

1

A Real-Coded Genetic Algorithm with System Reduction and Restoration

for Rapid and Reliable Power Flow Solution of Power Systems

 Asst. Prof. Dr. Hassan Abdullah Kubba Alaa Suheib Rodhan

 Electrical Engineering Department M.Sc. Electrical Engineering

 College of Engineering/ University of Baghdad college of Engineering/ University of Baghdad

 E-mail: hassankubba@yahoo.com E-mail: alaa.rodhan@gmail.com

ABSTRACT

 The paper presents a highly accurate power flow solution, reducing the possibility of ending at local

minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The

proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to

that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are

eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate

the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time

for the solution. Then the system is restored by calculating the voltages of the load buses in terms of the

calculated voltages of the generator buses, after a derivation of equations for calculating the voltages of the

load busbars. The proposed method was demonstrated on 14-bus IEEE test systems and the practical system

362-busbar IRAQI NATIONAL GRID (ING). The proposed method has reliable convergence, a highly

accurate solution and less computing time for on-line applications. The method can conveniently be applied

for on-line analysis and planning studies of large power systems.

 Keywords: Load flow analysis, Load modeling, Power system modeling, Real Coded Genetic algorithms,

 Simulation, Voltage measurement

مع أختزال الشبكة ذات التشفير الحقيقي الكهربائي بأستخدام الخوارزمية الجينية سريان الحمل السريع والموثوق لحل ال

 وأعادتها

 علاء سحيب روضانأ.م. د. حسن عبدالله كية
 م الهندسة الكهربائيةقسم الهندسة الكهربائية قس

 كلية الهندسة/جامعة بغداد كلية الهندسة/جامعة بغداد

 الخلاصة

بأستخدام الخوارزمية ل أحتمالية الانتهاء في الحدود الدنيا المحلية يتقلو الكهربائي ل البحث طريقة عالية الدقة لحساب سريان الحم يقدم

زمن (لتقليل ذات التشفير الحقيقيالطريقة المقترحة) الخوارزمية الجينية تم تطوير ومع أختزال الشبكة وأعادتها ذات التشفير الحقيقي الجينية

ل الزمن يلتقل بعد أختزال عدد محطات الأحمال في النظام الحقيقي أو الواقعيفقط, توليدبتقليل حجم النظام الى عدد محطات ال الحساب الكلي

لكل محطة توليد بأستخدام الخوارزمية الجينية ذات التشفير الفولتيةتحديد مقدار دبع الفولتيةومن ثم يتم حساب زاوية طور , اللازم للحساب

مقدار النتائج المستحصلة لبأستخدام الأحمال اتكل محطل اتالفولتينظام ككل وحساب مقدار وزاوية طور لتم أعادة تمثيل ايبعد ذلك , الحقيقي

بصيغة ل احمألأ اتكل محطل اتفولتيمقدار وزاوية طور توليد بعد أشتقاق المعادلات المطلوبة لحساب ال اتكل محطل اتالفولتيوزاوية طور

الطريقة المقترحة عالية الدقة, .للعمل على الشبكة الوطنية العراقيةتم تطبيقها الطريقة المقترحة , توليدال اتمحط اتفولتيوزاوية مقدار

وأثناء قليل وكذلك ممكن تطبيقها في دراسات التحليل والتخطيط للأنظمة الكهربائية كبيرة الحجم الحل للوصول الى موثوقة والزمن اللازم

 .أشتغال المنظومة

 المحاكاة , الخوارزمية الجينية ذات التمثيل الحقيقي , تحليل تدفق الحمل , تمثيل الحمل , تمثيل نظام القدرة الكهربائية , :الكلمات الرئيسية

 .الفولتيةوحساب

mailto:hassankubba@yahoo.com
mailto:alaa.rodhan@gmail.com

2

1. INTRODUCTION

 The power flow problem, which is to determine the power system static states (voltage magnitudes

and voltage phase angles) at each busbar to find the steady state operating condition of a system, is

very important and the most frequently carried out study by electrical power utilities for power system

on-line operation, planning and control. The mathematical formulation of the electrical power flow

problem results in a set of non-linear algebraic equations. The optimization numerical methods such as

Newton-Raphson method or the artificial intelligence methods such as Genetic Algorithm (GA) are

applied to solve the power flow problem. The power flow problem has multiple solutions, Kubba

1991.The numerical methods and some of the artificial intelligence methods suffer from the local

minima problem. Also there are many criteria which should be taken into consideration such as the

speed of solution, storage requirement and the degree of solution accuracy. With increasing computer

speeds, researchers are increasingly applying artificial and computational intelligence techniques,

especially in power system problems. These methods offer several advantages over traditional

numerical methods. Among these techniques is that of genetic algorithm. Genetic algorithms (GAs)

are efficient stochastic search techniques that emulate natural phenomena. They have been used

successfully to solve a wide range of optimization problems. Because of existence of local minima,

these algorithms offer promise in solving large-scale problems. A genetic algorithm mimics Darwin’s

evolution process by implementing "survival of the fittest" strategy. Genetic algorithm solves linear

and nonlinear problems by exploring all regions of the search space and exponentially exploiting

promising areas through selection, crossover, and mutation operations. They have been proven to be

an effective and flexible optimization tool that can find optimal or near-optimal solutions, Wong, et

al., 1999. In this study, an improved genetic algorithm solution of the load flow problem is presented

in order to minimize the total active and reactive power mismatches of the given systems, a real-coded

genetic algorithm has been implemented. The proposed method has been demonstrated on a typical

test system, and was used to solve the Iraqi National Grid load flow problem.

2. THE REAL-CODED (CONTINUOUS) GENETIC ALGORITHM (RCGA)

 The binary genetic algorithm is conceived to solve many optimization problems that stump

traditional techniques. But, the attempting to solve a problem where the values of the variables are

continuous and want to define them to the full machine precision. In such a problem, each variable

requires many bits to represent it. If the number of variables is large, the size of the chromosome is

also large. In principle, any conceivable representation could be used for encoding the variables. When

the variables are naturally quantized, the binary genetic algorithm fits nicely. However, when the

variables are continuous, it is more logical to represent them by floating-point numbers, i.e., real

number. In addition, since the binary genetic algorithm has its precision limited by the binary

representation of variables, using floating-point numbers instead easily allows representation to the

machine precision. This continuous genetic algorithm also has the advantage of requiring less storage

than the binary genetic algorithm because a single floating-point number represents the variable

instead of Nbits integers. The continuous genetic algorithm is inherently faster than the binary genetic

algorithm, because the chromosomes do not have to be decoded prior to the evaluation of the cost

function (objective function), Ippolito, et al., 2006. Since the continuous GA is implemented using

floating point numbers, i.e., real numbers we have called this as Real-Coded GA (RCGA).

3. MATHEMATICAL DESCRIPTION & COMPONENTS OF A CONTINUOUS GENETIC

 ALGORITHM (RCGA)
 The real-coded genetic algorithm is very similar to the binary genetic algorithm, but the primary

difference is the fact that variables are no longer represented by bits of zeros and ones, but instead by

floating-point real numbers over whatever range is deemed appropriate. However, this simple fact

adds some nuances to the application technique that must be carefully considered. In particular, we

will present the RCGA operators, which are used in this research.

3

3.1 The Variables and Cost Function

 A cost function generates an output from a set of input variables (a chromosome). The cost function

may be a mathematical function, or from experiment. The objective is to modify the output in some

desirable fashion by finding the appropriate values for the input variables. The goal is to solve some

optimization problem where we search for an optimum (minimum) solution in terms of the variables

of the problem. The term fitness is extensively used to designate the output of the objective function in

the genetic algorithm literature. Fitness implies a maximization problem. Fitness has a closer

association with biology than the term cost, and thus we have adopted the term cost, since most of the

optimization literature deals with minimization, hence cost. They are equivalent. If the chromosome

has Nvar variables (a 2N-dimensional optimization problem) given by (b1, b2,……, bNvar) where N is

the number of buses, then the chromosome is written as an array with (1×Nvar) elements so that:

 chromosome = [b1, b2, b3, ………, bNvar] (1)

In power flow problem, the chromosome is written in terms of the voltages magnitudes and voltages

phase angles variables of all the buses as follows:

 chromosome = [V1, V2,….,VN, θ1, θ2,…..,θN] (1.1)

In this case, the variable values are represented as floating-point numbers. Each chromosome has a

cost found by evaluating the cost function (f) at the variables (V1, V2,….,VN, θ1,θ2,…..,θN).

 cost = f(chromosome)= f(b1,b2,…,bNvar) (2)

Equations (1) and (2) along with applicable constraints constitute the problem to be solved. Our

primary problem in this research is the continuous functions introduced below. The two cost functions

are:

 N

 ΔPi = Pi
sp – Vi ∑Vk (Gik cosθik + Bik sinθik) (3)

 k=1

Where Pi
sp is the specified active power at bus i, eqn.3 is for ″PV″ (generator buses), and ″PQ″ (load

buses),

 N

 ΔQi =Qi
sp – Vi ∑ Vk (Gik sinθik – Bik cosθik) (4)

 k=1

Where Qi
sp is the specified reactive power at bus i, eqn.4 is for PQ buses only, Where θik = θi – θk

and,(ΔPi) is the mismatch active power at bus (i) and (ΔQi) is the mismatch reactive power at bus (i).

(Vi, Vk, θi, θk) are the voltage magnitude and angle at buses (i) and (k) respectively, which are the

variables of the two cost functions and (N) is the number of buses, Kubba, 2008.

3.2 Variable Encoding, Precision, and Bounds

 Here, the difference between binary and continuous genetic algorithms is shown. It is no longer

needed to consider how many bits are necessary to represent accurately a value. Instead, (V) and (θ)

have continuous values that are limited between appropriate bounds which are in our problem,

0.9 ≤ V ≤ 1.1 and -20 ≤ θ ≤ 20. Since the genetic algorithm is a search technique, it must be limited to

exploring a reasonable region of variable space. Sometimes, this is done by imposing a constraint on

the problem. If one does not know the initial search region, there must be enough diversity in the

4

initial population to explore a reasonably sized variable space before focusing on the most promising

regions.

3.3 Initial Population

 The genetic algorithm starts with a group of chromosomes known as the population. A matrix

represents the population with each row in the matrix being a (1×Nvar) array (chromosome) of

continuous values. Given an initial population of Nind chromosomes, the full matrix of (Nind×Nvar)

random values is generated. All variables are normalized to have values between 0 and 1, the range of

a uniform random number generator. The values of a variable are “unnormalized” in the cost function.

If the range of values is between blo and bhi, then the unnormalized values are given by:

b=(bhi–blo)bnorm+blo (5)

where, bhi is highest number in the variable range, blo is lowest number in the variable range, and

bnorm is normalized value of variable. This society of chromosomes is not a democracy; the individual

chromosomes are not all created equal. Each one's worth is assessed by the cost function. So at this

point, the chromosomes are passed to the cost function for evaluation. In this research, we had used a

population size (initial population) of 20 individuals (chromosomes) for 14-bus IEEE system power

flow solution and 500 individuals for 362-bus Iraqi National Grid (ING) power flow solution which

depends on the number of variables for each system. These population sizes are kept constant

throughout the whole solution process.

3.4 Natural Selection

 Survival of the fittest translates into discarding the chromosomes with the higher costs. First, the Nind

costs and associated chromosomes are ranked from lowest cost to highest cost. Then, only the best are

selected to continue, while the rest are deleted. The selection rate, Xrate, is the fraction of Nind that

survives for the next step of mating. The number of chromosomes that are kept each generation is:

Nkeep=Xrate.Nind (6)

Natural selection occurs each generation or iteration of the algorithm. Of the Nind chromosomes, only

the top Nkeep survive for mating, and the bottom (Nind – Nkeep) are discarded to make room for the new

offspring. Deciding how many chromosomes to keep is somewhat arbitrary. Letting only a few

chromosomes survive to the next generation limits the available genes in the offspring. Keeping too

many chromosomes allows bad performers a chance to contribute their traits to the next generation.

We use 50% (Xrate=0.5) in the natural selection process. Another approach to natural selection is called

thresholding (Truncation Selection) is used in this research. In this approach, all chromosomes that

have a cost function lower than some truncation threshold survive. The threshold must allow some

chromosomes to continue in order to have parents to produce offspring. Otherwise, a whole new

population must be generated to find some chromosomes that pass the test. At first, only a few

chromosomes may survive. In later generations, however, most of the chromosomes will survive

unless the threshold is changed. An attractive feature of this technique is that the population does not

have to be sorted.

3.5 Selection
 In this process, two chromosomes are selected from the mating pool of Nkeep chromosomes to

produce two new offspring. Pairing takes place in the mating population until (Nind – Nkeep) offspring

are born to replace the discarded chromosomes. Pairing chromosomes in a genetic algorithm can be as

interesting and varied as pairing in an animal species. Two types of selection are used in this research,

which are:

5

3.5.1. Rank-weighted roulette wheel: This approach uses a uniform random number generator to select

chromosomes. The row numbers of the parents are found using:

ma = ceil (Nkeep * rand(1, Nkeep/2))

pa = ceil (Nkeep * rand(1, Nkeep/2)),

Where ceil rounds the value to the next highest integer and rand generates arrays of random numbers

whose elements are uniformly distributed in the interval (0, 1). This approach is problem independent

and finds the probability from the rank of the chromosome. Rank weighting is slightly more difficult

to program than the other selection types. Small populations have a high probability of selecting the

same chromosome. The probabilities only have to be calculated once. We tend to use rank weighting

because the probabilities do not change each generation. This approach of selection had been used in

14-bus IEEE-system.

3.5.2. Tournament selection: Another approach that closely mimics mating competition in nature is to

randomly pick a small subset of chromosomes (two or three) from the mating pool, and the

chromosome with the lowest cost in this subset becomes a parent. The typical value accepted by many

applications is k =2 (so-called tournament size). The tournament repeats for every parent needed.

Thresholding and tournament selection make a nice pair, because the population never needs to be

sorted. Tournament selection works best for large population sizes because sorting becomes time-

consuming for large populations. Each of the parent selection schemes results in a different set of

parents. As such, the composition of the next generation is different for each selection scheme. Rank-

weighted Roulette-wheel and tournament selection are standard for most genetic algorithms. It is very

difficult to give advice on which selection scheme works best. In our problem, we follow the roulette-

wheel and tournament parent selection procedures for 14-bus IEEE-system and 362-bus ING

respectively, Younes, and M. Rahli, 2006.

3.6 Crossover (Recombination)
 As for the binary algorithm, two parents are chosen, and the offspring are some combination of these

parents. Many different approaches have been tried for crossing over in continuous genetic algorithm.

The simplest methods choose one or more points in the chromosome to mark as the crossover points.

Then the variables between these points are merely swapped between the two parents. For example,

consider the two parents to be:

 parent 1= [bm1, bm2, bm3, bm4, bm5, bm6, ……, bmNvar]

 parent 2 = [bd1, bd2, bd3, bd4, bd5, bd6, ……, bdNvar]

 Crossover points are randomly selected (at points (3, 4)), and then the variables in between are

exchanged:

 offspring 1 = [bm1, bm2, bd3, bd4, bm5, bm6, ……, bmNvar]

 offspring 2 = [bd1, bd2, bm3, bm4, bd5, bd6, ……, bdNvar]

The extreme case is selecting Nvar points and randomly choosing which of the two parents will

contribute its variable at each position. Thus, one goes down the line of the chromosomes and, at each

variable, randomly chooses whether or not to swap information between the two parents. This method

is called uniform crossover:

 offspring 1 = [bm1, bd2, bm3, bm4, bd5, bm6, ……, bdNvar]

 offspring 2 = [bd1, bm2, bd3, bd4, bm5, bd6, ……, bmNvar]

6

 The problem with these point crossover methods is that no new information is introduced; each

continuous value that was randomly initiated in the initial population is propagated to the next

generation, only in different combinations. Although this strategy works fine for binary

representations, there is now a continuum of values, and in this continuum we are merely

interchanging two data points. These approaches totally rely on mutation to introduce new genetic

material. The blending methods remedy this problem by finding ways to combine variable values from

the two parents into new variable values in the offspring. A single offspring variable value bnew comes

from a combination of the two corresponding parents variable values:

bnew=βbmn+(1–β)bdn (7)

Where, β is a random number on the interval [0,1], bmn = nth variable in the mother chromosome,

bdn = nth variable in the father chromosome.

 The same variable of the second offspring is merely the complement of the first (i.e. replacing β by 1

– β). If β = 1, then bmn propagates in it's entirely and bdn dies. In contrast, if β = 0, then bdn propagates

in it's entirely and bmn dies. When β = 0.5, the result is an average of the variables of the two parents.

This method has been demonstrated to work well on several interesting problems. Choosing which

variables to blend is the next issue. Sometimes, this linear combination process is done for all

variables to the right or to the left of some crossover point, Woon, 2004. Any number of points can be

chosen to blend, up to Nvar values where all variables are linear combinations of those of the two

parents. The variables can be blended by using the same β for each variable or by choosing different

β's for each variable. These blending methods effectively combine the information from the two

parents and choose values of the variables between the values bracketed by the parents; however, they

do not allow introduction of values beyond the extremes already represented in the population. Of

course, the factor (0.5) is not the only one that can be used in such a method. Heuristic crossover is a

variation where some random number β is chosen on the interval [0, 1] and the variables of the

offspring are defined by:

 bnew = β(bmn-bdn)+bdn (8)

Variations on this theme include choosing any number of variables to modify and generating different

β for each variable. This method also allows generation of offspring outside of the values of the two

parent variables. Sometimes, values are generated outside of the allowed range. If this happens, the

offspring is discarded and the algorithm tries another β. In our problem, we want to find a way to

closely mimic the advantages of the binary genetic algorithm scheme. It begins by randomly selecting

a variable c in the first pair of parents to be the crossover point, Yin, 1993:

 c= round up {random*Nvar} (9)

Where, (round up) is rounding mode that rounds to the nearest allowable quantized value.

We’ll let: parent 1 = [bm1, bm2, ……, bmc, ……, bmNvar] parent 2 = [bd1, bd2, ……, bdc, ……, bdNvar],

Where (m) and (d) subscripts discriminate between the mom and dad parent. Then, the selected

variables are combined to form new variables that will appear in the children:

bnew1 = bmc – β (bmc – bdc)

bnew2 = bdc + β (bmc – bdc)

Where, β is also a random value between 0 and 1. The final step is to complete the crossover with the

rest of the chromosome as in binary genetic algorithm:

7

offspring 1 = [bm1, bm2, ……, bnew1, ……, bdNvar]

offspring 2 = [bd1, bd2, ……, bnew2, ……, bmNvar]

If the first variable of the chromosomes is selected, then only the variables to the right of the selected

variable are swapped. If the last variable of the chromosomes is selected, then only the variables to the

left of the selected variable are swapped. This method does not allow offspring variables outside the

bounds set by the parent unless β > 1, Younes, and Rahli, 2006-Jain, and Martin1, 1998.

3.7 Mutation

 Random mutations alter a certain percentage of the genes in the list of chromosomes. If care is not

taken, the genetic algorithm can converge too quickly into one region of the cost surface. If this area is

in the region of the global minimum, that is good. However, some functions, such as the one we are

modeling, have many local minima. If nothing is done to solve this tendency to converge quickly, it

may end up in a local rather than a global minimum. To avoid this problem of overly fast convergence

(premature convergence), the routine is forced to explore other areas of the cost surface by randomly

introducing changes, or mutations, in some of the variables. Mutation points are randomly selected

from the (Nind×Nvar), total number of genes in the population matrix.

 Increasing the number of mutations increases the algorithm's freedom to search outside the current

region of variable space. It also tends to distract the algorithm from converging on a popular solution.

With the process of the crossover and mutation taking place, there is a high chance that the optimum

solution could be lost as there is no guarantee that these operators will preserve the fittest string. To

counteract this, elitist models are often used. In an elitist model, the best individual in the population is

saved before any of these operations take place. After the new population is formed and evaluated, it is

examined to see if this best structure has been preserved. If not, the saved copy is reinserted back into

the population. The genetic algorithm then continues on as normal, Ibrahim, 2005- Vasconcelos, et

al., 2002.

4. PROPOSED TECHNIQUE

 In the proposed method the load busbars are eliminated, retaining only generator busbars for the

iterative process. The system equations in terms of generator busbars and load busbars can be written

as:

 𝐼𝐺

 𝐼𝐿
 =

𝑌11 𝑌12

𝑌21 𝑌22

 𝑉𝐺

𝑉𝐿
 (10)

If the voltage of the Kth load busbar is initially assumed to be VLk = 1.0 0
o . Then the current in the

busbar to the load is:

 ILk =

 𝑃𝐿𝑘 −𝑗𝑄𝐿𝑘

𝑉∗𝐿𝑘
 (11)

From the second row of eqn. 10, we have

 𝑉𝐿 = −𝑌2 2
−1 𝑌21 𝑉𝐺 + 𝑌22

−1 𝐼𝐿 (12)

Substituting eqn. 12 in the first row of eqn. 10, we get

 𝐼𝐺 = 𝑌11 𝑉𝐺 + 𝑌12(−𝑌22
−1 𝑌21 𝑉𝐺 + 𝑌22

−1 𝐼𝐿) (13)

 The above equation is written as

 𝐼𝐺 = 𝑌𝐺𝐺 𝑉𝐺 + 𝑌𝐺𝐿𝐼𝐿 (14)

8

Where: 𝑌𝐺𝐺 = 𝑌11 − 𝑌12 𝑌22
−1 𝑌21 and 𝑌𝐺𝐿 = 𝑌12𝑌22

−1 (15)

From eqn. 14, the ith generator busbar is:

 𝐼𝑖 = ∑ 𝑌𝑖𝑘 𝑉𝑘
𝑚
𝑘=1 + 𝑎𝑖 , for i= 1,2,…..,m. (16)

Where ai is the ith element of the column vector A given by

 𝐴 = 𝑌𝐺𝐿 𝐼𝐿 (17)

The complex power at the busbar is

 𝑆𝑖 = 𝑉𝑖
∗ 𝐼𝑖 = 𝑉𝑖

∗ ∑ 𝑌𝑖𝑘
𝑚
𝑘=1 𝑉𝑘 + 𝑉𝑖

∗ 𝑎𝑖

for i=1,2,……,m. (18)

The real power injection at the busbar is

𝑃𝑖 = 𝑅𝑒 𝑆𝑖 = ∑ 𝑒𝑖
𝑚
𝑘=1 (𝑒𝑘𝐺𝑖𝑘 − 𝑓𝑘𝐵𝑖𝑘) + ∑ 𝑓𝑖

𝑚
𝑘=1 (𝑒𝑘𝐵𝑖𝑘 + 𝑓𝑘𝐺𝑖𝑘) + 𝐿𝑖

for i=1,2,….,m. (19)

Where 𝐿𝑖 = 𝑒𝑖𝑐𝑖 + 𝑓𝑖𝑑𝑖 (20)

(Li) can be considered as an equivalent local load at generator busbar i due to elimination of the load

busbars , Mithulananthan, et al., 2004 .

5. COMPUTER ALGORITHM OF THE PROPOSED METHOD

 The computer algorithm for the proposed method is as follows:

1. Read the lines data and form the nodal admittance matrix.

2. Read the busbars data, such as the specified active power, voltage magnitude of the generator buses,

specified active and reactive power of the load buses, slack bus voltage, and initial estimate of the

voltage of the load buses, assuming (1.0 p.u., 0.1 MW/MVAr)

3. Eliminate the load busbars and reduce the network to the size of that of the generators busbars.

4. Compute (IL) using Eqn. (11) for all load buses, form the column vector (A) given by Eqn. (17),

then form (Li) assuming (ei) equal to the specified values, and (fi) initially is zero.

5. Execute the Real-Coded Genetic Algorithm on the generator buses only to find the most recent

value of the voltages, implementing all the GA operators such as Selection with Rank-Weighting

Roulette Wheel, Tournament selection with truncation threshold, Single-point Crossover with

blending method, and Mutation (rate of Mutation=0.2), we use initial population of 20 chromosomes

for 14-bus IEEE system and 500 chromosomes for Iraqi National Grid (ING) system. At each

generation (iteration) of the GA, we calculate the most recent values of (VL) from Eqn. (12), (IL) from

Eqn. (11) and (Li), then calculate (Pi) from Eqn. (19).

6. Convergence Test: The mismatch active powers for the generator buses (cost function) are

calculated at each GA generation (iteration) according to the following equation:

 ∆𝑃𝑖 = 𝑃𝑖
𝑠𝑝 − 𝑃𝑖

𝑐𝑎𝑙 , for i=1,2,…,m. (21)

When the mismatch active powers (cost function) for all generator buses except the slack bus are less

than a small tolerance value (usually 0.001), 0.1MW/MVAR then the solution has converged.

7. Restore the system and calculate the load busbars voltages using Eqn. (12).

8. Print results and end.

9

6. IMPLEMENTATIONS AND RESULTS

 Two test systems were used to demonstrate the performance of the proposed method, namely:

1. 14 busbars IEEE International test system, the lines and buses data are present in, Kubba, 1991.

The ″14- bus″ test system consists of: 1 slack bus, 4 generator buses (PV) and 9 load buses(PQ).

2. The Iraqi National Grid (ING) which consists 362 busbars, 1 slack bus, 29 generator buses (PV) and

332 load buses (PQ) , Al-Bakri, 1994 .

 The load flow solution using real-coded genetic algorithm programs with and without the method of

Reduction and Restoration have been developed by the use of MATLAB version 7, and tested with a

Pentium 4, 3GHz (Cache 2M) PC with 2GB RAM. Table 1 illustrates the power flow solution for a

14-bus IEEE test system using conventional RCGA with two objective functions, which are the

mismatch active and reactive powers at each bus according to its constraints except the slack bus. The

sum of weighted cost multi-objective functions is used. The most straightforward approach to multi-

objective optimization is to weight each function and add them together, Abido, 2003.

 h

cost =∑wifi (22)

 i=1

 Where fi is the cost function (i), wi is the weighting factor, h is the number of objective functions,

and

 h

 ∑ wi = 1. (23)

 i=1

 Implementing this multiple objective optimization approach in a real-coded genetic algorithm only

requires modifying the cost function to fit the form of Eqn. (22) and does not require any modification

to the genetic algorithm. Thus, Eqn. (22) becomes:

cost =wf1+(1-w)f2 (24)

 Where f1 and f2 are the mismatch active and reactive powers respectively, and have the same rank of

importance. This approach is adopted in this research for its simplicity, easy of programming and

gives us the required accuracy. Here, (w) is chosen to be (0.5), Riccieri, and Falcao, 1999.

Because of the stochastic nature of the genetic algorithm process, each independent run will probably

produce a different number of generations and consequently the computation time and the best

amongst these should be chosen. The best of the 10 implementations runs are shown in the tables. The

total computation time was 7.156 sec. Table 2 illustrates the power flow solution of the same IEEE

test system using RCGA with the method of system Reduction and Restoration (Proposed Method).

Since, we only retain the generator buses for the GA process, so a single objective function (mismatch

active power) is needed. The total computation time for the whole load flow solution was 0.18 second.

The power flow solution results for the Iraqi National Grid (362-bus) by using RCGA with the method

of system reduction and restoration were tabulated in Table 3 and Table 4. Since the proposed method

(RCGA with system Reduction and Restoration) implements the complete cycles of the genetic

algorithm on the generator busbars only which are the first thirty buses of the system, then Table 3

shows the results and number of generations for each generator busbar and the power flow solution for

the total Iraqi National Grid are presented. Table 4 shows the voltages of load buses which are

calculated after restoring the system, also the mismatch active and reactive powers of load buses are

presented. The total computation time with conventional RCGA method was more than 72 hours,

while the total computation time for the proposed method was 519 seconds for the whole load flow

solution of 362-bus ING with the same accuracy. A ranked-weighted roulette wheel and Tournament

selection process were used for 14-bus IEEE and ING respectively. Figure1 shows the evaluation

process of the genetic algorithm for bus 2 of 14-bus IEEE system, the dotted curve represents the

10

minimum cost of the solution (chromosome) which is converged with 15 generations and the solid

curve represents the average value of the costs amongst generations versus the number of generations.

7. CONCLUSIONS

 The proposed method which had presented in this paper is very much faster than the simple real-

coded genetic algorithm, since the system is reduced to the size of that of the generator busbars which

for any realistic system is small as we see for the 362-bus Iraqi National Grid, only 30 buses are

generator busbars. We must take into consideration that the main drawback of the genetic algorithm is

the large computation time. So, this contribution is especially for GA as an optimization technique.

The objective function (cost function) for the generator buses is only the mismatch active power, so

that multi-objective function techniques are not needed. Thus, it can be concluded that the proposed

method is suitable for on-line implementation for small and medium-scale power systems and it can be

used for planning study for large-scale systems. The proposed method has reliable convergence and

high accuracy of solution. Whereas the traditional numerical techniques (Gauss-Seidel, Newton-

Raphson, Fast decoupled,…etc.) use the characteristics of the problem to determine the next sampling

point (e.g. gradient, linearity and continuity), genetic algorithm makes no such assumptions. Instead,

the next sampled point is determined based on stochastic sampling or decision rules rather than on a

set of deterministic decision rules. Genetic algorithms with the method of system reduction and

restoration have been used to solve difficult problems with objective functions that possess properties

such as continuity, differentiability and so forth. Also, whereas the traditional numerical techniques

mentioned above use single point at a time to search the problem space, genetic algorithm uses a

population of candidate solutions for solving the problem, thus reducing the possibility of ending at a

local minima.

8. REFERENCES

Al-Bakri, ″A Study of Some Problems on the IRAQI NATION AL GRID and Establishing a Method

Algorithm for Load Flow,″ M.Sc Thesis , University of Baghdad, 1994.

H. A. Kubba, A. S. Hassan, and T. Krishnaparandhama, ″Comparative Study of Different Load Flow

Solution Methods,″ Al-Muhandis, Refe- reed Scientific Journal of Iraqi Engineers Society, Vol. 107,

pp. 25-46, December 1991.

H. A. Kubba, ″ An Efficient and more Reliable Second Order Load Flow Solution Method,″ Journal

of Association for the Advancement of Modeling & Simulation Techniques in Enterprices, 2009.

H. A. Kubba, Omar R, and Soltani j" A multi-objective genetic algorithm for a rapid and efficient load

flow solution for electrical power systems." Proceedings of the international conference on modelling

and simulation, Petra, Jordan; 18– 20 November 2008. p.14–9.

H. T. Yang, P.C. Yang, and C. L. Huang, ″A Parallel Genetic Algorithm Approach to Solving the Unit

Commitment Problem: Implementation on the Transporter Networks,″ IEEE Transactions on Power

Systems, Vol. 12, No. 2, pp. 661-668, May 1997.

J. A. Vasconcelos, R. L. S. Adriano, D. A. G. Vieira, G. F. D. Souza, and H. S. Azevedo, ″NSGA

with Elitism Applied to Solve Multi-Objective Optimization Problems,″ Journal of Microwaves and

Optoelectronics, Vol. 2 No. 6, pp. 59-69, December 2002

K. P. Wong, A. Li, and T. M. Law, ″Advanced Constrained Genetic Algorithm Load Flow Method,″

presented in IEEE Proceedings on genera tor, transmission, distribution, Vol. 146, No. 6, November

1999.

11

L. C. Woon, ″Genetic Algorithm for Load Flow Solution Techniques,″ Master of engineering

(electrical), Universiti Technologi Malaysia, 2004, http://www.sps.utm.

L. Ippolito, A. La Cortiglia, and M. Petrocelli, ″Optimal Allocation of Facts Devices by Using Multi-

Objective Optimal Power Flow and Genetic Algorithms,″ International journal of emerging electric

power systems, Vol. 7, No. 2, pp. 1-19, 2006.

L. C. Jain, and N. M. Martin, ″Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms:

Industrial Applications,″ CRC Press, CRC Press LLC, 1998.

M. Younes, and M. Rahli, ″On the Choice Genetic Parameter with Taguchi Method Applied in

Economic Power Dispatch,″ Leonardo Journal of Sciences, issue 9, pp. 9-24, July/December 2006.

M. A. Abido, ″Environmental/Economic Power Dispatch Using Multi- Objective Evolutionary

Algorithms,″ IEEE Trans. Power Syst., Vol. 18, No. 4, pp.1529–1537, Nov. 2003.

N. Mithulananthan, O. Than, and Le Van Phu, ″ Distributed Generator Placement in Power

Distribution System Using Genetic Algorithm to Reduce Losses,″ Thammasat Int. J. Sc. Tech., Vol.

9, No. 3, pp. 55- 62 July/September 2004.

O. F. Riccieri, and D. M. Falcao, ″Meter Placement Method for State Estimation using Genetic

Algorithms,″ Intelligent System Application to Power Systems (ISPA), Rio de Janeiro, Brazil, pp. 360-

364, April 1999.

S. B. M. Ibrahim, ″The PID Controller Design Using Genetic Algorithm,″ A dissertation submit ted to

University of Southern Queensland, Faculty of engineering and surveying, Electrical and Electronics

Engineering, October 2005.

T. Bouktir, L. Slimani, and M. Belkacemi, ″A Genetic Algorithm for Solving the Optimal Power

Flow Problem,″ Leonardo journal of sciences, pp. 44-58, January/June 2004.

X. Yin., ″Application of Genetic Algorithm to Multiple Load Flow Solution Problem in Electrical

Power Systems,″ presented in IEEE Proceedings of the 32nd conference on decision and control, San

Antonio, Texas, December 1993.

NOMENCLATURE

N = number of busbars in the system.

m = number of generator busbar in the system.

VG = M-dimensional vector of voltages of generator busbars.

IG = M-dimensional vector of currents of generator busbars.

VL = (N-M) dimensional vector of voltages of load busbars.

IL = (N-M) dimensional vector of currents of load busbars.

Y= admittance matrix of order NxN.

Y11, Y12, Y21, Y22 = sub-matrices of Y of appropriate order.

𝑉𝑘
∗ = conjugate of kth busbar voltage Vk.

ek , fk = inphase and quadrature components of Vk.

ci , di = real and imaginary parts of ai.

sp = specified value.

cal = calculated.

Gik, Bik = real and imaginary parts of the admittance Yik

http://www.sps.utm/

12

Figure1 Evaluation process for busbar (2), 14- bus IEEE test system

Table 1 Power Flow Solution (14-Bus IEEE) Test System with accuracy (0.001p.u.), using RCGA

 Without Reduction & Restoration

Bus
Active

power

Reactive

power
Voltage Voltage No. of

No mismatch mismatch
Magnitude

(p.u)

Angle

(deg)
generations

1 Slack Slack 1.06 0.00 ـــــ

2 0.000329 PV 1.045 3.2117 17

3 0.000131 PV 1.010 -4.3582 7

4 0.000484 PV 1.070 -6.1436 21

5 0.000890 PV 1.090 -12.423 47

6 0.000798 0.000481 1.057131 6.30252 95

7 0.000365 0.000060 1.0773818 -4.6541 107

8 0.000222 0.000773 1.0565362 -1.7120 193

9 0.000185 0.000682 1.0456395 1.44081 172

10 0.000273 0.000322 1.045163 -9.0031 18

11 0.000950 0.000223 1.057696 -5.4828 90

12 0.000411 0.000535 1.061725 7.67754 43

13 0.000770 0.000521 1.0482889 -11.028 29

14 0.000209 0.000762 1.0588537 -3.3446 47

Total Computational Time:

7.156 sec.

13

Table 2 Power Flow Solution (14-Bus IEEE) Test System with accuracy (0.001p.u.), using RCGA

 With Reduction & Restoration

*Table 3 Power Flow Solution For "IRAQI NATIONAL GRID" with accuracy (0.001p.u.),

 using RCGA with the method of Reduction and Restoration (Only the Generator Busbars)

*Total computing time (Genetic Algorithm without the method of Reduction and Restoration): more than 72

 hours.

*Total computing time (Genetic Algorithm with the method of Reduction and Restoration): 519 sec., this time is for the

 total load flow solution of 362-bus ING system.

Bus Active power Reactive power Voltage Voltage No. of

No. mismatch mismatch magnitude(p.u) angle(deg.) Generations

1 Slack Slack 1.06 0.00 ــ

2 0.000373 PV 1.045 3.2117 15

3 0.000130 PV 1.010 -3.35826 5

4 0.000374 PV 1.070 -6.10062 21

5 0.000890 PV 1.090 -11.0235 40

6 0.000678 0.000444 1.0476131 6.30252 -

7 0.000360 0.0006 1.0573888 -4.6999 -

8 0.000223 0.000788 1.065092 -2.71203 -

9 0.000109 0.0005 1.0558895 1.63081 -

10 0.000223 0.000321 1.0551690 -9.03316 -

11 0.000850 0.000221 1.0476990 -4.08283 -

12 0.000407 0.000546 1.0762725 6.60054 -

13 0.000660 0.000512 1.0482889 -11.0208 -

14 0.000205 0.000769 1.0688837 -3.34469 -

Total Computational Time:

0.18 sec.

Bus Active power
 Reactive

power
Voltage Voltage No. of

 No. mismatch (p.u)
mismatch

(p.u)

magnitude

(p.u)
Angle(deg) Generations

1 Slack Slack 1.04 0 ـــــ

2 0.0005 PV 1 18.3805 262

3 0.00021334 PV 1 2.8233 57

4 0.0008081 PV 1 -9.5400 319

5 0.00011245 PV 1 13.6445 521

6 0.00043106 PV 1 -11.8520 34

7 0.0018487 PV 1 4.1875 500

8 0.00066843 PV 1 7.5529 244

9 0.00023882 PV 1 12.3150 30

10 0.00016648 PV 1 4.0006 134

11 0.0003391 PV 1 -19.7704 88

12 0.00045458 PV 1 -6.3530 266

13 0.00013682 PV 1 4.5221 424

14 0.00058912 PV 1 -6.9794 76

15 0.00054176 PV 1 -8.1968 353

16 0.00021063 PV 1 13.5898 42

17 0.00078201 PV 1 4.5766 39

18 2.4477*10-6 PV 1 11.1094 41

19 0.00090163 PV 1 7.0672 47

20 0.00089409 PV 1 -7.0275 9

21 0.00037127 PV 1 -3.2876 159

22 0.00014522 PV 1 -10.7986 24

23 0.00093387 PV 1 2.0421 216

24 0.00084462 PV 1 9.0268 47

25 0.00038532 PV 1 2.9669 17

26 0.00023586 PV 1 3.8338 52

27 7.2047*10-6 PV 1 -6.8666 88

28 0.00011686 PV 1 0.0252 50

29 0.00026843 PV 1 7.3612 333

30 0.0005791 PV 1 9.1833 134

14

Table 4 Power Flow Solution For "IRAQI NATIONAL GRID" (Load Buses) After System

 Restoration

Bus Active power
 Reactive

power
Voltage Voltage

 No. mismatch (p.u)
mismatch

(p.u)
magnitude (p.u) Angle(deg.)

31 0.0003 0.0002 1.02247 12.3782

32 0.000310 0.00013264 1.03356 -12.5347

33 0.000761 0.00088425 0.955482 -18.8922

34 0.00048 0.000007 0.981021 -3.14901

35 0.00082 0.00019414 0.969731 -7.5778

36 0.0007 0.0004 0.999866 0.40992

37 0.00094 0.00059979 0.99142 -0.108361

38 0.00072 0.0000028 1.02766 2.41241

39 0.00010 0.000031 0.951085 8.90456

40 0000073 0.000082 0.978972 7.68687

41 0.000003 0.00014068 0.954069 -2.09315

42 0.00056231 0.00034232 0.951974 10.2677

43 0.00015186 0.00084486 0.956778 9.06423

44 0.00093275 0.00060546 0.955108 -13.2829

45 0.00085845 0.0000039 1.00216 -8.97243

46 0.000025 0.00022034 0.955224 -7.08481

47 0.0005849 0.00025364 0.96548 -8.2154

48 0.0006 0.0009 0.96959 0.0359168

49 0.00046407 0.00068482 1.01733 8.11071

50 0.00064014 0.00040881 0.96882 16.9887

51 0.00081139 0.00073374 1.01725 12.1607

52 0.00063582 0.00036833 0.999238 0.015595

53 0.00064585 0.00073222 0.95709 7.0377

54 0.00039461 0.00031144 1.02049 4.97693

55 0.00050197 0.00051873 0.95678 18.5084

56 0.0006757 0.00066047 1.02961 13.4216

57 0.00048624 0.00046999 1.01989 13.0202

58 0.00026657 0.00078447 1.03154 -4.56727

59 0.00020212 0.00087574 0.998382 -0.133244

60 0.00099704 0.00040061 0.969316 -9.13924

61 0.0002 0.0005 1.09633 -3.3891

62 0.00062866 0.00048481 1.01166 3.0274

63 0.000034 0.00050729 1.00118 11.0695

15

64 0.00052304 0.0006 0.956323 0.126932

65 0.00039148 0.00027503 0.959269 -3.93418

66 0.0003338 0.00048038 0.959048 5.45821

67 0.00045369 0.00074015 1.03691 8.05995

68 0.00077681 0.00053799 0.962027 -0.556099

69 0.00027057 0.00061177 1.0712 5.11859

70 0.00040663 0.00054506 0.959477 -13.4194

71 0.00015602 0.00084029 1.0151 4.6136

72 0.00085314 0.0000044 0.9505 -9.4481

73 0.00082757 0.00056498 0.9587 14.8084

74 0.0000066 0.00028761 1.0205 -0.5232

75 0.00045213 0.00089712 0.9606 16.254

76 0.00026312 0.00099152 1.0235 -0.4562

77 0.0003 0.0002 0.9989 -15.9269

78 0.00060173 0.00081968 0.9569 9.3835

79 0.00097288 0.00093161 0.9615 -9.6373

80 0.00030775 0.00026214 1.0172 -11.3539

81 0.00028197 0.0003666 0.9567 10.958

82 0.0001 0.0007 0.9709 -9.6128

83 0.00017501 0.00031678 0.9538 0.5662

84 0.00060463 0.00055344 0.9689 12.4227

85 0.00049479 0.00025939 0.9917 -17.9393

86 0.00074739 0.000061 0.9976 11.2733

87 0.00073692 0.00062359 1.0459 3.6541

88 0.0002 0 0.9665 7.1323

89 0.000081 0.00089968 1.0154 -0.9266

90 0.00051316 0.00093613 1.0007 -15.3443

91 0.000031 0.00072166 1.0017 18.7953

92 0.00062835 0.00047428 0.9977 12.0889

93 0.0000047 0.00047299 1.0034 11.0409

94 0.00031952 0.00085516 0.9855 1.9537

95 0.00028333 0.00050642 1.0368 18.9362

96 0.0008504 0.00096063 1.0821 -15.1242

97 0.00038635 0.00026579 1.0445 -5.8019

98 0.00069584 0.00012365 0.9702 -8.2354

99 0.0007 0.0009 0.9562 16.788

100 0.00010717 0.0000085 0.9727 -10.4169

101 0.0006727 0.00077553 0.9557 8.5754

102 0.00053227 0.00015283 1.0827 -10.9894

103 0.00044692 0.00081571 0.9729 0.6583

104 0.00016048 0.000073 1.0319 0.9266

 105 0.000025 0.00047994 0.9625 -2.6931

106 0.000048 0.00079433 0.9284 -10.2436

107 0.00084716 0.00015576 0.9641 4.4674

108 0.00068356 0.000055 1.0552 1.2291

109 0.00026455 0.00064387 1.0413 11.6445

110 0.00058321 0.00015476 1.02897 9.3654

111 0.00071167 0.00048416 1.089 16.4406

112 0.00094005 0.00097359 0.9736 12.9073

113 0.00084364 0.00061624 1.0071 19.928

114 0.00021032 0.00017141 0.9618 3.9724

16

115 0.00084827 0.00097626 0.9523 0.8467

116 0.00083 0.000547 0.9523 4.5623

117 0.00047 0.0007656 1.0258 -15.256

118 0.000455 0.00072 0.96136 16.2351

 119 0.00092 0.0009962 0.992564 -9.2541

120 0.00012 0.0004547 1.03654 0.06541

 121 0.001 0.0008 0.9618 2.2392

122 0.00013234 0.00093924 0.9884 11.3193

123 0.00096448 0.0005687 0.9523 -7.3612

124 0.00081065 0.0000031 1.0828 -6.4949

125 0.00030709 0.000083 0.9998 -11.0119

126 0.000048 0.00071905 0.9618 3.1288

127 0.00096313 0.00098343 0.9757 -4.9987

128 0.00093397 0.00077209 1.0843 -0.3262

129 0.00062329 0.00064654 1.0182 12.9015

130 0.00094189 0.00037681 0.9539 -8.8013

131 0.00014215 0.00057406 0.9571 1.6474

132 0.00041524 0.0005684 0.9583 10.7085

133 0.00020296 0.00046611 0.9638 6.3202

134 0.00037946 0.00062747 0.9987 9.103

135 0.00095745 0.00082409 0.9785 -1.7189

136 0.00027374 0.00046965 0.9706 1.4742

137 0.00020975 0.00085845 0.971 7.2577

138 0.00039402 0.00048299 1.0127 7.7591

139 0.00035319 0.00036285 0.9632 5.5677

140 0.0006075 0.0009984 0.95154 6.3214

141 0.0008155 0.0002237 0.95214 -14.2365

142 0.00011 0.0009845 1.0564 0.98745

143 0.0002734 0.0002717 0.9654 3.2145

144 0.0001812 0.000567 0.9628 -17.149

145 0.0004911 0.0006331 0.9752 -4.2187

146 0.0005208 0.000486 0.9962 0.05871

147 0.0005119 0.000886 1.0547 2.0154

148 0.0002753 0.0004816 0.9614 13.2974

149 0.0004286 0.0004054 1.0893 1.5647

150 0.0002753 0.0001582 0.9512 6.2354

151 0.0007 0 0.9544 3.5375

152 0.00013698 0.00027886 1.007 -0.8344

153 0.00020208 0.00023032 0.9965 -0.5292

154 0.00040253 0.00020923 0.9701 5.2631

155 0.00046085 0.00096044 0.9731 5.815

156 0.00029987 0.000035 0.9753 4.4393

157 0.00080446 0.00053457 0.9485 -8.8882

158 0.00035469 0.00015957 0.9687 13.5985

159 0.0003943 0.000029 0.9585 -1.0752

160 0.00073661 0.00017162 0.9279 13.6502

161 0.00065884 0.00028923 0.9548 -6.1351

162 0.00035578 0.00029898 0.9587 -2.3739

163 0.00075604 0.00092751 0.9521 2.898

164 0.000035 0.00038695 1.0067 8.9077

165 0.00099806 0.00071947 1.0691 -10.2774

166 0.00012425 0.000052 0.955 -8.262

17

167 0.00092219 0.00019175 0.9984 13.4656

168 0.00076628 0.00081641 0.9775 17.2191

169 0.00092571 0.000057 0.973 0.6329

170 0.00054766 0.00069843 0.9653 0.4959

171 0.00099334 0.00079967 0.9611 10.6166

172 0.00049608 0.00022697 0.9946 -1.0459

173 0.00055849 0.00042155 0.9421 -4.9939

174 0.00048618 0.000055 1.0338 3.6292

175 0.00014611 0.00072444 0.9827 10.898

176 0.00051741 0.00064903 0.9628 6.5469

177 0.00071172 0.00036796 0.9539 -1.5042

178 0.00019378 0.000039 0.9512 6.5171

179 0.00060168 0.0008397 1.0102 -7.9275

180 0.00059232 0.00022898 0.9634 6.5271

181 0.0001 0.0002 1.0054 4.2552

182 0.00044569 0.000618 1.0125 -6.0294

183 0.00055934 0.00041766 0.9865 3.0486

184 0.00020306 0.00096151 0.9548 7.0504

185 0.00088243 0.00045767 0.9413 -0.5076

186 0.00069729 0.00070518 0.9528 9.3272

187 0.000044 0.000333 0.9537 4.4252

188 0.000013 0.00044238 0.9582 2.137

189 0.00050756 0.00076265 0.9543 4.8151

190 0.00066192 0.00075837 0.9592 19.2249

191 0.0002513 0.00044497 0.9583 0.8323

192 0.00020302 0.00080563 0.9555 2.266

193 0.00030057 0.00094464 1.0024 -17.265

194 0.00046703 0.00042967 0.9994 11.0973

195 0 0 0.9507 18.5179

196 0.00093542 0.000085 0.9738 10.7321

197 0.00051919 0.00062756 0.9848 1.4284

198 0.00013828 0.00084404 1.067 6.9025

199 0.00052945 0.0002323 1.027 -17.4657

200 0.00054335 0.00038057 0.9445 -15.5822

201 0.00061187 0.00075132 0.9957 -18.0073

202 0.00096005 0.00091358 0.9778 -2.2563

203 0.00079194 0.00022214 0.9552 -3.3525

204 0.00026439 0.00095589 0.9802 0.5317

205 0.00056456 0.00087312 0.9946 18.2447

206 0.00054948 0.00055895 0.9555 8.0271

207 0.00077144 0.001 0.9546 3.8581

208 0.00075889 0.00027959 1.0049 8.4842

209 0.00056002 0.00040952 1.0468 -13.798

210 0.0006285 0.00057178 0.9503 -5.8999

211 0.00019025 0.00095178 0.9528 -5.8964

212 0.00059117 0.00056099 0.9572 -0.4872

213 0.00037677 0.00016316 0.9714 17.869

214 0.00088221 0.00063269 0.9555 -11.1881

215 0.00065945 0.00093676 0.9865 -2.8314

216 0.00087711 0.00089287 0.988 -0.0197

217 0.00093717 0.00011334 0.9586 -9.8487

18

218 0.00048357 0.0005098 1.0667 16.3454

219 0.000074 0.00050823 0.9713 8.419

220 0.00023902 0.00097386 0.9738 8.5508

221 0.00020321 0.00085756 1.0454 15.2306

222 0.00011518 0.00095031 1.0223 6.236

223 0.0009373 0.00031901 0.9452 1.1682

224 0.00063283 0.00047536 0.99 -4.223

225 0.00019285 0.000067 0.9426 -12.6611

226 0.000078 0.00023635 0.9599 -3.5077

227 0.00054555 0.000043 0.963 5.5577

228 0.0007854 0.000023 0.9515 2.3654

229 0.00021656 0.00064519 1.0196 -10.1812

230 0.00045404 0.00078516 1.0707 -17.4119

231 0.00026644 0.00016696 0.9708 -3.5614

232 0.00032806 0.0001135 1.0165 -17.2337

233 0.0008132 0.00026348 1.0561 0.7447

234 0.00049081 0.00047598 0.9979 6.2127

235 0.00042958 0.00037536 0.9598 3.4219

236 0.00099515 0.00014891 1.0225 6.0696

237 0.00084 0.00054738 0.9921 -3.3138

238 0.00019869 0.0005315 1.0221 5.5529

239 0.00069827 0.00070673 0.9505 -0.6187

240 0.00073886 0.0006194 0.9452 14.327

241 0.000012 0.00047631 1.0173 -11.6858

242 0.00052499 0.000039 0.945 -2.4259

243 0.00044988 0.00058049 0.9533 16.2874

244 0.00033758 0.00014153 0.9937 6.6786

245 0.00068628 0.00084693 0.9597 -4.9778

246 0.0004596 0.00037358 0.9885 9.4525

247 0.00051515 0.00045483 0.9546 4.6063

248 0.00032144 0.00068358 1.0714 7.7469

249 0.00043791 0.00041416 0.9966 -0.7901

250 0.00028647 0.00022116 0.9556 -2.497

251 0.0007 0.0003 0.95315 1.1601

252 0.000095 0.00054734 0.95733 -8.8202

253 0.00079549 0.00077536 0.98058 -5.4324

254 0.00032922 0.00065235 1.0836 -17.168

255 0.000085 0.00037146 0.959 8.3101

256 0.00094778 0.000036 0.98041 -19.965

257 0.00078819 0.00080088 0.95607 -13.439

258 0.0001091 0.00023452 1.0162 -4.7631

259 0.0008952 0.00047521 0.9842 1.5236

260 0.0009 0.0003 0.9574 -2.2963

261 0.0004 0.0008 1.0025 -3.0548

262 0.00066294 0.000013 0.9891 -1.1725

263 0.00048644 0.0001791 0.94889 8.6261

264 0.00015727 0.00054346 0.95678 -18.469

265 0.00033058 0.00075487 0.9502 8.8319

266 0.00060066 0.00054603 1.0306 6.2556

267 0.00052942 0.00042094 1.0529 14.874

19

268 0.00088617 0.00069782 1.0911 -0.47424

269 0.0004741 0.00045141 1.0366 5.3008

270 0.00034368 0.00003 1.0076 -13.849

271 0.001 0.0005 1.052 5.453

272 0.00012802 0.00052728 1.0162 -0.30575

273 0.00092958 0.00022451 0.9701 -1.8693

274 0.000074 0.00096697 0.99916 -0.018933

275 0.00072001 0.00030789 0.99985 14.765

276 0.00063061 0.00031637 1.0273 3.0481

277 0.00095612 0.000019 1.0046 -7.9187

278 0.00068346 0.00018341 0.95131 3.5014

279 0.0004 0.0007 0.9827 -15.4074

280 0.000053 0.00026706 1.0474 -14.6568

281 0.00035039 0.00018333 1.0241 -4.0515

282 0.0004435 0.00023507 0.964 7.934

283 0.000093 0.00028498 0.9423 -3.4764

284 0.00049599 0.000075 1.0241 9.6195

285 0.001 0.0002 0.9153 14.1537

286 0.00087371 0.00037862 0.912 -7.0177

287 0.00036547 0.00042879 0.9512 -5.2367

288 0.0008 0.0009 1.0031 -2.86

289 0.00076513 0.00057713 0.9934 1.0543

290 0.0003 0 0.9345 1.6056

291 0.00072 0.00029 0.9136 -6.1

292 0.0001864 0.00039723 0.9789 -10.8992

293 0.00012961 0.00028 0.976 -9.4627

294 0.00082929 0.00050417 1.0373 13.1924

295 0.00021605 0.00030426 0.935 7.205

296 0.00087376 0.00048 0.9006 -16.6558

297 0.00044415 0.00067544 0.9385 11.6025

298 0.001 0.0006 0.962 17.4074

299 0.0002 0.0007 0.9108 4.4968

300 0.0006 0.00023838 0.9914 -7.3521

301 0.00021 0.00077513 0.9295 -3.7163

302 0.00060162 0.00080401 0.9947 11.3228

303 0.00083567 0.00077209 1.0395 5.0055

304 0.00031004 0.00057108 1.0016 9.8521

305 0.00034026 0.00077 0.9113 -19.9432

306 0.0005 0.0001 0.9574 9.9693

307 0.00082069 0.00072388 0.9175 -13.1628

308 0.00078933 0.00012857 0.9248 -2.9038

309 0.00047276 0.00056897 0.915 3.2155

310 0.00051363 0.00048865 0.9966 1.6473

311 0.0005 0.0005 0.9932 5.0575

312 0.00045 0.000501 0.9141 10.7649

313 0.0009075 0.00069747 0.9307 -9.4417

314 0.00059802 0.00083978 0.9472 -2.4195

315 0.00090878 0.00080899 0.9357 -11.4126

316 0.0004 0.0002 1.0021 12.7353

317 0.00079075 0.00051686 0.9498 14.4289

318 0.00061 0.00095154 0.9573 9.1572

20

 319 0.00033893 0.00020428 0.9459 18.9635

320 0.00073845 0.00032157 0.9683 -11.3016

321 0.0008 0.0009 0.911 4.4709

322 0.00089603 0.00069157 0.9326 1.409

323 0.00062809 0.00088 1.0397 15.4222

324 0.00075763 0.00013265 1.0234 7.1817

325 0.00034566 0.00027051 0.9664 -8.6569

326 0.00068725 0.00094826 1.0478 -0.6129

327 0.00098619 0.00011221 0.9242 10.1916

328 0.00078934 0.00017901 0.9116 -14.6921

329 0.00053819 0.00015669 1.0548 16.6016

330 0.00078625 0.00091999 1.0757 12.2295

331 0.0004 0.0002 0.9059 -8.4352

332 0.00068151 0.00040504 0.9118 -6.1132

333 0.00030002 0.00088672 0.9854 -18.1334

334 0.00031717 0.00071215 1.0076 -10.6794

335 0.00078608 0.00072425 0.9117 5.1871

336 0.00057 0.00029 0.9127 -3.4872

337 0.00035894 0.00064906 0.9453 0.4137

338 0.00054271 0.00040283 0.9783 19.1633

339 0.0004782 0.00019485 0.9615 7.4683

340 0.00019572 0.00018078 1.0245 8.2345

341 0.0002 0.0001 0.9202 15.3665

342 0.00071403 0.00057652 0.9462 5.148

343 0.00041883 0.00016 0.9531 8.1265

344 0.00050634 0.00018 1.0171 -5.4776

345 0.00083654 0.00070874 0.9417 3.9911

346 0.00045 0.00046 1.0612 4.6101

347 0.00068 0.0005833 0.954 4.7473

348 0.00070461 0.00033 1.0019 14.4764

349 0.00015384 0.00074427 0.9648 6.3369

350 0.00057962 0.00013103 0.9975 4.7811

351 0.0009 0.0005 0.9572 17.3267

352 0.00071164 0.00015677 0.9489 -7.1507

353 0.0007123 0.00071494 0.9817 -10.7106

354 0.00074257 0.00035 0.9236 -3.1823

355 0.00083908 0.00066149 0.9129 -2.6764

356 0.00084867 0.00028569 1.019 -3.3266

357 0.00030526 0.00062 0.9299 -12.2346

358 0.00073194 0.00088 0.9218 -12.8536

359 0.00013875 0.00012092 0.9438 -9.7586

360 0.00048704 0.00048171 0.9875 1.5297

361 0.00062871 0.00068218 1.023 -5.9336

362 0.00059909 0.00069565 0.9912 -1.5367

