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ABSTRACT

The use of composite materials has vastly increased in recent years. Great interest is
therefore developed in the damage detection of composites using non- destructive test methods.
Several approaches have been applied to obtain information about the existence and location of
the faults. This paper used the vibration response of a composite plate to detect and localize
delamination defect based on the modal analysis. Experiments are conducted to validate the
developed model. A two-dimensional finite element model for multi-layered composites with
internal delamination is established. FEM program are built for plates under different boundary
conditions. Natural frequencies and modal displacements of the intact and damaged multi-layer
composite plates are subsequently analyzed for various samples. Also, composite plates are
made for vibration testing and analysis and to comparison of the numerical and experimental
results, shows good agreement between them.

Key words: composite plate, delamination, frequency response, finite element method, impact
hummer.
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1. INTRODUCTION

Laminated composite plate with reinforced fiber has lighter weight and higher ratios of
strength and stiffness to weight, therefore it has been widely applied to many aeronautical and
astronautically structures as well as architecture and light industry products. With the quality
improvement and occurrence of many new kinds of composite materials, their applications have
become more and more extensive. However, laminated composite structures are weak in
withstanding shock and likely to be aging, and some damage, such as delamination and crack,
may often occur during their usage. These disadvantages will lead to a deterioration of the
performance and even failure of the composite materials. Any damage in a composite structure
always starts from a very tiny extent and gradually cumulates to some degree that can arouse
people’s attention. However, when such damage in a structure reaches a notable level, a serious
accident will be induced. Obviously, the early discovery of incipient damage and the
continuously monitoring for the growth and location of damage are the most essential issues in
automatic damage inspection of in-service composite structures Gobin, et al., 2000.,and
Takeda, 2000. Delamination can be often pre-existing or generated during service life. For
example, delamination often occur at stress free edges due to the mismatch of properties at ply
interfaces and it can also be generated by external forces such as out of plane loading or impact
during the service life. The existence of delamination not only alters the load carrying capacity
of the structure, it can also affect its dynamic response. Thus detection and quantification of
delamination is an important technology that must be addressed for the successful
implementation and improved reliability of such structures. All types of damages in composite
structures result in change in stiffness, strength and fatigue properties. Measurement of strength
or fatigue properties during damage development is not feasible because destructive testing is
required. However, stiffness reduction due to damage can be measured since damage directly
affects structural response, which provides a promising method for identifying the occurrence,
location and extent of the damage from measured structural dynamic characteristics. Existence of
delamination causes reduction in natural frequencies and increase in vibratory damping.
Although experimental investigations are often used to study these effects, damage simulation
using an accurate and efficient modeling technique can be helpful in reducing the number of
expensive experiments. Modeling and detection of delamination in composite structures has
primarily been based on first-order shear deformation theory (FSDT), Shen, and Grady, 2000.

2. THEORY
2.1 Finite Element Formulation

A delaminated composite plate of length a, width b and thickness h consisting of n arbitrary
number of anisotropic layers is considered as shown in Fig. 1. The layer details of the plate are
shown in Fig. 2. The global coordinate system is considered with respect to the mid-plane of the
plate with the Z-axis perpendicular to the X-Y plane and 0 is the angle of fiber orientation,
measured anticlockwise with respect to X-axis. In the present investigation, the delaminated
composite plate is discretized in to a mesh of 5x5 with total 25 elements. An nine nodes two
dimensional quadratic isoperimetric element having five degrees of freedom (u°, v°, w°, 6, 0y)
per node is chosen.

2.1.1 Displacement field and shape functions

The displacement field of any point at a distance z from the mid surface is assumed to be in the
form of:
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u(x,y,z)=u’(x,y)+z6,(x,y) 1)
v(x,y,2)=V(x,y)+26,(xy) 0)
w(x,y,z)=w’(xy) 3

where u, v, w are displacements in the x,y,z directions respectively for any point, u’\° , w°
are those at the middle plane of the plate. 6y, 6, are the rotations of the cross section normal to
the y and x axis respectively. The middle plane of the plate is considered as the reference plane
of the plate. The mid plane strains of the laminate are given by:

0 0. o _,,0 0. 0 _ . 0 _
X gyy:V,y1 7/xy_u,y+v,x’ yxz_9x+vv,x1 7/y2_9y+vv,y (4)

Assuming small deformations, the generalized linear in-plane strains of the laminate at a distance
z from the mid-surface are expressed as:

e 2y 7y e 7ol =15 &% 2% 20 o w2l Kk, Ky ke K, (5)
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where %, €y, 7% are the mid-plane strains and ke kyy ki are the curvatures of the
laminated plate .

The element has 4 corner nodes, 4 mid side nodes and mid element node. In the
displacement model, simple functions are assumed to approximate the displacements for each
element. For the present isoperimetric element, the shape functions which are used to represent
the geometry as well as the displacements within the element are expressed by the shape
functions N;.

x:ZNixi y:Zgl:Niyi u=ZNiui0 VI=D N,
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W:ZNiwi 6, => N6, 0, :ZNiﬁyi (6)

where x;, y; ,are the co-ordinates of the i™ node and u®, vi’,w;, 6y 6yi are the displacement
functions for different nodes.
Ni for different nodes as shown in Fig. 3 is defined as,
At corner nodes (i.e. for node 1, 3, 5, 7)

N, = U+ & X2+, X8, +mm, - 1)
At middle nodes (i.e. for nodes 2, 6)
N, =12 Ja+nm,)

At middle nodes (i.e. for nodes 4, 8)
N, =1@+& Ja-n?)

At middle element (i.e. for node 9)
Ny =(L-¢*J1-7?)

Where & and 7 are the local isoperimetric co-ordinates of the element and & and 7; are the
respective values at node i. The correctness of the shape function N; is checked from the relations

>N =1 >N, £=0 > N,7=0 ()

The derivatives of the shape functions N; with respect to x and y are expressed in terms of
their partial derivatives with respect to £ and 7 by the relationships:

ON; | o€ on]|oN;
ox | _Jox ox|) o&
N ["|os onf]an,
oy oy 0oyJ|on

e ©

Z Ni,ffxi Z Ni,gyi

X, Y, ] ] )
Where [J]=] ‘= is the Jacobin matrix.
[ ] {X’ﬂ y’ﬂ} {ZNi,nxi ZNi,nyi}
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2.1.2 Stress strain relations

A micromechanical analysis is carried out to establish the relationship between the forces
and strains of a laminate. The elastic behavior of each lamina is essentially two dimensional and
orthotropic in nature. So the elastic constants for the composite lamina.

2.1.3 Strain displacement relations

Strain displacement is used throughout the structural analysis. It is used to derive the elastic
stiffness matrix.

The strains are defined as.

-k K

0, _§11 §12 §16 0 0 &
0, 912 922 926 0 0 &

66 = Qle Qze Qes _0 _O 86 (9)
Os 0 0 0 955 945 &5
Oy 0 0 0 Q45 Q44_ &y

The strain can be described in term of displacements as

{e}=(Bde} (10)
Where {de} = [U1V1W1¢11¢21 """"""" U9V9W9¢19¢29]T
B]=[B.].......[B; IB, ]l
_aNi 0 0 0 0 |
oa
0 % 0 0 0
op
oN,  oN,
B oa 0o 00 (11)
0 0 0 % 0
[Bi]: 0 0 0 0 %
op
o o o M A
op oa
o o Mo oN o
o
o o N4
| op i

2.1.4 Derivation of element matrices
2.1.4.1 Elastic stiffness matrix
The potential energy of deformation for the element is given by
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U, = % [[{e] [oldA (12)
e} = {ePeRedk oKy o2 | (13)
Where {)=[B]d, = [B.]........[B ]&, Jid.} (14)
With  {de} = [ufvwygigh --oooooo ugvawog' s | (15)
Then U, == j [{a.F[e] [D]B }dxdy:%{de}T K, ]d,} (16)

Where the element stiffness matrix

1 el
[K.]=[.[.[B] [D]B]s|dzdr (17)
[B] is called the strain displacement matrix.
N, O 0 0 0 |
0o N, O 0 0
N, N, O 0 0
o| O 0 0O N, ©
InEq.(17)  [B]=> o 0 0o 0 N,
0 0 0 N, N
0 0 N, N, 0
0 0 N, 0 N

|J|d§d77 , Is the determinant of the Jacobian matrix. The element stiffness matrix can be

expressed in local natural co-ordinates of the element. The integration of Eq. (17) is carried out
using the Gauss quadrature method.

2.1.4.2 Consistent mass matrix
The consistent element mass matrix [Me] is expressed as:

= [ [.INT[PIN]9jdd (18)

Where [N], the shape function matrix and [P], the inertia matrix
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N, 0 0 0 0 PO 0 P O
0O N 0 0 0 _ 0O R 0 0 P

[NJ=lo 0 N, 0 0 =109 . pl2lo 0 R 0 O (19)
0 0 0 N, 0 b, O 0 P O
0 0 0 0 N 0 P 0O 0 P

Where (P, P,,P,) Z_J 12 z )dz

2.2 Delamination Modeling

A simple two dimensional single delamination model proposed by ,Gim C.K.1994. was
extended by ,Mohammad F.Aly.2010 for the vibration of delaminated composite panels. In the
present analysis, it is further extended for static and dynamic stability analysis under in-plane
uniaxial periodic forces by multiple delamination modelling. In order to satisfy the compatibility
and equilibrium requirements at the common delamination boundary, it is assumed that the in-
plane displacement, transverse displacement and rotation at a common node for all the three
sublaminates including the original one are identical applying multiple constraint condition at
any arbitrary delamination boundary. It can be applicable to any general case of a laminated
composite plate having multiple delamination at any arbitrary location. Here, the delaminated
area is assumed as the interface of two separate sub laminates bonded together along the
delamination surface.

Typical composite plate of uniform thickness 'h* with 'n" number of layers and 'p' number
of arbitrarily located delamination is considered for the analysis as shown in Fig. 4. The
principal material axes of each layer are arbitrarily oriented with respect to the mid-plane of the
plate as shown in Fig. 5.

Considering the sub-laminates as a separate plate, the displacement field within it is
expressed as:

uS:u§+(z—z§)Hxs, vS:vf+(z—z§)z9yS (20)

Where u? and v° are the mid-plane displacements of the s" sub-laminate along x and y

direction and z is distance between mid-plane of s" sub-laminate and the mid-plane of the

laminate in z direction
The mid-plane strains of the sub-laminate are:

0 0 0 0T
S yfy}l={aus ac a”5+8vs} 1)

ox oy oy o

From Eq. (21) the strain components within the sub-laminate s can be expressed as:

;
ou. ov. ou. ov
boo al {2 2 R
S |ox oy oy ox

150



Number 2 Volume 21 February 2015 Journal of Engineering

oul ol o T+(Z_ 06, 29, 26, 29, !
x oy &y o ox oy ay | ox

=18 &l L -k Ky Ky (22)

In order to satisfy the compatibility and equilibrium requirements at the common
delamination boundary, it is assumed that the in-plane displacements, transverse displacement
and rotations at a common node for all the three sub-laminates including the original one as
shown in Fig.6, are identical. Applying multiple constraint condition at any arbitrary
delamination boundary c, the in-plane displacements at 'c' at a distance 'z' from the mid-plane of
the laminate can be written as:

—110 _\0
u =u +z6, , V.=V +120,
From Eqg. (20), the displacement at any point, c is given by:
usczuf+(z—z§)6’X , vsczv§+(z—z§)6’y

Equating u; with usc and v, with v, the mid-plane displacements of the sub-laminate can be
expressed in the form of the mid-plane displacements(u’, v°) of the original un-delaminated
laminate as,

u; =u’+2°0, , vi=v"+12'6, 23)
From Eq. (23), the mid-plane strain components of the s sub-laminate can be derived as:

o o mf=teh ol w2k K, K (24)
The strain components within the sub-laminate can be written as:

o &y 7ok =t eyl ke Ky kS

—e0 & 0 ek, k, Kk J -2k, Kk, kT (25)

For any lamina of s™ sub-laminate, the in-plane and shear stresses are found from the
following relations

O-xx 911 912 916 gxx
Oyw (= 912 922 926 Eyy (26)
Tyy Qi Qa6 Qos Ty )¢
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Ty _ §44 §45 7/XZ (27)
Ty Qus Qss |71

S

Where oy and ayy are the normal stresses along x and y directions respectively and z, and zy;
are the shear stresses in xz, yz planes respectively.
Integrating these stresses over the thickness of the sub-laminate, the stress and moment
resultants of the sub-laminate are derived which lead to the elasticity matrix of the s™ sub-
laminate [D]s in the form

Aﬁj ZgAij+Bij 0
[D],=|B; z)B;+D; O (28)

0 0 S;:

]

[D]s is the elasticity matrix of the s™ sub-laminate

Where, [Aj]szij[éij]sdz and [Bij]s— j[QU ( S Z=2}[6ijlzdz_ZS[A”]s
EHO EJrZO gﬂo
2 & 2 :

py] = i lle-2faz= | [yl @:f -2z b= “[lo,] ez

—h—25+zg —h—25+zg 7§+z2
Eﬂg
HQ., Zd2+(f)2[Aj]s fori,j=1,2,6
J‘ng

[SIJ] = I[Q|J]dz fori,j =45

7—+zs

The in-plane stress and moment resultants for the s™ sub-laminate can be expressed in a
generalized manner as:
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No| [As A, A, 2zJA+B, 2JA,+B, z/A +B ||&,
Ny | [ Az Ay Ay ZJA,+B, 2)A,+B, 2)A+By (|2,
NXV — A16 A26 A66 ZSAlG + Bl6 ZSAZG + BZG ZSAGG + B66 g)?y (29)
M XX Bll BlZ Blﬁ ZgBll + Dll ZSBlZ + D12 ZSBIG + D16 kxx
M, B, By By zB,+D, zB,,+D,, zBy+D, ||k,
M Xy _BlG BZG BBB ZgBlﬁ + D16 ZSBZG + D26 ZSBBG + D66_ k s

Similarly, the transverse shear resultants for the s™ sub-laminate are presented as

QXZ _ |:S44
Qyz S45

845} Vxe
Ses || 7y

After finding the elastic stiffness matrices separately for different sub-laminates along the
thickness, the sum of all the sub-laminate stiffness’s represents the resultant stiffness matrix.

(30)

2.3 Characteristics of the Reinforcement-Matrix Mixture
The mechanical properties of constituents of the test specimens, E-glass woven roving
fibers and polyester matrix are listed in Table 1.
The material elastic properties of the lamina of test specimens are determined
experimentally. These properties are Young’s moduli (E; — in direction 1, E, — in direction 2, E;
— in direction 3), Poisson’s ratios (U;,,U;3, and 0,;), in plane shear modulus (Gi2) and

transverse shear moduli (Gi3 and Gys). This figure defines the material principle axes for a
typical woven fiber reinforced lamina. Axis 1 is along the fiber length and represents the
longitudinal direction of the lamina; axes 2 and 3 represent the transverse in-plane and through
the thickness directions respectively.

Some of the elastic constants of the woven fabric composite material are experimentally
estimated (Ei, E2, U;,). The others are estimated by using the relations which are based on
elastic constants of the unidirectional specimens. Young’s modulus and the Poisson’s ratio of
the fill and warp directions are calculated by using the three-point bending test, and the interface

strain meter is to calculate the Poisson ratio (v;,) from a program using the computer.

2.3.1 Unidirectional ply

The elastic constants of the unidirectional composite are calculated using the simple rule of
mixtures by the relations of Eqg. (31), Metin Aydogdu. 2007. and the results are listed in Table
2.

E,=E,v, +E,[L—v,)

Ei +E, "'Vf(Ef _Em)
"| E; +E, _Vf(Ef _Em)

E,=E
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U, =0V +Um(1_vf)

1+v_ —v,,
L. =[UV +v (1—1/ ) m_12&
23 frf m f 1 2 En
_Um+Um012?1

G, +G, +v,(G, -G, )
Glz Gm

G, +G,-v,(G, -G,)

E
G.—_ 2 _ 31
2 21+ v,,) (1)

Where indices m and f denote matrix and fiber, respectively.

2.3.2 Woven fabrics
The elastic constants of the woven fabric composite material are estimated by using the

tensile test device and the relation of Eq. (32) D.Gay etal.2003 and the results are listed in Table
3.

e One is called the warp and,

e The other is called the fill (or weft) direction.

The fibers are woven together, which means the fill yarns pass over and under the warp
yarns, following a fixed pattern. Fig. 7 shows a plain weave where each fill goes over a warp
yarn then under a warp yarn and so on.

The fabric layer is replaced by one single anisotropic layer, x being along the warp direction
and y along the fill direction (see Fig. 7). One can therefore obtain D.Gay etal.2003.

E,, =k.E, +1-Kk)E,
E, =(1-K)E +kE,
GlZW =GlZ

%P
UlZw - (k N (1_ k) %) (32)

n .
Where k=—=>—, ny=number of warp yarns per meter, n,= number of fill yarns per
n,+n,

meter. And, Eiw, Eow ,G12w , and v,,, are mechanical properties of woven fabrics in 1 and 2-
directions; and E;, Ep, G12, Gas, U, and vo3 as in Eq. (31).
The stiffness obtained with a woven fabric is less than what is observed if one were to

superpose two cross plies of unidirectional. This is due to the curvature of the fibers during the
weaving operation. This curvature makes the woven fabric more deformable than the two cross
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plies when subjected to the same loading. (There exist fabrics that are of “high modulus” where
the unidirectional layers are not connected with each other by weaving. The unidirectional plies
are held together by stitching fine threads of glass or polymer).

2.4 Modeling Assumptions
In this study, 8-layer Glass fiber Polyester resin laminated rectangular composite plates
(325x325 mm?) with a total thickness of 4 mm are examined.
The ply orientations are (0,90,0,90,0,90,0,90); the material constants are shown in Table 1.
Three plates are considered including an intact plate (plate A) and two damaged plates B and
C. Plates B & C have delamination at Fig. 8 in mid-plane with the size 50x50 mm; plate
.Coordinates x and y are measured from the corner of the plate as the origin.

3. RESULTS
3.1 Delamination Effects on Natural Frequencies

In the present investigation, both the numerical computation and experimental study are
carried out for an eight-layered [0/90], woven glass fiber/polyester resin composite plate. The
geometrical dimensions of the woven composite plates are: length, a =350 mm width, b = 350
mm, thickness, h = 3.25 mm. The material properties of the woven glass fiber/polyester resin
composite plates are considered as given in Table 3. Square size delamination was introduced at
the mid-plane as shown in Fig. 8. In this study, the effects of delamination area, boundary
conditions, fiber orientations and number of layers on the natural frequencies are investigated.

Tables 4, 5, 6 and 7 give a comparison of the first five frequencies which is between
experimental work and numerical work of the four woven laminated plate with different
boundary conditions .These tables show good (harmonies) agreements at the first mode obtained
between experimental and numerical works. The deviations for the numerical results and the
experimental method are due to some possible measurement errors that can be pointed out such
factors as: measurement noise, different positions of the accelerometers and their mass, non-
uniformity in specimens’ properties (voids, variations in thickness, non-uniform surface
finishing). Such factors are not taken into account during the numerical analysis, since the model
considers the specimen perfect entirely with homogeneous properties, which rarely occurs in the
practice. Another aspect has to be considered is that the input properties in the model came from
the application of the rule of mixture and it does not take into account the effects of fiber matrix
interface as well as the irregular distribution of resin on the fibers. Also, the computational
numerical program does not allow for the consideration of fibers interweaving presented in the

fabric use.

3.2 Delamination Effects on Mode Shapes
The results of FEM analysis show the delamination regions clearly Fig. 9. The conducted
analysis demonstrates that the delamination-induced changes of plate parameters mode

3.3 Effect of Number of Layer

Table 8 shows the effect of the number of layer (with the same thickness) on natural frequency
with four boundary condition all sides clamped (CCCC), all sides simple supported (SSSS),
cantilever plate (CFFF) and all sides free (FFFF), under step uniform dynamic loading. For
(CCCCQ), shows the effect of the number of layer the natural frequency decreases with the
increase number of layer from(1 to 2) with a decreasing percentage (0.88 %), increase when

155



Number 2 Volume 21 February 2015 Journal of Engineering

number of layer increases from (2 to 3) with a percentage of (0.85 %), decreases with the
increase number of layer from(3 to 4) with a decreasing percentage of (0.54 %), increase when
number of layer increase from (4 to 5) with percentage (0.38 %), decreases with the increase
number of layer from(5 to 6) with decreasing percentage (0.32 %), increase when number of
layer increase from (6to 7) with percentage (0.25 %), decreases with the increase number of
layer from(7 to 8) with decreasing percentage (0.23 %), for (SSSS), shows the effect of the
number of layer the frequency response increases with the increase number of layer from(1 to 2)
with percentage (4.67 %), decreases when number of layer increase from (2 to 3) with decreasing
percentage (4.06 %), increases with the increase number of layer from(3 to 4) with percentage
(4.91 %), decreases when number of layer increase from (4 to 5) with decreasing percentage
(2.83 %), increases with the increase number of layer from(5 to 6) with percentage (3.04 %),
decreases when number of layer increase from (6 to 7) with decreasing percentage (2.10 %),
increase with the increase number of layer from(7 to 8) with percentage (2.18 %), for (CFFF),
show the effect of the number of layer the frequency response decreases with the increase
number of layer from(1 to 2) with decreasing percentage (7.25 %), increase when number of
layer increase from (2 to 3) with percentage (7.45 %), decreases with the increase number of
layer from(3 to 4) with decreasing percentage (5.44 %), increase when number of layer increase
from (4 to 5) with percentage (3.97 %), decreases with the increase number of layer from(5 to 6)
with decreasing percentage (3.55 %), increase when number of layer increase from (6 to 7) with
percentage (2.78 %), decreases with the increase number of layer from(7 to 8) with decreasing
percentage (2.61 %), for (FFFF), shows the effect of the number of layer the frequency response
increases with the increase number of layer from(1 to 2) with percentage (12.91 %), decreases
when number of layer increase from (2 to 3) with decreasing percentage (9.65 %), increases with
the increase number of layer from(3 to 4) with percentage (15.87 %), decreases when number of
layer increase from (4 to 5) with decreasing percentage (6.77 %), increases with the increase
number of layer from(5 to 6) with percentage (8.13 %), decreases when number of layer
increase from (6to 7) with decreasing percentage (4.80 %), increase with the increase number of
layer from(7 to 8) with percentage (5.33 %).

5. CONCLUSION

The delamination problem for typical multi-layer composite plates has been analyzed using
finite element method and modal analysis. The study incorporated both computational and
experimental work. Comparing the intact and damaged plates, the natural frequencies of plate
with delamination are smaller than intact plate. Also, natural frequencies of the damaged plate
decrease with the increase of delamination area. The analyses demonstrate that the delamination-
induced changes of the plate parameters are mode-dependent. The natural frequency and mode
shape effect by damage and size of damage and location of delamination between layers.
Boundary condition effect the amount of difference in nature frequency and mode shape and
result shown the max. in (CCCC) Bc’s, change the number of layers with a thickness constant
does not affect the natural frequency of the plate, Whenever damage location close to the center
of plate at increase the variation of natural frequency.
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NOMENCLATURE

[D]s- the elasticity matrix of the s™ sub-laminate.
E1 E» and E3 = Young’s moduli in direction 1, 2 and 3 respectively N/m?.

Eiw, Eow ,G12w , and v,,,, =the mechanical properties of woven fabrics in 1 and 2-directions.

G1, = plane shear modulus N/m?.

G13 and Ggs = transverse shear moduli N/m?,

h = thickness mm.

ke Ky kxy = the curvatures of the laminated plate, m™.
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m and f = denote matrix and fiber, respectively.

n;=number of warp yarns per meter.

n,= number of fill yarns per meter.

N= number of layers.

N; = the shape function.

P= number of arbitrarily located delaminations.

u, v, w = displacements in the x,y,z directions respectively for any point, m.
w2V, w® = those at the middle plane of the plate m.

u?,v?= the mid-plane displacements of the s' " sub-laminate along x, y.
ui, vi°,wi, 6y, 6, = the drsplacement functions for different nodes.
x., yi = are the co-ordinates of the i node.
= the distance between the mid-plane of the original laminate and the mid-plane of the
arbitrary of s sub-laminate and the mid-plane of the laminate in z direction mm.
Oy, Qy = the rotations of the cross section normal to the y and x axis respectively.
%0 €%, 7%y = the mid-plane strains
¢, n=the local isoperimetric co-ordinates of the element.
& , mi = the respective values at node i.
oxx, oyy = the normal stresses along x and y directions respectrvely N/m?,
Ty, Ty, = the shear stresses in xz, yz planes respectively N/m?.

Uy, , U4, and U, = Poisson’s ratios.

Table 1. Mechanical properties of fiber and resin, ref [4].

Material | Properties Value

Elasticity modulus (GPa) 74

E-Glass | Shear modulus (GPa) 30
fiber | Density (*9/,) 2600
Poisson ratio 0.25

Elasticity modulus (GPa) 4.0

Polyester | Shear modulus (GPa) 1.4
resin | Density (*/,) 1200

Poisson ratio 0.4

Table 2. Mechanical properties of unidirectional composite material.

Properties Value
Elastic modulus (E;) (GPa) 24.7466
Elastic modulus (E,) (GPa) 6.8989

Shear modulus in plane 1-2 (G;,) (GPa) | 2.435
Shear modulus in plane 2-3 (Gy3) (GPa) | 2.2211

Poisson ratio in plane 1-2 (v,,) 0.3555
Poisson ratio in plane 2-3 (v,;) 0.5531
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Table 3. Mechanical properties of woven composite material.

Properties Value
number of warp yarns per meter(n;) 260
number of fill yarns per meter(n,) 260
k=n1/(n1+ny) 0.5
Elastic modulus (E1w=Eaw) (GPa) 15.824
Elastic modulus (Esy) (GPa) 8.0181
Shear modulus in plane 1-2 (Gia) (GPa) | 2.4355
Shear modulus in plane 1-3 (Gyay) (GPa) | 2.3232
Shear modulus in plane 2-3 (G,ay) (GPa) | 2.3232
Poisson ratio in plane 1-2 (v, ) 0.155
Poisson ratio in plane 1-3 (v, ) 0.4937
Poisson ratio in plane 2-3 (v,s,) 0.4937

Table 4. Comparison between experimental work and numerical results for four woven layers

laminated plate ([0/90]4), with (CCCC) boundary condition.

Case of Results Mode Number
plate (Hz) 1 2 3 4 5

Experimental | 174.33 | 378.62 | 379.83 | 542.16 | 811.71

Plate A | Numerical 162.88 | 365.46 | 365.46 | 517.77 | 775.72
Errors (%) 7.03 3.60 3.93 4.71 4.64
Experimental | 172.45 | 347.50 | 374.42 | 512.41 | 792.18

Plate B | Numerical 160.75 | 334.54 | 358.53 | 481.31 | 748.62
Errors (%) 7.28 3.90 4.43 6.46 5.82
Experimental | 167.13 | 341.69 | 376.63 | 540.45 | 747.28

Plate C | Numerical 157.25 | 331.96 | 364.26 | 513.85 | 707.05
Errors (%) 6.3 2.9 3.4 5.2 5.7

Table 5. Comparison between experimental work and numerical results for four woven layers

laminated plate ([0/90],), with (SSSS) boundary condition.

Case of Results Mode Number
plate (H2) 1 2 3 4 5

Experimental | 81.32 | 225.54 | 223.79 | 343.63 | 508.44

Plate A | Numerical 76.165 | 210.44 | 210.44 | 314.31 | 473.62
Errors (%) 6.7 7.2 6.3 9.3 7.4
Experimental | 77.46 | 203.36 | 221.82 | 324.22 | 499.72

Plate B | Numerical 73.081 | 192.82 | 206.99 | 299.14 | 470.14
Errors (%) 6.0 54 7.1 8.4 6.3
Experimental | 75.62 | 209.11 | 220.06 | 334.14 | 481.55

Plate C | Numerical 71.85 | 195.81 | 209.97 | 312.88 | 443.36
Errors (%) 5.3 6.8 4.8 6.8 8.6
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laminated plate ([0/90]4), with (CFFF) boundary condition.

Case of Results Mode Number
plate (H2) 1 2 3 4 5

Experimental | 19.87 32.11 | 106.96 | 130.32 | 146.34

Plate A | Numerical 18.447 | 30.586 | 100.12 | 121.11 | 137.34
Errors (%) 7.7 4.98 6.83 7.6 6.55
Experimental | 18.58 30.86 | 103.23 | 127.23 | 144.56

Plate B | Numerical 17.814 | 30.16 | 99.407 | 120.11 | 136.57
Errors (%) 4.30 2.32 3.85 5.93 5.85
Experimental | 18.14 30.7 104.19 | 125.31 | 140.83

Plate C | Numerical 18.26 | 30.189 | 98.453 | 114.64 | 134.97
Errors (%) 0.66 1.69 5.83 9.31 4.34

Table 7. Comparison between experimental work and numerical results for four woven layers

laminated plate ([0/90]4), with (FFFF) boundary condition.

Case of Results Mode Number
plate (Hz) 6 7 8 9 10
Experimental 0 36.45 87.76 99.00 | 117.09
Plate A | Numerical 0 34.889 | 82.641 | 92.371 | 112.39
Errors (%) 0 4.5 6.2 7.2 4.2
Experimental 0 35.40 87.02 97.11 | 116.69
Plate B | Numerical 0 34.295 | 80.802 | 88.914 | 110.08
Errors (%) 0 3.2 7.7 9.2 6.0
Experimental 0 35.02 86.16 95.14 | 116.21
Plate C | Numerical 0 34.26 | 79.823 | 87.469 | 110.41
Errors (%) 0 2.2 7.9 8.8 5.2

Table 8. Natural frequency (@) of number of layers for cross-ply plates.

Journal of Engineering

Number . Natural Frequency (@) (Hz)
stacking sequences

of layers CCCC SSSS CFFF FFFF
1 0 162.884 | 76.16456 | 18.44723 | 34.88888
2 0/90 161.457 | 79.72336 | 17.11052 | 39.39233
3 0/90/0 162.825 | 76.49046 | 18.38476 | 35.59151
4 0/90/0/90 161.953 | 80.24534 | 17.3841 | 41.23994
5 0/90/0/90/0 162.572 77.9717 18.07511 | 38.44712
6 0/90/0/90/0/90 162.045 | 80.34153 | 17.43333 | 41.57182
7 0/90/0/90/0/90/0 162.449 | 78.65752 | 17.91777 | 39.57683
8 0/90/0/90/0/90/0/90 162.077 | 80.37517 | 17.45046 | 41.68726
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Figure 1. Laminate composite plate with delaminated.
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Figure 2. Layer details of the plate.
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Figure 3. The element in isoperimetric co-ordinates.
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Figure 6. Plate elements at a delamination crack tip ref.[8].
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Figure 7. Schematic representation of woven fabric architecture D. Gay, et al., 2003.
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Figure 8. Intact plate and damage plates and clamped all sides.
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Figure 9. Delamination region in plate A , B and C for some mode shapes of FEM analysis..

Delamination region in plate A , B and C for some mode shapes of FEM analysis
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