
Journal of Engineering Volume   21  June  2015 Number 6 
 

                                                                                                                                                                                 

90 
 

Unity Sliding Mode Controller Design for Active Magnetic Bearings System 

 
Safanah M. Raafat 

Assistant Professor 

Control & Systems Eng. Dept. 

University of Technology 

E-mail: smraafat@uotechnology.edu.iq 

 Shibly Ahmed Al-Samarraie 

Assistant Professor 

Control & Systems Eng. Dept. 

University of Technology 

E-mail: dr.shiblyahmed@yahoo.com 

Ali M. Mahmood 

Lecturer 

Control & Systems Eng. Dept. 

University of Technology 

E-mail: alimmj81@yahoo.com 

 

 

ABSTRACT 

Active Magnetic Bearings (AMBs) are progressively being implemented in a wide variety of 

applications. Their exclusive appealing features make them suitable for solving traditional rotor-

bearing problems using novel design approaches for rotating machinery.  In this paper, a linearized 

uncertain model of AMBs is utilized to develop a nonlinear sliding mode controller based on 

Lyapunov function for the electromechanical system. The controller requires measurements of the 

rotor displacements and their derivatives. Since the control law is discontinuous, the proposed 

controller can achieve a finite time regulation but with the drawback of the chattering problem. To 

reduce the effect of this problem, the gain of the unite vector term is evaluated as a function to state 

variables. As a result the proposed discontinuous controller regulates the state to the origin in a finite 

time in spite of the uncertainty in system model and the presence of external disturbances. These 

results are demonstrated via numerical simulations. In addition the chattering in system response in 

these results is within the acceptable range.  

Keywords: Active Magnetic Bearings (AMB), finite time regulation, linearized uncertain model, 

sliding mode controller, matching conditions. 

 

فعالت حصميم مسيطر منزلق أحادي لمنظوظت محامل مغناطيسيت  

 
 الاسخار المساعذ الذكخورة سفانت مظهر رأفج الاسخار المساعذ الذكخور شبلي أحمذ السامرائي المذرس علي مجيذ محمود
وانُظىلسى هُذسح انسُطشج  لسى هُذسح انسُطشج وانُظى لسى هُذسح انسُطشج وانُظى  

 انجايعح انركُىنىجُح انجايعح انركُىنىجُح انجايعح انركُىنىجُح

 

 الخلاصت

إٌ ذطثُك انًحايم انًغُاطُسُح انفعانح هٍ فٍ ذصاعذ يسرًش فٍ انكثُش يٍ انًجالاخ. إٌ صفاخ انًحايم انًغُاطُسُح 

انًًُضج َجعهها يُاسثح كحم يثركش نًشكهح يحايم انلأعًذج انذواسج نهًكائٍ. فٍ هزِ انىسلح انثحثُح ذى إسرخذاو ًَىرج خطٍ 

وانزٌ Lyapunov ورنك لإشرماق لاَىٌ انًسُطش انًُضنك الاخطٍ تالإعرًاد عهً دانح  نًُظىيح انًحايم انًغُاطُسُح انفعانح 

َرطهة لُاط إصاحاخ انجضء انذواس ويشرماخ هزِ الإصاحاخ. إٌ كىٌ انًسُطش هى غُش يسرًش هزا َضًٍ انىصىل انً سطح 

يش انزٌ َرسثة تحذوز يشكهح الإسذجاج. وهى الأ  Exponentialالإَضلاق تضيٍ يحذد تعذها الإَضلاق انً انهذف حسة دانح ال

نهرمهُم يٍ ذأثُش الإسذجاج ذى حساب يعايم انًسُطش انًُضنك كذانح نًرغُشاخ انحانح. كُرُجح سُكىٌ انًسُطش انًُضنك لادسا عهً 

 .ىرج انشَاضٍ(لُادج يرغُشاخ انحانح انً َمطح الأصم عهً انشغى يٍ وجىد انشك فٍ انًُىرج انشَاضٍ )انرغُش فٍ يعايلاخ انًُ

وجذ الإسذجاج فٍ إسرجاتح عذدَا. تالإضافح نزنك ذًد يحاكاخ ًَىرج يُظىيح انًحايم انًغُاطُسُح صحح انرصًُى وذأكُذ لإخرثاس 

 ضًٍ انًسرىي انًمثىل. انًُظىيح 
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انًُضنك انًُظ، ششووط انرعذَم تضيٍ يحذد، انًُىرج انخطٍ انغُش دلُك، انًسُطش ، انًحايم انًغُاطُسُح انفعانح الكلماث الرئيسيت:

 انًىاءيح.

 

1. INTRODUCTION 

Active magnetic bearings (AMBs) are noncontact support bearings for rotating machinery. Using a 

pair of electromagnets at opposite sides of the rotor, it balances the attractive magnetic forces of the 

electromagnetic actuators in order to center the rotating element in the control axis. This allows the 

rotor to float in the bearing air gap and the machine to operate without frictional losses. 

Additionally, the contactless operation of the AMBs eliminates the need of lubrication of the bearing 

components, allowing them to operate cleanly and virtually maintenance free for long periods of 

time ,Yoon,  et. al., 2013. 

Recently, there is a remarkable interest in industrial applications of active magnetic bearings 

(AMB), as in jet engines, compressors, pumps and flywheel systems that afford non-contacting 

support of rotors, eliminating distresses due to friction, wear, power consumption, and lubrication 

typical of standard bearings. AMB systems as electromagnetic devices have other exclusive abilities 

such as: high rotor speed, weight reduction, precise position control and active damping as described 

by ,Polajzer, and Dolinar, 1999. and ,Motee, and Queiroz, 2002.  

 Nevertheless, magnetic bearings are highly nonlinear and inherently unstable. The non-

linearity of the active magnetic bearing system is due to the relationship between forces that are 

generated in the electromagnetic actuator, the coil’s current and the air gap between the rotor and the 

stator. These nonlinearities bound control effectiveness and the region of stable performance as 

shown in ,Hung, 1995. The requirements of high speed, low vibration, zero friction, and clean 

environment are essential for smooth AMB operation. In addition, ,Zhang,  et. al., 2002. show that   

a controller with high robustness to uncertainty is vital. Also ,Habib, and Hussain, 2003. show that 

the open loop unstable characteristic of the magnetic bearings requires feedback control to ensure 

the normal operation of AMB systems.   

 In ,Abdul Somad, 2007. an advanced PD-like Fuzzy Logic Controller (FLC) had been 

designed for AMB system stabilization. An intelligent approach to estimate uncertainty bound was 

introduced by ,Buckner, 2002. and applied to sliding mode controller design. In ,Sivrioglu, and 

Nonami, 1996. a robust H∞ controller was developed for high speed machining applications. 

Robustness against uncertainties and variations in operating conditions can be achieved as long as 

the uncertainty weighting function and performance weighting function are well tuned. However, 

the determination of these weighting functions is critical and is usually very hard. Many works 

focused on developing strategies that can automate the selection of suitable weighting function. An 

automatic weight selection is developed to shape the sensitivity and complementary weighting 

functions in ,Nair et. al., 2009. Some other works in ,Cao, et. al., 2004. ,Arredondo and Jugo, 

2007. and ,Zdzislaw, and  Mystokowski, 2007. implement ad hoc procedure for the selection of 

the weighting functions. Based on the approach of ,Buckner, 2002. a confidence interval neural 

network was developed in ,Choi et. al.,  2006. ,Gibson et. al.,  2003. and ,Gibson et. al., 2005. to 

adaptively estimate the uncertainty bounds for robust controller design. In ,Raafat, et. al.,  2011. an 

intelligent estimate of uncertainty weighting function was presented for robust H2 /H∞ controller 



Journal of Engineering Volume   21  June  2015 Number 6 
 

                                                                                                                                                                                 

92 
 

design. v- gap metric was utilized to validate the estimated uncertainty bounds for improved robust 

stability.  

 The variable structure system was presented by ,Utkin, 1977. and indicated that variable 

structure control is unaffected to parameters perturbations and external disturbances. Recently, some 

applications have been developed using sliding mode control and adaptive control. For MIMO case 

the sliding mode control is designed based on hierarchy procedure as given in ,Utkin, 1992. As an 

alternative procedure design a unit control method is proposed for the MIMO system which 

preserved the sliding mode robustness with respect to the uncertainty in system parameters and to 

the external disturbances. The control law is designed using Lyapunov function where the root of 

this approach may be found in papers by ,Gutman and Leitmann, 1976. and ,Gutman, 1979. 

  In the present work the sliding mode control algorithm is employed to design a robust 

control system to AMB based on the unit control approach in the presence of model uncertainty and 

disturbances.  

 The paper is organized as follows. In Section 2, the dynamics of AMB system with a flexible 

rotor is described. In Section 3, a unity sliding mode controller with pole placement control is 

developed. Simulation results are presented in Section 4. Conclusions are provided in Section 5. 

 

2. DYNAMIC MODELING OF THE AMB SYSTEM  

In AMB systems, more than one actuator can be used in order to control the rotor levitation along 

several degrees-of-freedom (DOF). In this case, actuators are usually assembled as pairs facing 

each-other. This allows attracting the rotor in two opposite directions along one axis. Typically, the 

basic components of an AMB are: electromagnets, iron core, winding, rotor, position sensor, 

controller and power amplifier, as shown in Fig.1. The control objective is to manipulate the coil 

current i(t) so that the vertical position of the rotor x(t)  tracks the desired trajectory. AMB are 

usually available in many configurations like radial bearings, in which the main purpose is to 

guarantee the levitation even in case of total failure of an actuator axis. 

2.1 Theoretical Model 

The force generated by an electromagnetic actuator Fig.1 can be derived using magnetic circuit 

analysis and conservation of energy technique as in ,Schweitzer, 1994. 

    
 

 
   

   
  

  
                                                                                        (1) 

The resulting nonlinear magnetic force Equation (1) is proportional to the square of the coil current 

 and inversely proportional to the square of the air gap between the actuator and the rotor .    is the 

permeability of free space (          ),  is the number of turns in the coil, and    is the area 

of the air gap ,Schweitzer, 1994. In order to develop a model based control of the system in Fig.2, 

the electromagnetic force Equation (1) is linearized about a nominal operating point and an accurate 

dynamical model is formulated in ,Choi et. al., 2006. The linearized system dynamics for the AMB 

system were obtained using a Lagrangian analysis of Fig.2, then they were represented using a state 

vector x composed of the rotor displacements and their time derivatives. 

 ̇                                                                                                (2)
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Where ,Choi et. al.,  2006. 
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  and                   

                    (nominal speed:         ). The resulting continuous-time model is 

unstable, with eigenvalues  

                                                                                                   (5) 

3. SLIDING MODE CONTROLLER DESIGN 

This section proposes a unity sliding mode control strategy for the AMB system. A detailed study of 

the sliding mode control algorithm is presented in the presence of matched uncertainties and 

external disturbance with the AMB model. 

3.1 Representation of uncertainties 

Starting by rewriting Equations (2) to include the parametric uncertainties and disturbance effect 

 ̇                 ( )                                                                                      (6) 

where      ,                 ,       and             . Here           refer to the 

matched uncertainty in the matrices         respectively. In addition  ( ) is an external 

disturbance satisfies the matching condition. Namely 

 ( )    ( )                                                                                         (7) 

Since (   ) is a controllable pair, then  the following control signal is proposed: 
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                                                                                                (8) 

where        is chosen such that the matrix 

                                                                                                                (9) 

is Hurwitz with the desired characteristic roots. Consequently Equation (6) becomes: 

 ̇                   ( )                                                                                   (10) 

Now let the uncertainty in matrix         can be written as  

                                                                                                                      (11) 

Then the bracket   *         ( )+ can be written as: 

         ( )   *         ( )+   *(      )        ( )+                       (12) 

Assumption: The matched uncertainty           and external disturbance  ( ) are bounded. 

Accordingly  

‖(      )        ( )‖   ‖ ‖    ‖  ‖                                                                    (13) 

where ‖      ‖   ,  ‖  ‖   ,‖ ( )‖   , and α, ,   are positive constants. 

Detailed formulation of the derivation of uncertainties is provided in Appendix A. 

 

3.2 Unit control design 

The objective of this section is to demonstrate a design method for discontinuous control enforcing 

sliding mode in some manifold without individual selection of each component of control as a 

discontinuous state function. The approach implies design of control based on a Lyapunov function 

selected for a nominal system. The control is to be found such that the time derivative of the 

Lyapunov function is negative along the trajectories of the system with perturbations caused by 

uncertainties in the plant model and environment conditions ,Utkin et. al., 2009. 

 From previous discussion, the unit control signal    is proposed as 

     (‖ ‖)
     

‖     ‖
                                                                                     (14) 

where ‖⋅‖ is the Euclidean norm, and hence the control law in Equation (8) becomes: 

    (‖ ‖)
     

‖     ‖
                                                                                                   (15) 

Since the system  ̇      is asymptotically stable, then by the converse theorem as given in 

,Khalil, 2002. there is a Lyapunov function with a positive definite matrix   

                                                                                                        (16) 
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such that  ̇         .  To this end, differentiate   with respect to time, to get: 

 ̇     *                 ( )+    
       

       
 *         ( )+  

                                                                                                                                    (17) 

The unite vector gain  (‖ ‖) is evaluated such that  ̇ is negative definite. As a result,  ̇ is rewritten 

as follows:   

 ̇           
       

  *         ( )+                                                           (18) 

Now let us consider the following: 

(    )(     )

‖     ‖
 
‖     ‖

 

‖     ‖
 ‖     ‖, 

          
        

       

 and 

    *(      )        ( )+  ‖  
  ‖‖(      )         ( )‖ 

                                                               ‖     ‖( ‖ ‖      ) 

then Equation (18) becomes: 

 ̇         ‖     ‖   ‖     ‖( ‖ ‖       )  

      ‖     ‖  ‖     ‖( ‖ ‖      )   ‖     ‖*   ‖ ‖      +  

                                                                                ‖     ‖* (   )   ‖ ‖   +                 

Now for 

 (‖ ‖)  
 

(   )
* ‖ ‖     +                                                                                               (19) 

then   ̇  becomes; 

  ̇    ‖     ‖         ‖ ‖                                                                                                    (20)     

This implies that the trajectory reaches the sliding surface in a finite time and remains on the sliding 

surface for all future time.  

 Note that the finite reaching time is a consequence of the unit vector term 
     

‖     ‖
 in the 

control law (Equation (15)), and the reaching time is directly related to the magnitude of the gain 

 (‖ ‖) ,Khalil, 2002. 

Eventually for the system dynamics in Equation (6) the control law is given by 
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       (‖ ‖)
 

‖ ‖
                                                                                                (21) 

where   is the switching function vector given by 

  ,         -
                                                                

           , and  (‖ ‖)is as in Equation (19). In addition the norm of the vector   which 

appears in the unit vector is given by (the induced inner product norm); 

‖ ‖  √   
 

                                                                                                                        (23) 

Due to the presence of a discontinuous term in the control law (
 

‖ ‖
 in Equation (21)), the chattering 

behavior will be induce in system response. Many methods have been developed to eliminate the 

chattering problem, as in the case of replacing the discontinuous term by an approximate continuous 

form as for example the saturation function (see ,Utkin, et. Al., 2009. The price paid to eliminate 

the chattering effect by approximating the discontinuous term is that the state will be only regulated 

to a region near the origin. The size of this region depends on the approximation form. 

As an alternative solution to the chattering problem with preserving the finite time reaching 

property is by reducing the amplitude of the switching term in the control law.  In the present work 

the amplitude of the switching term  (‖ ‖) is taken as a function to the state rather than a constant 

value. This will help in reducing the chattering around the origin where  (‖ ‖) will be equal to 
(   )

(   )
. 

In the following section the unity sliding mode control law as given in Equation (21) is applied to 

design a robust nonlinear control for the AMB system with considering both the uncertainty in 

system model and the effect of the external disturbances. 

4. SIMULATION RESULTS 

According to the plant description in Section 2.1 and using Equations (2) and (3), simulation of the 

AMB is developed. MATLAB is used to simulate the AMB controlled system. The first experiment 

was accomplished using the following linear state feedback control equation:      , where K is 

    matrix selected to satisfy that Equation (9) is Hurwitz with the desired characteristic roots. 

Accordingly let the following set of closed loop poles are selected as: 

  ,                                              - 

Figure 3 shows the resulted states response of the controlled AMB system. The disturbance 

effects due to noise variations are not considered in this case. Subsequently, the controller can 

effectively regulate the system as shown in Fig.4.  

Then, the uncertainty and disturbance effects are included in the simulation by considering 

Equation (6), using the same previously designed state feedback controller. The applied disturbance 

is given by: 
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    ,                                              -
  

where    is uniformly distributed pseudorandom number. The transients of the system are 

drastically affected, as shown in Fig. 5.We allowed ±10% parameter variations for the matrices   

and   and further assumed 10% to 35% magnitude changes in the  ( ) term. Consequently, the 

matrices           are calculated by equations (A-5) and (A-8) respectively (Appendix A). The 

parameter variations constitute    and    is assumed to have only matched uncertainty. The 

external disturbance is a random variable with zero mean and unit variance which is assumed to 

have only matched disturbance in the simulation. Accordingly, the parameters,   and   will be equal 

to 1.7129, 0.2105 and 0.6393 respectively. The parameter   is set to 0.01 as a positive value in order 

that   ̇  becomes negative definite (Equation (20)). In the same time   is selected small to reduce 

chattering that induced due to a high gain value of the discontinuous term  (‖ ‖). The control 

signals are shown in Fig.6. The evaluated coefficients of  vector (Equation (23)), can be seen in 

Fig.7 while Fig.8 presents the resulted norm of  . It is clear that the linear state feedback controller 

cannot overcome the effects of uncertainties and presence of disturbance. Therefore, further 

improvement is required to be applied, as described in Section (3); the term unity control is included 

as described in Equation (21). The switching gain  (‖ ‖), which is responsible for reject the 

uncertainty in system parameters and the external disturbance effects, varies continuously from 

0.9876 and to less than 0.014 rapidly in less than 9 minutes, which reflects the effectiveness of the 

added term to the control signal. 

Figure 9 presents the transient response of the system while Fig.10 presents the control signals. 

Fig.11 presents the norm of the S function. Fig.11 also reveals the objective of the proposed 

controller in regulating the switching function vector to the origin in finite time. Here the time 

required to reach the origin is about 15 seconds. Further decrease in the reaching time can be gotten 

by increasing the gain   of the unit control according to Eq.(21). Then to further explore the 

robustness of the developed controller, another larger value of disturbance is applied as: 

    ,                                      -  

The transient response of the system is shown in Fig.12 and Fig.13 show the control signals. The 

norm of the S function is given in Fig.14. It is clear that the new controller can effectively 

overcome the disturbance effects. Robust performance is also guaranteed in this case as proved in 

Section (3.2). 

5. CONCLUSIONS 

This paper presents a derivation for a unity sliding mode controller design for a linear uncertain 

MIMO system subjected also to external disturbances. The proposed control is robust with respect to 

the uncertainty in system model and to the matched external disturbances since it was derived based 

on making the derivative of a candidate positive definite Lyapunov function negative definite. The 

developed unity sliding mode control was effectively derives the uncertain AMB system model to 

robust stability and performance conditions under the existence of matching condition. The 

simulation results, which are carried out for  ±10%  parameter variations for the matrices A and B 

and 10% to 35% magnitude changes in the disturbance term  ( ), clearly demonstrated the 

robustness and the effectiveness of the proposed unity sliding mode controller. In addition the 
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results show that the effect of the chattering problem in sliding mode control is reduced via the use 

of a variable switching gain  (‖ ‖) which has its minimum value at the origin. 
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Appendix A: Computing the Uncertainty Matrices 

1)            
                     

    

Let    be written as: 

   [
  
        

]                                                                                               (A.1) 

where                  
          . Also let         be written as follows: 

  [
 
   
]                           

                                                                                    (A.2) 

   ,        -                   
                   (A.3) 

Now          becomes: 

[
  

        
]  [

 
   
] ,        -  [

  
              

]                                                    (A.4) 

where the matrix     is an invertable matrix (   (   )   ).  Therefore 

        
      

        
      

}                                                                                               (A.5) 

 )               
            

   , Let    be written as: 

   [
 

    
]                      

                                                                                           (A.6)                    

and with the aid of Equation (A.2), we can write        as: 

[
 

    
]  [

 
   
]    [

 
     

]                                                                                                        (A.7)                                         

Solving for    

      
                                                                                          (A.8)  

Then, by taking  

  ‖  ‖                                                                                                 (A.9) 

and 

  ‖  ‖  ‖   ‖                                                                                  (A.10) 

where  ‖ ‖  refer to the 2-norm. Therefore  (‖ ‖) will be evaluated from 
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 (‖ ‖)  
 

(   )
* ‖ ‖     +                                                                                          (A.11) 

 

Figure1. AMB operating principals ,Gibson et. al.,  2003. 

 

 

Figure 2. Generalized rigid rotor supported by two radial bearings ,Choi et. al.,  2006. 
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Figure 3. The transient responses of the AMB system under pole placement control, 

x(0)=2*10
3
states x(1)-x(8). 

 

Figure 4. The control signals u(1)-u(4). 
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Figure 5. The transient responses of the disturbed AMB system under pole placement control, 

x(0)=2*10
-3

.Disturbance of Equation (28) is applied. 

 

Figure 6. The control signals u(1)-u(4). 
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Figure 7. The evaluated function S. 

 
Figure 8. The resulted norm (S). 
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Figure 9. The transient responses of the disturbed AMB system under pole placement and unity 

control, x(0)=2*10
-3

. Disturbance of Equation (28) is applied. 

 

 

Figure 10. The control signals u(1)-u(4). 
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Figure 11. The norm |S| 

 
Figure 12. The transient responses of the disturbed AMB system under pole placement and unity 

control, x(0)=2*10
-3

. Disturbance of Equation (29) is applied. 
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Figure 13. The control signals u(1)-u(4). 

 

 
Figure 14. The norm |S|                  
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