(𝑥, 𝑦, 𝑡) = ∑  ∞
𝑛=1 ∑  ∞

𝑚=1 𝑊𝑚𝑛
𝑠 𝑠𝑖𝑛 𝛼𝑥𝑠𝑖𝑛 𝛽𝑦                      (45) 

at 𝑥 = 0 and 𝑥 = 𝑎: 𝑢0 = 𝑤𝑏 = 𝑤𝑠 = 𝑀𝑥
𝑏 = 𝑀𝑥

𝑠 = 0                     (46) 
at 𝑦 = 0 and 𝑦 = 𝑎: 𝑣0 = 𝑤𝑏 = 𝑤𝑠 = 𝑀𝑦

𝑠 = 𝑀𝑦
𝑠 = 0                     (47) 

𝑢0(𝑥, 𝑦, 𝑡) = ∑  ∞
𝑛=1 ∑  ∞

𝑚=1 𝑈𝑚𝑛𝑠𝑖𝑛 𝛼𝑥𝑐𝑜𝑠 𝛽𝑦                      (48) 
𝑣0(𝑥, 𝑦, 𝑡) = ∑  ∞

𝑛=1 ∑  ∞
𝑚=1 𝑉𝑚𝑛𝑐𝑜𝑠 𝛼𝑥𝑠𝑖𝑛 𝛽𝑦                      (49) 

𝑤𝑏(𝑥, 𝑦, 𝑡) = ∑  ∞
𝑛=1 ∑  ∞

𝑚=1 𝑊𝑚𝑛
𝑏 𝑠𝑖𝑛 𝛼𝑥𝑠𝑖𝑛 𝛽𝑦                      (50) 

𝑤𝑠(𝑥, 𝑦, 𝑡) = ∑  ∞
𝑛=1 ∑  ∞

𝑚=1 𝑊𝑚𝑛
𝑠 𝑠𝑖𝑛 𝛼𝑥𝑠𝑖𝑛 𝛽𝑦                      (51) 

 

2.7 Thermal Buckling Analysis 
 

Inserting Eqs. (42) to (4) and Eqs. (48) to (5) into Eqs. (3) to (39), The eigenvalue problem 
for cross-ply and angle-ply is formulated, respectively (Yahea and Majeed, 2021): 
 

{
 
 

 
 
𝐾11 𝐾12 𝐾13 𝐾14
𝐾12 𝐾22 𝐾23 𝐾24
𝐾13 𝐾23 𝐾33 − (𝑁𝑥𝑥

𝑇 𝛼2 +𝑁𝑦𝑦
𝑇 𝛽2)𝛥𝑇 𝐾34 − (𝑁𝑥𝑥

𝑇 𝛼2 +𝑁𝑦𝑦
𝑇 𝛽2)𝛥𝑇

𝐾14 𝐾24 𝐾34 − (𝑁𝑥𝑥
𝑇 𝛼2 +𝑁𝑦𝑦

𝑇 𝛽2)𝛥𝑇 𝐾44 − (𝑁𝑥𝑥
𝑇 𝛼2 +𝑁𝑦𝑦

𝑇 𝛽2)𝛥𝑇}
 
 

 
 

{

𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛

𝑏

𝑊𝑚𝑛
𝑠

} = {

0
0
0
0

}              (52) 

 
3. RESULTS AND DISCUSSION 
 

In the present study, hyperbolic and polynomial shape functions (Kada and Abdelouahed, 
2022) are used for the first time in thermal buckling analysis of laminated composite plates 
based on a four-variable refined theory. The numerical result was evaluated by 
programming a code for MATLABR2024a software to compute the critical buckling 
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temperature. Two types of laminated schemes (cross and angle) were investigated for two 
types of plate shapes (square and rectangular). 
 
3.1 Validation of Results  
 

Numerical values of Critical buckling temperature are computed based on changing various 
parameters such as thickness ratio (a/h), aspect ratio (a/b), orthotropic ratio (E1/E2), and 
thermal expansion coefficient ratio (α2/α1), and compared with previous study results of the 
same field, showing good agreement. 
 
3.1.1 Model Material Constants  

 

Three models of material constants are to be used as follows (Yahea and Majeed, 2021): 
Material 1:  E1/E2=25,    G12=G13=0.5E2,    G23=0.2E2,    ν12=0.25,    α2/α1=3,   E2=1Gpa,  α1=1. 
Material 2:  E1/E0=30,    E2/E0=1,    G12=G13=0.65E0,    G23=0.639E0,    ν12=0.21,    α2/α0=16,    
α1/α0=-0.21,    E0=10Gpa,    α0=10-6. 
Material 3:  E1/E0=15,    G12=G13=0.5E0,    G23=0.3356,    ν12=0.3,    α2/α0=1,    α1/α0=0.015,      
E0=1Gpa,    α0=10-6. 
 
3.1.2 Cross-Ply Composite Plates 

 

Numerical findings of normalized critical buckling temperature on the form 
(ΔTcr=T*a2*h/π2*D22) and using material 1 for Table 1, while using material 3 for (Table 2 
to 4) and nondimensional critical temperature (ΔTcr=T*α0) as follows (Yahea and Majeed, 
2021). 
Critical temperature evaluated in Table 1 The cross-ply laminate plate is compared with the 
results from previous studies. In this analysis, a symmetric scheme of laminates is used for 
a square composite plate. The numerical values of (ΔTcr) obtained based on this study 
showed good agreement with other theories, and it is closer to those obtained from (TSDT2) 
for both thick and thin plates. It also shows the effect of the number of layers and thickness 
on the critical buckling temperature. The increase in laminates produces an increase in 
buckling critical temperature; furthermore, as thickness increases, (ΔTcr) decreases due to 
diminution in stiffness (the reverse results due to dividing (ΔTcr) by D22). 
 
Table 1. Dimensionless buckling temperature (ΔTcr) of a square simply supported plate cross-ply 

scheme for various values of thickness ratios (a/h) (Shu and Sun, 1994;Yahea and Majeed, 2021) 

Lay-up a/h TOT1 RPT TSDT2 Present  
(0/90)s 4 0.0575 0.07115 0.07155 0.071150 

10 0.1522 0.17492 0.175 0.174918 
100 0.2435 0.24405 0.244 0.244050 

1000 0.245 0.2451 0.245 0.245023 
(0/90)2s 4 0.0315 0.03348 0.03367 0.033482 

10 0.0797 0.08231 0.08237 0.082314 
100 0.1148 0.11485 0.11484 0.114847 

1000 0.1153 0.11530 0.1153 0.115305 
(0/90)5s 4 0.0247 0.02541 0.02555 0.025411 

10 0.0621 0.06247 0.06251 0.062471 
100 0.0872 0.08716 0.08716 0.087161 

1000 0.0875 0.08759 0.08750 0.087508 
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Based on the numerical values of (ΔTcr) evaluated in Table 2. which explains the correlation 
of (ΔTcr) with both aspect ratios (a/b) and thickness ratio (a/h), for both symmetric and 
antisymmetric laminated plates. (ΔTcr) decreases when (a/h) increases, due to thickness 
reduction. On the other hand, (ΔTcr) increases when (a/b) increases, referring to stiffness 
changes when changing these design parameters. 
Table 3 shows the correlation between the normalized critical buckling temperature with 
both different thermal expansion coefficient ratios (α2/ α1) and thickness ratio (a/h). Results 
revealed that the increase of (α2/ α1) produces a decrease in (ΔTcr) for (0/90)s and (0/90)3 
laminates. This increase in (α2/ α1) produces a greater mismatch in how different plies want 
to expand. This mismatch directly translates into higher internal compressive stresses, 
which drive buckling, leading to a lower (ΔTcr). 

Table 2. Normalized critical buckling temperature (ΔTcr) of cross-ply composite plate for both 
symmetric and antisymmetric laminates with different aspect ratios (a/b) and thicknesses (a/h). 

 

Table 4 demonstrate the relation between the normalized critical buckling temperature and 
both orthotropy ratio (E1/E2) and thickness ratio (a/h). An increase in (E1/E2) makes the 
laminates much stiffer in bending. A stiffer structure can withstand higher compressive 
loads (thermal loads) before it becomes unstable and buckles; that is, higher (ΔTcr). Also, 
this behavior is shown in Fig. 1 for different cross plies. Different buckling modes (deformed 
shape) of square, symmetric cross-ply (0/90)4s, with thickness ratio a/h=10, are drawn in 
Figure 2, which have the same behavior, resulted from other theories. 

Table 3. Normalized critical temperature (ΔTcr) of cross-ply square composite plate for both 
symmetric and antisymmetric laminates with different thermal expansion coefficient ratio (α2/ α1). 

 
layup α2/ α1 ΔTcr 

a/h 
4 6 10 30 100 

(0/90)s 4 1.3177 0.8583 0.4074 0.0539 0.0050 
6 1.1694 0.7617 0.3616 0.0478 0.0044 
8 1.0511 0.6846 0.3250 0.0430 0.0040 

10 0.9545 0.6217 0.2951 0.0391 0.0036 
(0/90)3 4 1.2711 0.8217 0.3870 0.0509 0.0047 

6 1.1280 0.7292 0.3434 0.0452 0.0042 
8 1.0139 0.6554 0.3087 0.0406 0.0037 

10 0.9207 0.5952 0.2803 0.0369 0.0034 
 

layup a/b ΔTcr 
a/h 

4 6 10 30 100 
(0/90)s 1 0.2649 0.1726 0.0819 0.0108 0.0010 

3 0.3440 0.2710 0.1661 0.0288 0.0028 
6 0.4430 0.3792 0.2985 0.0917 0.0104 
8 0.5052 0.4216 0.3456 0.1385 0.0181 

(0/90)3 1 0.2555 0.1652 0.0778 0.0102 0.0009 
3 0.4408 0.3737 0.2722 0.0650 0.0067 
6 0.6182 0.4978 0.4074 0.1854 0.0268 
8 0.7764 0.5759 0.4555 0.2509 0.0458 
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Table 4. Normalized critical temperature (ΔTcr) of cross-ply square composite plate for different 
orthotropy (E1/E2). 

 
layup a/h ΔTcr 

E1/E2 
10 15 25 30 40 

(0/90) 4 0.1782 0.1893 0.2036 0.2081 0.2134 
10 0.0403 0.0443 0.0506 0.0532 0.0575 
20 0.0107 0.0119 0.0138 0.0146 0.0160 

100 0.0004 0.0005 0.0006 0.0006 0.0007 
(0/90)2 4 0.2233 0.2445 0.2624 0.2649 0.2636 

10 0.0597 0.0727 0.0917 0.0987 0.1088 
20 0.0165 0.0207 0.0277 0.0306 0.0354 

100 0.0007 0.0009 0.0012 0.0013 0.0016 
(0/90)4 4 0.2357 0.2596 0.2793 0.2819 0.2803 

10 0.0645 0.0796 0.1014 0.1093 0.1205 
20 0.0180 0.0229 0.0311 0.0345 0.0401 

100 0.0007 0.0010 0.0013 0.0015 0.0018 

 

Figure 1. Normalized critical buckling temperature (ΔTcr=T*α0) for symmetric and 
antisymmetric cross-ply plates for different orthotropy ratios (E1/E2) using material 3 and 

thickness a/h=10. 

  
(a) First mode (m=1, n=1) (b) Second mode (m=1, n=2) 
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(c) Third mode (m=1, n=3) (d) Fourth mode (m=1, n=4) 

 
Figure 2. Thermal buckling mode of square plate, symmetric cross-ply (0/90)4s, a/h=10. 

3.1.3 Angle-Ply Composite Plates 

The analysis of normalized critical buckling temperature (ΔTcr=T*α0*103) using material 2 
for (Table 5 and 6) of antisymmetric angle-ply composite plates is performed in this section. 
In Table 5. critical buckling temperature of square antisymmetric angle-ply (45/-45) with a 
thickness ratio of (a/h=10) is calculated for various values of thermal expansion coefficient 
ratio, results showed inverse relation between (α2/ α1) and (ΔTcr), the present work results 
also showed less than  (2.78*10-3%) discrepancy as compared with TOST (Lee, 1997) and 
good agreement with other theories, while calculating (ΔTcr) based on various values of 
modulus (E1/E2) ratio, and comparing results with other theories was conducted in Table 6. 
(ΔTcr) of moderate thickness (a/h=10) antisymmetric laminate plate results showed a 
direct relation between (ΔTcr) and (E1/E2), which is physically correct as the higher stiffness 
influenced by increased (E1/E2) causes an increase in (ΔTcr). Results of the present work 
compared with TOST show a maximum discrepancy of (0.00243%). 
 

Table 5. Normalized critical buckling temperature (ΔTcr) of antisymmetric (45/-45)3 simply 
supported square composite plate. (Lee, 1997; Yahea and Majeed, 2021) 

 

α
2
/ 

α
1
 LWT1 TOST2 RPT 

(13×13) 
TSDT3 Present  Discrep

ancy 
*10-3% 

DQ results 
GRT (9×9) 

P=3 
(TOT) 

P=5 P=7 

1 9.3134 10.3868 10.385 10.3877 10.3867 0.96 10.387 10.471 10.564 
5 8.0703 9.0003 8.9991 9.0011 9.0002 1.11 9.0003 9.0730 9.1537 

10 6.9163 7.7134 7.7123 7.714 7.7133 1.30 7.7133 7.7757 7.8448 
20 5.3782 5.998 5.9972 5.9985 5.9979 1.67 5.9980 6.0465 6.1002 
30 4.3998 4.9068 4.9062 4.9072 4.9067 2.04 4.9068 4.9464 4.9904 
40 3.7225 4.1515 4.151 4.1519 4.1515 0 4.1515 4.1851 4.2223 
50 3.226 3.5978 3.5973 3.598 3.5977 2.78 3.5977 3.6268 3.6591 
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Table 6. Normalized critical temperature (ΔTcr) for various values of modulus ratio (E1/E2) for 
antisymmetric angle-ply (45/-45)3 square laminate composite plate. (Lee, 1997; Yahea and 

Majeed, 2021) 
 

E
1
/

E
2
 LWT1 TOST2 RPT 

(13×13) 
TSDT3 Present  

D
is

cr
e

p
-

a
n

cy
 

*1
0

-3
 %

 DQ results 
GRT (9×9) 

P=3 
(TOST) 

P=5 P=7 

2 2.4672 2.4721 2.4721 2.4722 2.4721 0 2.4721 2.4744 2.4771 
5 4.6703 4.7728 4.7728 4.7730 4.77284 0.84 4.7728 4.7823 4.7928 

10 8.1229 8.5390 8.5386 8.5391 8.53899 0.12 8.5390 8.5697 8.6029 
15 11.507 12.352 12.3509 12.3518 12.3517 2.43 12.3517 12.413 12.4799 
20 14.954 16.309 16.3079 16.3094 16.3090 0 16.3090 16.409 16.5195 
30 22.482 25.073 25.0700 25.0756 25.0732 0.8 25.0733 25.2756 25.5007 
40 31.711 35.904 35.8980 35.9117 35.9040 0 35.9041 36.2438 36.6308 
50 44.290 50.684 50.6737 50.7028 50.6839 0.2 50.6840 51.2138 51.8351 

 
Dimensionless critical buckling temperature (ΔTcr=T*α0) of an antisymmetric ten-layer 
simply supported composite plate of material 3 is shown in Table 7. Various values of 
thickness ratios and fiber angles were taken into account for comparing (ΔTcr) evaluated 
based on the present theory and compared with previous theories, showing a maximum 
discrepancy of (13.09%) when compared with  3D1 (Noor and Burton, 1992) and good 
agreement with other theories. The maximum value of (ΔTcr) appears at (θ =45). 

 
Table 7. Dimensionless buckling temperature (ΔTcr) of square simply supported antisymmetric 
(θ/-θ)5 angle-ply composite plate. (Noor and Burton, 1992; Babu and Kant, 2000; Matsunaga, 

2006; Yahea and Majeed, 2021) 
 

a
/h

 θ 3D1  TOT2 GHOT3 TSDT4 Present  Discrepancy 
% 

GRT 
P=7 

1
0

0
 0 7.463*10-4 7.470*10-4 7.463*10-4 7.469*10-4 7.4697*10-4 0.09 7.466*10-4 

15 1.115*10-3 1.116*10-3 1.115*10-3 1.1159*10-3 1.1159*10-3 0.08 1.115*10-3 
30 1.502*10-3 1.502*10-3 1.502*10-3 1.502*10-3 1.5023*10-3 0.02 1.502*10-3 
45 1.674*10-3 1.675*10-3 1.675*10-3 1.675*10-3 1.6750*10-3 0.06 1.675*10-3 

2
0

 

0 1.739*10-2 - 1.739*10-2 1.773*10-2 1.7729*10-2 1.95 1.757*10-2 
15 2.528*10-2 - 2.531*10-2 2.59*10-2 2.5906*10-2 2.48 2.562*10-2 
30 3.446*10-2 - 3.456*10-2 3.477*10-2 3.4771*10-2 0.90 3.484*10-2 
45 3.81*10-2 - 3.826*10-2 3.844*10-2 3.8438*10-2 0.89 3.859*10-2 

1
0

 

0 5.782*10-2 5.778*10-2 5.782*10-2 6.127*10-2 6.1250*10-2 5.93 5.963*10-2 
15 7.904*10-2 7.920*10-2 7.933*10-2 8.481*10-2 8.4779*10-2 7.26 8.211*10-2 
30 0.1100 0.1108 0.1110 0.1130 0.112984 2.71 0.1137 

45 0.1194 0.1208 0.1209 0.1225 0.122478 2.58 0.1240 

2
0

/3
 0 0.1029 - 0.1029 0.1125 0.112412 9.24 0.1081 

15 0.1322 - 0.1330 0.1468 0.146637 10.92 0.1399 
30 0.1859 - 0.1888 0.1942 0.194005 4.36 0.1958 
45 0.1981 - 0.2023 0.2065 0.206253 4.12 0.2101 

5
 

0 0.1436 0.1417 0.1436 0.1593 0.159112 10.80 0.1524 
15 0.1753 0.1746 0.1765 0.1979 0.197465 12.64 0.1874 
30 0.2377 0.2421 0.2432 0.2604 0.259755 9.28 0.2575 
45 - 0.2651 0.2656 0.2728 0.272072 - 0.2777 

4
 

0 0.1777 - 0.1777 0.1980 0.197419 11.10 0.1893 
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15 0.2087 - 0.2103 0.2370 0.236027 13.09 0.2239 
30 - - 0.2754 0.3105 0.309211 - 0.2922 
45 - - 0.3114 0.3221 0.320564 - 0.3266 

1
0

/3
 0 0.2057 - 0.2057 0.2287 0.227717 10.70 0.2190 

15 0.2347 - 0.2367 0.2668 0.265114 12.96 0.2518 
30 - - 0.2988 0.3413 0.337603 - 0.3170 
45 - - 0.3443 0.3592 0.356640 - 0.3614 

 

Table 8 demonstrate the effect of both aspect ratio (a/b) and thickness ratio (a/h) on 
normalized critical buckling temperature (ΔTcr=T*α0) of antisymmetric laminate plates 
[(45/-45)2, (45/-45)3] using material 3, as the thickness ratio (a/h) increases critical 
temperature decrease due to thickness reduction, on the other hand Increase in aspect ratio 
(a/b) causes increase in (ΔTcr), while buckling temperature comparison between angle and 
cross plates is shown in Fig. 3. 
 

Table 8. Normalized critical buckling (ΔTcr) temperature of antisymmetric laminate 
composite plate for various aspect ratios (a/b) and thickness ratios (a/h). 
 

Lay up a/ b ΔTcr 
a/h 

4 10 20 100 
(45/-45)2 1 0.300352 0.110221 0.033973 0.001469 

2 0.371143 0.183217 0.066577 0.003119 
3 0.416061 0.244054 0.103787 0.005373 
4 0.453709 0.293141 0.143665 0.008375 

(45/-45)3 1 0.313338 0.118319 0.036927 0.001605 
2 0.383853 0.194093 0.071819 0.003399 
3 0.428967 0.255853 0.111058 0.005838 
4 0.467693 0.305075 0.152618 0.009080 

 

 
 

Figure 3. Normalized critical buckling temperature (ΔTcr=T*α0) for cross-ply (0/90)2 and 
angle-ply (45/-45)2 plates for different thickness (a/h) values using material 3. 
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Figure 4. Flow chart for computer programming to calculate critical buckling temperature. 

4. CONCLUSIONS 
 

This study introduces, for the first time, a refined hyperbolic shear deformation theory to 
analyze the thermal buckling of simply-supported cross-ply and angle-ply laminated plates 
d. The theory uses a four-variable displacement field with a hyperbolic function to accurately 
represent transverse shear strain across the thickness, eliminating the need for a shear 
correction factor. Based on Hamilton's principle and solved via Navier's method, the model's 
results are validated against other shear deformation theories. The numerical findings 
demonstrate that this new theory excels at predicting the critical buckling load of laminated 
plates, showing good agreement with more complex higher-order models. Another 
conclusion is that the thermal buckling resistance is not an inherent property of the 
constituent materials alone but is a complex, coupled function of the laminate's stacking 
sequence, the number of layers, and the orthotropic characteristics of the material, as 
expected. The key findings can be summarized as follows: 
• Increasing the number of layers (increasing thickness) naturally increases (ΔTcr) for a 

fixed thickness. Laminates with a greater number of thinner plies (allowing for more 
refined angle transitions) offered a performance advantage over those with fewer. 

• Symmetric laminates consistently outperform antisymmetric ones by eliminating 
detrimental bending-extension coupling, leading to higher critical buckling 
temperatures. 

• Angle-ply schemes (θ/-θ)n often provide superior, tunable buckling resistance compared 
to cross-ply (0/90)n, by aligning fibers with the dominant thermal stress. 

• A high fiber-direction stiffness (E₁) and a low coefficient of thermal expansion (α₁) are 
key. The material's anisotropy (E₁/E₂) dictates the optimal stacking sequence and the 
higher critical temperature. 

 
 

NOMENCLATURE 

Symbol Description Symbol Description 
a, b Plate length and width (m) Nxx,Nyy ,Nxy membrane forces (N/m) 

Aij,Bij,Dij,Eij, 
Fij,Hij,Lij 

Stiffness terms (N/m) NTxx,NTyy, 
NTxy 

Thermally induced membrane forces 
(N/m) 

E1,E2,E3 Youngs modulus (GPa) wb,ws displacement in bending, shear, respectively 
h  Plate thickness (m) x,y,z Coordinate axes  
k Number of plate layers εx, εy, εz Strain components (m/m) 
Mb

xx,Mb
yy, 

Mbxy 
Bending moment per unit 
length (N.m/m) 

γyz,γ xz   Transverse shear strain (m/m) 

Msxx, Msyy, 
Ms

xy 
Moment per unit length due 
to shear (N.m/m) 

σij(x,y,z) 
 

Stress components (GPa) 
 

Qy, Qx Transverse shear force (N) ν12, ν12 Poison’s ratio 
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Appendix 

1. Stiffness matrix elements for cross-ply laminates: 

𝐾11 = (𝐴11𝛼
2 + 𝐴66𝛽

2)        ,        𝐾12 = (𝐴12 + 𝐴66)𝛼𝛽

𝐾13 = −(𝐵11𝛼
3 + (𝐵12 + 2𝐵66)𝛼𝛽

2)     ,     𝐾14 = −(𝐸11𝛼
3 + (𝐸12 + 2𝐸66)𝛼𝛽

2)

𝐾22 = (𝐴66𝛼
2 + 𝐴22𝛽

2), 𝐾23 = −(𝐵22𝛽
3 + (𝐵12 + 2𝐵66)𝛼

2𝛽)

𝐾24 = −(𝐸22𝛽
3 + (𝐸12 + 2𝐸66)𝛼

2𝛽)

𝐾33 = (𝐷11𝛼
4 + 2(𝐷12 + 2𝐷66)𝛼

2𝛽2 + 𝐷22𝛽
4)

𝐾34 = (𝐹11𝛼
4 + 2(𝐹12 + 2𝐹66)𝛼

2𝛽2 + 𝐹22𝛽
4)

𝐾44 = (𝐻11𝛼
4 + 2(𝐻12 + 2𝐻66)𝛼

2𝛽2 +𝐻22𝛽
4 + 𝐿55𝛼

2 + 𝐿44𝛽
2)

𝐴16 = 𝐴26 = 𝐵16 = 𝐵26 = 𝐷16 = 𝐷26 = 𝐸16 = 𝐸26 = 𝐹16 = 𝐹26 = 𝐻16 = 𝐻26 = 𝐿45 = 0

 

2. Stiffness matrix elements for Angle-ply laminates: 

𝐾11 = (𝐴11𝛼
2 + 𝐴66𝛽

2), 𝐾12 = (𝐴12 + 𝐴66)𝛼𝛽

𝐾13 = −(3𝐵16𝛼
2𝛽 + 𝐵26𝛽

3), 𝐾14 = −(3𝐴16𝛼
2𝛽 + 𝐸26𝛽

3)

𝐾22 = (𝐴66𝛼
2 + 𝐴22𝛽

2), 𝐾23 = −(𝐵16𝛼
3 + 3𝐵26𝛼𝛽

2)

𝐾24 = −(𝐸16𝛼
3 + 3𝐸26𝛼𝛽

2)

𝐾33 = (𝐷11𝛼
4 + 2(𝐷12 + 2𝐷66)𝛼

2𝛽2 +𝐷22𝛽
4)

𝐾34 = (𝐹11𝛼
4 + 2(𝐹12 + 2𝐹66)𝛼

2𝛽2 + 𝐹22𝛽
4)

𝐾44 = (𝐻11𝛼
4 + 2(𝐻12 + 2𝐻66)𝛼

2𝛽2 +𝐻22𝛽
4 + 𝐿55𝛼

2 + 𝐿44𝛽
2)

𝐴16 = 𝐴26 = 𝐵11 = 𝐵12 = 𝐵22 = 𝐵66 = 𝐷16 = 𝐷26 = 𝐸11 = 𝐸12 = 𝐸22 = 𝐸66 = 𝐹16
= 𝐹26 = 𝐻16 = 𝐻26 = 𝐿45 = 0
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رة الحراري للصفائح المركبة الرقائقية باستخدام نظرية الصفائح تحليل الانبعاج  ذات  المُطَوَّ
 الأربعة المتغيرات 
 

 احمد خميس سبع*، وداد إبراهيم مجيد 

 
 قسم الهندسة الميكانيكية، كلية الهندسة، جامعة بغداد، بغداد، العراق 

 

 الخلاصة
 

رة   تبحث هذه الورقة البحثية دراسة الانبعاج الحراري للصفائح المركبة الرقائقية بناءا   على الإطار النظري لنظرية الصفائح المُطَوَّ
ذات المتغيرات الأربعة. باستعمال دالة تشوه قصي جديدة وغير مسبوقة في تحليل الانبعاج الحراري للصفائح المدعمة ببساطة  

القص دالة  الحواف. تجمع  القص  على جميع  اجهاد  تغير  بين محاكاة  الحدود  الزائد والدوال متعددة  القطع  المكونة من دوال 
المستعرض عبر سمك الصفيحة وتحقيق شرط انعدام الاجهاد على السطح المستعرض العلوي والسفلي للصفيحة، دون الحاجة  

الا لمبدأ  وفقا   الحركة  معادلات  اشتقاق  تم  القصي.  التصحيح  معامل  استخدام  التحليلي  الى  الحل  تنفيذ  وتم  الافتراضية،  زاحة 
يستوفي شـــروط التدعيم البسيط، كما تم حساب النتائج العددية للخصائص المتباينة لكل من الصفائح    باستخدام حل "نافير" الذي

".في هذه الدراسة، تم تحليل تأثير تغيير  MATLABذات الترتيب المتقاطع والترتيب الزاوي من خلال صياغة تشفير لبرنامج "
، نسبة  السماكة 1α /2(α(، نسبة معامـــــل التمـــدد الحراري  (a/b)معامــــلات التصميم المختلفة مثل نسبة العرض الى الارتفاع  

(a/h)  2(، ونسبة تباين الخواصE/1(E    للصفائح المركبة الرقائقية المتناظرة وغير المتناظرة. واظهرت النتائج تطابقا جيدا  لكل
 من الصفائح السميكة والرقيقة مقارنة بالدراسات السابقة. 

رة الكلمات المفتاحية:    .الانبعاج الحراري، الصفائح المركبة، نظرية القص المُطَوَّ

 
 


