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ABSTRACT 

       The use of composite materials has vastly increased in recent years. Great interest is 

therefore developed in the damage detection of composites using non- destructive test methods. 

Several approaches have been applied to obtain information about the existence and location of 

the faults. This paper used the vibration response of a composite plate to detect and localize 

delamination defect based on the modal analysis. Experiments are conducted to validate the 

developed model. A two-dimensional finite element model for multi-layered composites with 

internal delamination is established. FEM program are built for plates under different boundary 

conditions. Natural frequencies and modal displacements of the intact and damaged multi-layer 

composite plates are subsequently analyzed for various samples. Also, composite plates are 

made for vibration testing and analysis and to comparison of the numerical and experimental 

results, shows good agreement between them. 
 

Key words: composite plate, delamination, frequency response, finite element method, impact 

hummer. 
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 الخلاصة

 المواد فً عٌبال عن الكشف فً كبٌرا اهتماما مما اجتذب. الأخٌرة السنوات فً كبٌر بشكل المركبة المواد استخدام زاد لقد
وتحدٌد  عٌبوجود ال حول معلومات على للحصول طرق عدة تطبٌق تم وقد.  المدمرة غٌر الاختبار طرق باستخدام المركبة
 وتجرى. التردد الطبٌعً إلى استناداطٌن وتحدٌد موقعة بعن الت للكشف المركبة لوحة الاهتزاز استجابةدام وتم استخ. موقعه

تحتوي على تبطٌن  الطبقات متعددة للمركبات الأبعاد ثنائً انشاء نموذج وتم.  المطور وذجالنم صحة من للتحقق التجارب

 تحلٌل وٌتم. ةحدٌة مختلف ظروف ظل فً مختلفة للوحات باستعمل طرٌقة العناصر المحددة  FEM برنامج ىثم تبن داخلً .

النتائج المطلوبة  للحصول FEMمن برنامج  لتالفةا و سلٌمة الطبقات متعدد مركب لوحاتل وشكل الازاحة الطبٌعٌة الترددات

 جٌد بٌنهما.وبٌنت النتائج تطابق والعملٌة,  العددٌة النتائج مقارنة و وتحلٌل الاهتزاز اختبار إجراء ٌتم ، أٌضا. مختلفة عٌناتل

.صفيحو مركبو ,والاستجابو التردديو, طريقو العناصر المحدده, مطرقو الصدمالكلمات الرئيسية :   
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1. INTRODUCTION 

          Laminated composite plate with reinforced fiber has lighter weight and higher ratios of 

strength and stiffness to weight, therefore it has been widely applied to many aeronautical and 

astronautically structures as well as architecture and light industry products. With the quality 

improvement and occurrence of many new kinds of composite materials, their applications have 

become more and more extensive. However, laminated composite structures are weak in 

withstanding shock and likely to be aging, and some damage, such as delamination and crack, 

may often occur during their usage. These disadvantages will lead to a deterioration of the 

performance and even failure of the composite materials. Any damage in a composite structure 

always starts from a very tiny extent and gradually cumulates to some degree that can arouse 

people’s attention. However, when such damage in a structure reaches a notable level, a serious 

accident will be induced. Obviously, the early discovery of incipient damage and the 

continuously monitoring for the growth and location of damage are the most essential issues in 

automatic damage inspection of in-service composite structures Gobin, et al., 2000.,and 

Takeda, 2000. Delamination can be often pre-existing or generated during service life. For 

example, delamination often occur at stress free edges due to the mismatch of properties at ply 

interfaces and it can also be generated by external forces such as out of plane loading or impact 

during the service life. The existence of delamination not only alters the load carrying capacity 

of the structure, it can also affect its dynamic response. Thus detection and quantification of 

delamination is an important technology that must be addressed for the successful 

implementation and improved reliability of such structures. All types of damages in composite 

structures result in change in stiffness, strength and fatigue properties. Measurement of strength 

or fatigue properties during damage development is not feasible because destructive testing is 

required. However, stiffness reduction due to damage can be measured since damage directly 

affects structural response, which provides a promising method for identifying the occurrence, 

location and extent of the damage from measured structural dynamic characteristics. Existence of 

delamination causes reduction in natural frequencies and increase in vibratory damping. 

Although experimental investigations are often used to study these effects, damage simulation 

using an accurate and efficient modeling technique can be helpful in reducing the number of 

expensive experiments. Modeling and detection of delamination in composite structures has 

primarily been based on first-order shear deformation theory (FSDT), Shen, and Grady, 2000. 

 

2. THEORY 

2.1 Finite Element Formulation 

       A delaminated composite plate of length a, width b and thickness h consisting of n arbitrary 

number of anisotropic layers is considered as shown in Fig. 1. The layer details of the plate are 

shown in Fig. 2. The global coordinate system is considered with respect to the mid-plane of the 

plate with the Z-axis perpendicular to the X-Y plane and θ is the angle of fiber orientation, 

measured anticlockwise with respect to X-axis. In the present investigation, the delaminated 

composite plate is discretized in to a mesh of 5×5 with total 25 elements. An nine nodes two 

dimensional quadratic isoperimetric element having five degrees of freedom (u
0
, v

0
, w

0
, θx, θy) 

per node is chosen. 

 

2.1.1 Displacement field and shape functions  

The displacement field of any point at a distance z from the mid surface is assumed to be in the 

form of: 
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     yxzyxuzyxu x ,,,, 0                                                                                                   (1)  

       

     yxzyxvzyxv y ,,,, 0                                                                                                   (2) 

 

   yxwzyxw ,,, 0                                                                                                                     (3) 

 

      where u, v, w are displacements in the x,y,z directions respectively for any point, u
0
,v

0
 , w

0
 

are those at the middle plane of the plate. θx, θy are the rotations of the cross section normal to 

the y and x axis respectively. The middle plane of the plate is considered as the reference plane 

of the plate. The mid plane strains of the laminate are given by: 

 

yyyzxxxzxyxyyyyxxx wwvuvu ,

0

,

00

,

0

,

00

,

00

,

0 ;;;;                             (4) 

 

Assuming small deformations, the generalized linear in-plane strains of the laminate at a distance 

z from the mid-surface are expressed as: 

 

     Tyzxzxyyyxx

T

yzxzxyyyxx

T

yzxzxyyyxx kkkkkz 00000                 (5) 
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         where ԑ
0

xx, ԑ
0
yy, γ

0
xy  are the mid-plane strains and kxx  kyy  kxy are the curvatures of the 

laminated plate . 

        The element has 4 corner nodes, 4 mid side nodes and mid element node. In the 

displacement model, simple functions are assumed to approximate the displacements for each 

element. For the present isoperimetric element, the shape functions which are used to represent 

the geometry as well as the displacements within the element are expressed by the shape 

functions Ni. 
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         where xi, yi ,are the co-ordinates of the i
th

 node and ui
0
, vi

0
,wi, θxi, θyi are the displacement 

functions for different nodes. 

Ni for different nodes as shown in Fig. 3 is defined as, 

At corner nodes (i.e. for node 1, 3, 5, 7) 

 

   111
4
1  iiiiiN   

 

At middle nodes (i.e. for nodes 2, 6) 

 

  iiN   11 2

2
1  

 

At middle nodes (i.e. for nodes 4, 8) 

 

  2

2
1 11   iiN  

 

At middle element (i.e. for node 9) 

 

  22

9 11  N  

 

         Where ξ and  are the local isoperimetric co-ordinates of the element and ξi and i are the 

respective values at node i. The correctness of the shape function Ni is checked from the relations 

 

   0,0,1  iii NNN                                                                    (7)   

 

        The derivatives of the shape functions Ni with respect to x and y are expressed in terms of 

their partial derivatives with respect to ξ and  by the relationships: 
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2.1.2 Stress strain relations 

         A micromechanical analysis is carried out to establish the relationship between the forces 

and strains of a laminate. The elastic behavior of each lamina is essentially two dimensional and 

orthotropic in nature. So the elastic constants for the composite lamina. 

 

 2.1.3 Strain displacement relations 

Strain displacement is used throughout the structural analysis. It is used to derive the elastic 

stiffness matrix. 

    The strains are defined as. 
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   The strain can be described in term of displacements as 
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2.1.4 Derivation of element matrices 

2.1.4.1 Elastic stiffness matrix 

           The potential energy of deformation for the element is given by 
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T

e 
2

1
                                                                                                            (12) 

 

      Tkkk 0

4

0

5

0

6

0

2

0

1

0

6

0

2

0

1                                                                                                     (13) 

Where              ee dBBBdB 981 ...........                                                                           (14)  

 

With         Twvuwvude 9

2

9

19

0

9

0

9

1

2

1

11

0

1

0

1                                                            (15) 

 

Then               ee

T

ee

TT

ee dKddxdydBDBdU
2

1

2

1
                                                 (16) 

 

Where the element stiffness matrix 
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[B]  is called the strain displacement matrix. 

 

In Eq. (17)          


































9

1

,

,

,,

,

,

,,

,

,

000

000

000

0000

0000

000

0000

0000

i

iyi

ixi

xiyi

yi

xi

xiyi

yi

xi

i

NN

NN

NN

N

N

NN

N

N

B  

 

ddJ , is the determinant of the Jacobian matrix. The element stiffness matrix can be 

expressed in local natural co-ordinates of the element. The integration of Eq. (17) is carried out 

using the Gauss quadrature method. 

 

2.1.4.2 Consistent mass matrix 

The consistent element mass matrix [Me] is expressed as: 
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      Where [N], the shape function matrix and [P], the inertia matrix 
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   Where          
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2.2 Delamination Modeling 

        A simple two dimensional single delamination model proposed by ,Gim C.K.1994. was 

extended by ,Mohammad F.Aly.2010 for the vibration of delaminated composite panels. In the 

present analysis, it is further extended for static and dynamic stability analysis under in-plane 

uniaxial periodic forces by multiple delamination modelling. In order to satisfy the compatibility 

and equilibrium requirements at the common delamination boundary, it is assumed that the in-

plane displacement, transverse displacement and rotation at a common node for all the three 

sublaminates including the original one are identical applying multiple constraint condition at 

any arbitrary delamination boundary. It can be applicable to any general case of a laminated 

composite plate having multiple delamination at any arbitrary location. Here, the delaminated 

area is assumed as the interface of two separate sub laminates bonded together along the 

delamination surface. 

         Typical composite plate of uniform thickness 'h' with 'n' number of layers and 'p' number 

of arbitrarily located delamination is considered for the analysis as shown in Fig. 4. The 

principal material axes of each layer are arbitrarily oriented with respect to the mid-plane of the 

plate as shown in Fig. 5. 

         Considering the sub-laminates as a separate plate, the displacement field within it is 

expressed as: 

 

    yssssxssss zzvvzzuu  0000 ,                                                                                  (20) 
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 sub-laminate and the mid-plane of the 

laminate in z direction 

        The mid-plane strains of the sub-laminate are: 
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         From Eq. (21) the strain components within the sub-laminate s can be expressed as: 
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T

sxyyyxx kkkzz 0000                                             (22)        

 

           In order to satisfy the compatibility and equilibrium requirements at the common 

delamination boundary, it is assumed that the in-plane displacements, transverse displacement 

and rotations at a common node for all the three sub-laminates including the original one as 

shown in Fig.6, are identical. Applying multiple constraint condition at any arbitrary 

delamination boundary c, the in-plane displacements at 'c' at a distance 'z' from the mid-plane of 

the laminate can be written as: 

         ycxc zvvzuu   00 ,   

From Eq. (20), the displacement at any point, c is given by: 

 

              yssscxsssc zzvvzzuu  0000 ,            

 

        Equating uc with usc and vc with vsc, the mid-plane displacements of the sub-laminate can be 

expressed in the form of the mid-plane displacements(u
0
, v

0
) of the original un-delaminated 

laminate as, 

 

ysxs ss
zvvzuu  000000 ,                                                                                 (23)      

 

         From Eq. (23), the mid-plane strain components of the s
th

 sub-laminate can be derived as: 
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        The strain components within the sub-laminate can be written as: 
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          For any lamina of s
th

 sub-laminate, the in-plane and shear stresses are found from the 

following relations 
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        Where σxx and σyy are the normal stresses along x and y directions respectively and τxz and τyz 

are the shear stresses in xz, yz planes respectively. 

         Integrating these stresses over the thickness of the sub-laminate, the stress and moment 

resultants of the sub-laminate are derived which lead to the elasticity matrix of the s
th

 sub-

laminate [D]s in the form 
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         [D]s is the elasticity matrix of the s
th

 sub-laminate 

 

Where,        dzQA

s
s

s
s

z
h

z
h

sijsij 







0

0

2

2

      and               
sij

z
h

z
h

ssijs

z
h

z
h

sijsij AzzdzQdzzzQB

s
s

s
s

s
s

s
s













0

0

0

0

2

2

00
2

2

 

     

                         















0

0

0

0

0

0

2

2

2

2

2020220
2

2

2

s
s

s
s

s
s

s
s

s
s

s
s

z
h

z
h

z
h

z
h

sijsssijs

z
h

z
h

sijsij dzzQdzzzzzQdzzzQD          

                      
sijs

z
h

z
h

sijs AzzdzQz

s
s

s
s

20
2

2

0

0

0

2  





                for i, j = 1, 2, 6 

    dzQS

s
s

s
s

z
h

z
h

sijsij 







0

0

2

2

                              for i,j =4,5 

 

         The in-plane stress and moment resultants for the s
th

 sub-laminate can be expressed in a 

generalized manner as: 
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Similarly, the transverse shear resultants for the s
th

 sub-laminate are presented as 

 



























yz

xz

ssyz

xz

SS

SS

Q

Q





5545

4544

                                                                                                 (30)  

   

          After finding the elastic stiffness matrices separately for different sub-laminates along the 

thickness, the sum of all the sub-laminate stiffness’s represents the resultant stiffness matrix. 

 

2.3 Characteristics of the Reinforcement-Matrix Mixture 

         The mechanical properties of constituents of the test specimens, E-glass woven roving 

fibers and polyester matrix are listed in Table 1.  

The material elastic properties of the lamina of test specimens are determined 

experimentally. These properties are Young’s moduli (E1 – in direction 1, E2 – in direction 2, E3 

– in direction 3), Poisson’s ratios ( 12 , 13 , and 23 ), in plane shear modulus (G12) and 

transverse shear moduli (G13 and G23). This figure defines the material principle axes for a 

typical woven fiber reinforced lamina. Axis 1 is along the fiber length and represents the 

longitudinal direction of the lamina; axes 2 and 3 represent the transverse in-plane and through 

the thickness directions respectively. 

Some of the elastic constants of the woven fabric composite material are experimentally 

estimated (E1, E2, 12 ). The others are estimated by using the relations which are based on 

elastic constants of the unidirectional specimens. Young’s modulus and the  Poisson’s ratio of 

the fill and warp directions are calculated by using the three-point bending test, and the interface 

strain meter is to calculate the Poisson ratio ( 12 )  from a program using the computer. 

 

2.3.1 Unidirectional ply 

        The elastic constants of the unidirectional composite are calculated using the simple rule of 

mixtures by the relations of Eq. (31), Metin Aydogdu. 2007. and the results are listed in Table 

2. 
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       Where indices m and f denote matrix and fiber, respectively. 

 

2.3.2 Woven fabrics 

       The elastic constants of the woven fabric composite material are estimated by using the 

tensile test device and the relation of Eq. (32) D.Gay etal.2003 and the results are listed in Table 

3.  

 One is called the warp and,  

 The other is called the fill (or weft) direction.  

      The fibers are woven together, which means the fill yarns pass over and under the warp 

yarns, following a fixed pattern. Fig. 7 shows a plain weave where each fill goes over a warp 

yarn then under a warp yarn and so on. 
      The fabric layer is replaced by one single anisotropic layer, x being along the warp direction 

and y along the fill direction (see Fig. 7). One can therefore obtain D.Gay etal.2003. 
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        Where  
21

1

nn

n
k


  , n1=number of warp yarns per meter, n2= number of fill yarns per 

meter. And, E1w, E2w ,G12w , and w12  are mechanical properties of woven fabrics in 1 and 2-

directions; and E1, E2, G12, G23, 12 , and v23 as in Eq. (31). 

       The stiffness obtained with a woven fabric is less than what is observed if one were to 

superpose two cross plies of unidirectional. This is due to the curvature of the fibers during the 

weaving operation. This curvature makes the woven fabric more deformable than the two cross 
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plies when subjected to the same loading. (There exist fabrics that are of “high modulus” where 

the unidirectional layers are not connected with each other by weaving. The unidirectional plies 

are held together by stitching fine threads of glass or polymer). 

 

2.4 Modeling Assumptions 

       In this study, 8-layer Glass fiber Polyester resin laminated rectangular composite plates 

(325×325 mm
2
) with a total thickness of 4 mm are examined. 

      The ply orientations are (0,90,0,90,0,90,0,90); the material constants are shown in Table 1. 

      Three plates are considered including an intact plate (plate A) and two damaged plates B and 

C. Plates B & C have delamination at Fig. 8 in mid-plane with the size 50×50 mm; plate 

.Coordinates x and y are measured from the corner of the plate as the origin. 

 

3. RESULTS 
3.1 Delamination Effects on Natural Frequencies 

      In the present investigation, both the numerical computation and experimental study are 

carried out for an eight-layered [0/90]4 woven glass fiber/polyester resin composite plate. The 

geometrical dimensions of the woven composite plates are: length, a =350 mm width, b = 350 

mm, thickness, h = 3.25 mm. The material properties of the woven glass fiber/polyester resin 

composite plates are considered as given in Table 3. Square size delamination was introduced at 

the mid-plane as shown in Fig. 8. In this study, the effects of delamination area, boundary 

conditions, fiber orientations and number of layers on the natural frequencies are investigated. 

        Tables 4, 5, 6 and 7 give a comparison of the first five frequencies which is between 

experimental work and numerical work of the four woven laminated plate with different 

boundary conditions .These tables show good (harmonies) agreements at the first mode obtained 

between experimental  and numerical works. The deviations for the numerical results and the 

experimental method are due to some possible measurement errors that can be pointed out such 

factors as: measurement noise, different positions of the accelerometers and their mass, non-

uniformity in specimens’ properties (voids, variations in thickness, non-uniform surface 

finishing). Such factors are not taken into account during the numerical analysis, since the model 

considers the specimen perfect entirely with homogeneous properties, which rarely occurs in the 

practice. Another aspect has to be considered is that the input properties in the model came from 

the application of the rule of mixture and it does not take into account the effects of fiber matrix 

interface as well as the irregular distribution of resin on the fibers. Also, the computational 

numerical program does not allow for the consideration of fibers interweaving presented in the 

fabric use. 

 
3.2 Delamination Effects on Mode Shapes 

      The results of FEM analysis show the delamination regions clearly Fig. 9. The conducted 

analysis demonstrates that the delamination-induced changes of plate parameters mode 

 

3.3 Effect of Number of Layer 

Table 8 shows the effect of the number of layer (with the same thickness) on natural frequency 

with four boundary condition all sides clamped (CCCC), all sides simple supported (SSSS), 

cantilever plate (CFFF) and all sides free (FFFF), under step uniform dynamic loading. For 

(CCCC), shows the effect of the number of layer the natural frequency decreases with the 

increase number of layer from(1 to 2)  with a decreasing percentage (0.88 %), increase when 
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number of layer increases from (2 to 3) with a percentage of (0.85 %), decreases with the 

increase number of layer from(3 to 4)  with a decreasing percentage of (0.54 %), increase when 

number of layer increase from (4 to 5) with percentage (0.38 %), decreases with the increase 

number of layer from(5 to 6)  with decreasing percentage (0.32 %), increase when number of 

layer increase from (6to 7) with percentage (0.25 %), decreases with the increase number of 

layer from(7 to 8)  with decreasing percentage (0.23 %), for (SSSS), shows the effect of the 

number of layer the frequency response increases with the increase number of layer from(1 to 2)  

with percentage (4.67 %), decreases when number of layer increase from (2 to 3) with decreasing 

percentage (4.06 %), increases with the increase number of layer from(3 to 4)  with percentage 

(4.91 %), decreases when number of layer increase from (4 to 5) with decreasing percentage 

(2.83 %), increases with the increase number of layer from(5 to 6)  with percentage (3.04 %), 

decreases when number of layer increase from (6 to 7) with decreasing percentage (2.10 %), 

increase with the increase number of layer from(7 to 8)  with percentage (2.18 %), for (CFFF), 

show the effect of the number of layer the frequency response decreases with the increase 

number of layer from(1 to 2)  with decreasing percentage (7.25 %), increase when number of 

layer increase from (2 to 3) with percentage (7.45 %), decreases with the increase number of 

layer from(3 to 4)  with decreasing percentage (5.44 %), increase when number of layer increase 

from (4 to 5) with percentage (3.97 %), decreases with the increase number of layer from(5 to 6)  

with decreasing percentage (3.55 %), increase when number of layer increase from (6 to 7) with 

percentage (2.78 %), decreases with the increase number of layer from(7 to 8)  with decreasing 

percentage (2.61 %), for  (FFFF), shows the effect of the number of layer the frequency response 

increases with the increase number of layer from(1 to 2)  with percentage (12.91 %), decreases 

when number of layer increase from (2 to 3) with decreasing percentage (9.65 %), increases with 

the increase number of layer from(3 to 4)  with percentage (15.87 %), decreases when number of 

layer increase from (4 to 5) with decreasing percentage (6.77 %), increases with the increase 

number of layer from(5 to 6)  with percentage (8.13 %), decreases when number of layer 

increase from (6to 7) with decreasing percentage (4.80 %), increase with the increase number of 

layer from(7 to 8)  with percentage (5.33 %). 

  

5. CONCLUSION 

The delamination problem for typical multi-layer composite plates has been analyzed using 

finite element method and modal analysis. The study incorporated both computational and 

experimental work. Comparing the intact and damaged plates, the natural frequencies of plate 

with delamination are smaller than intact plate. Also, natural frequencies of the damaged plate 

decrease with the increase of delamination area. The analyses demonstrate that the delamination-

induced changes of the plate parameters are mode-dependent. The natural frequency and mode 

shape effect by damage and size of damage and location of delamination between layers. 

Boundary condition effect the amount of difference in nature frequency and mode shape and 

result shown the max. in (CCCC) Bc’s, change the number of layers with a thickness constant 

does not affect the natural frequency of the plate, Whenever damage location close to the center 

of plate at increase the variation of natural frequency. 
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NOMENCLATURE 

 

[D]s= the elasticity matrix of the s
th

 sub-laminate. 

E1, E2, and E3 = Young’s moduli in direction 1, 2 and 3 respectively N/m
2
. 

E1w, E2w ,G12w , and w12 =the mechanical properties of woven fabrics in 1 and 2-directions. 

G12 = plane shear modulus N/m
2
. 

G13 and G23 = transverse shear moduli N/m
2
. 

h = thickness mm. 

kxx  kyy  kxy = the curvatures of the laminated plate, m
-1

. 
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m and f = denote matrix and fiber, respectively. 

n1=number of warp yarns per meter. 

n2= number of fill yarns per meter. 

N= number of layers. 

Ni = the shape function. 

P= number of arbitrarily located delaminations. 

u, v, w = displacements in the x,y,z directions respectively for any point, m. 

u
0
,v

0
, w

0
 = those at the middle plane of the plate, m. 

0

su ,
0

sv = the mid-plane displacements of the s
th

 sub-laminate along x, y. 

ui
0
, vi

0
,wi, θxi, θyi = the displacement functions for different nodes. 

xi, yi = are the co-ordinates of the i
th

 node. 
0

sz = the distance between the mid-plane of the original laminate and the mid-plane of the 

arbitrary of s
th

 sub-laminate and the mid-plane of the laminate in z direction mm. 

θx, θy = the rotations of the cross section normal to the y and x axis respectively. 

ԑ
0

xx, ԑ
0

yy, γ
0

xy = the mid-plane strains 

ξ ,  = the local isoperimetric co-ordinates of the element. 

ξi , i = the respective values at node i. 

σxx, σyy = the normal stresses along x and y directions respectively N/m
2
. 

τxz, τyz = the shear stresses in xz, yz planes respectively N/m
2
. 

12 , 13 , and 23 = Poisson’s ratios. 

 

Table 1. Mechanical properties of fiber and resin, ref [4]. 

Material Properties Value 

E-Glass 

fiber 

Elasticity modulus (GPa) 74 

Shear modulus (GPa) 30 

Density ( 3m

kg ) 2600 

Poisson ratio 0.25 

Polyester 

resin 

Elasticity modulus (GPa) 4.0 

Shear modulus (GPa) 1.4 

Density ( 3m

kg ) 1200 

Poisson ratio 0.4 

 

        Table 2. Mechanical properties of unidirectional composite material. 

Properties Value 

Elastic modulus (E1) (GPa) 24.7466 

Elastic modulus (E2) (GPa) 6.8989 

Shear modulus in plane 1-2 (G12) (GPa) 2.435 

Shear modulus in plane 2-3 (G23) (GPa) 2.2211 

Poisson ratio in plane 1-2 ( 12 ) 0.3555 

Poisson ratio in plane 2-3 ( 23 ) 0.5531 
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Table 3. Mechanical properties of woven composite material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Comparison between experimental work and numerical results for four woven layers 

laminated plate ([0/90]4), with (CCCC) boundary condition. 

Case of 

plate 

Results 

(Hz) 

Mode Number 

1 2 3 4 5 

Plate A 

Experimental 174.33 378.62 379.83 542.16 811.71 

Numerical 162.88 365.46 365.46 517.77 775.72 

Errors (%) 7.03 3.60 3.93 4.71 4.64 

Plate B 

Experimental 172.45 347.50 374.42 512.41 792.18 

Numerical 160.75 334.54 358.53 481.31 748.62 

Errors (%) 7.28 3.90 4.43 6.46 5.82 

Plate C 

Experimental 167.13 341.69 376.63 540.45 747.28 

Numerical 157.25 331.96 364.26 513.85 707.05 

Errors (%) 6.3 2.9 3.4 5.2 5.7 

 

Table 5. Comparison between experimental work and numerical results for four woven layers 

laminated plate ([0/90]4), with (SSSS) boundary condition. 

Case of 

plate 

Results 

(Hz) 

Mode Number 

1 2 3 4 5 

Plate A 

Experimental 81.32 225.54 223.79 343.63 508.44 

Numerical 76.165 210.44 210.44 314.31 473.62 

Errors (%) 6.7 7.2 6.3 9.3 7.4 

Plate B 

Experimental 77.46 203.36 221.82 324.22 499.72 

Numerical 73.081 192.82 206.99 299.14 470.14 

Errors (%) 6.0 5.4 7.1 8.4 6.3 

Plate C 

Experimental 75.62 209.11 220.06 334.14 481.55 

Numerical 71.85 195.81 209.97 312.88 443.36 

Errors (%) 5.3 6.8 4.8 6.8 8.6 

Properties Value 

number of warp yarns per meter(n1) 260 
number of fill yarns per meter(n2) 260 
k=n1/(n1+n2) 0.5 
Elastic modulus (E1w=E2w) (GPa) 15.824 
Elastic modulus (E3w) (GPa) 8.0181 
Shear modulus in plane 1-2 (G12w) (GPa) 2.4355 
Shear modulus in plane 1-3 (G13w) (GPa) 2.3232 
Shear modulus in plane 2-3 (G23w) (GPa) 2.3232 

Poisson ratio in plane 1-2 ( w12 ) 0.155 

Poisson ratio in plane 1-3 ( w13 ) 0.4937 

Poisson ratio in plane 2-3 ( w23 ) 0.4937 



 

Journal of Engineering Volume   21  February  2015 Number 2 
 

  
 

411 
 

Table 6. Comparison between experimental work and numerical results for four woven layers 

laminated plate ([0/90]4), with (CFFF) boundary condition. 

Case of 

plate 

Results 

(Hz) 

Mode Number 

1 2 3 4 5 

Plate A 

Experimental 19.87 32.11 106.96 130.32 146.34 

Numerical 18.447 30.586 100.12 121.11 137.34 

Errors (%) 7.7 4.98 6.83 7.6 6.55 

Plate B 

Experimental 18.58 30.86 103.23 127.23 144.56 

Numerical 17.814 30.16 99.407 120.11 136.57 

Errors (%) 4.30 2.32 3.85 5.93 5.85 

Plate C 

Experimental 18.14 30.7 104.19 125.31 140.83 

Numerical 18.26 30.189 98.453 114.64 134.97 

Errors (%) 0.66 1.69 5.83 9.31 4.34 

 

Table 7. Comparison between experimental work and numerical results for four woven layers 

laminated plate ([0/90]4), with (FFFF) boundary condition. 

Case of 

plate 

Results 

(Hz) 

Mode Number 

6 7 8 9 10 

Plate A 

Experimental 0 36.45 87.76 99.00 117.09 

Numerical 0 34.889 82.641 92.371 112.39 

Errors (%) 0 4.5 6.2 7.2 4.2 

Plate B 

Experimental 0 35.40 87.02 97.11 116.69 

Numerical 0 34.295 80.802 88.914 110.08 

Errors (%) 0 3.2 7.7 9.2 6.0 

Plate C 

Experimental 0 35.02 86.16 95.14 116.21 

Numerical 0 34.26 79.823 87.469 110.41 

Errors (%) 0 2.2 7.9 8.8 5.2 

 

Table 8. Natural frequency ( ) of number of layers for cross-ply plates. 

 

 

 

 

 

 

 

 

 

 

 

 

Number 

of layers 
stacking sequences 

Natural Frequency ( ) (Hz) 

CCCC SSSS CFFF FFFF 

1 0 162.884 76.16456 18.44723 34.88888 

2 0/90 161.457 79.72336 17.11052 39.39233 

3 0/90/0 162.825 76.49046 18.38476 35.59151 

4 0/90/0/90 161.953 80.24534 17.3841 41.23994 

5 0/90/0/90/0 162.572 77.9717 18.07511 38.44712 

6 0/90/0/90/0/90 162.045 80.34153 17.43333 41.57182 

7 0/90/0/90/0/90/0 162.449 78.65752 17.91777 39.57683 

8 0/90/0/90/0/90/0/90 162.077 80.37517 17.45046 41.68726 
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Figure 1. Laminate composite plate with delaminated. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Layer details of the plate. 

 

 

Figure 3. The element in isoperimetric co-ordinates. 
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Figure 4. Laminate geometry with multiple delaminations. 

 

 

Figure 5. Three arbitrary delaminations leading to four sub-laminates. 

 

 

Figure 6. Plate elements at a delamination crack tip ref.[8]. 
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Figure 7. Schematic representation of woven fabric architecture D. Gay, et al., 2003. 
 

 

 

 

 

 

 

 

            
 

Figure 8. Intact plate and damage plates and clamped all sides. 
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Delamination region in plate A , B and C for some mode shapes of FEM analysis 

 

 

Figure 9. Delamination region in plate A , B and C for some mode shapes of FEM analysis.. 
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