
Journal of Engineering Volume 24 January 2018 Number 1

123

Optimum Design of Power System Stabilizer based on Improved Ant Colony

Optimization Algorithm

ABSTRACT

This paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The

procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system

stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB

software. The results show that by using Improved Ant Colony Optimization (IACO) the system

will give better performance with less number of iterations as it compared with a previous

modification on ACO. In addition, the probability of selecting the arc depends on the best ant

performance and the evaporation rate.

Keywords: SMIB, PSS, ACO.

 المطورة النملالمبني على خوارزمية مستعمرة التصميم الامثل لـــ مثبت نظام القدرة

 ربى الملا حمادي د. نزار هادي عباس مهند عزيز جودي

 استاذ مساعد استاذ مساعد مدرس مساعد

الكهرباءقسم هندسة قسم هندسة الكهرباء قسم هندسة الميكانيك

 كلية الهندسة كلية الهندسة كلية الهندسة

 جامعة بغداد جامعة بغداد جامعة بغداد

 الخلاصة

 (PSS) مع مثبت نظام القدرة SMIB(.الفكرة مطبقة على نظام ACOيقدم البحث تقنية محسنة لخوارزمية مستعمرة النمل)

مستعمرة النمل .بينت النتائج ان النظام باستخدام تقنية MATLAB برنامج المحاكاة باستخدامحيث تمت في ثلاثة احمال مختلفة

ن لك اكذ المتطورة يعطي اداء افضل مع اقل عدد من التكرارات بالمقارنة مع تحويرات سابقة اجريت على مستعمرة النمل.

 مله. تفرزها الن للنمل ومعدل التبخر لمادة الفيرومون التيلى افضل اداء يعتمد ايضا ع احتمالية اختيار او تحديد مسار النمله

Ruba AL-MulaHumadi

Assistant Professor

Mechanical Engineering Dept.

College of Engineering,

University of Baghdad, Iraq.

rubamkh@yahoo.com

Dr. Nizar Hadi Abbas

Assistant Professor

Electrical Engineering Dept.

College of Engineering,

University of Baghdad, Iraq.

drnizaralmsaodi@gmail.com

Mohanad Azeez Joodi

Assistant Lecturer

Electrical Engineering Dept.

College of Engineering,

University of Baghdad, Iraq.

eng_muhanad73@yahoo.com

mailto:rubamkh@yahoo.com

Journal of Engineering Volume 24 January 2018 Number 1

124

1. INTRODUCTION

In the last years, much effort has been invested in improving the damping performance of power

systems using Power system stabilizers (PSS). PSS provides a supplementary excitations control

signal that enhances the damping capabilities of synchronous machines. The choice of

parameters for the PSS is important as it affects the overall dynamic performance of the power

system, there are various forms of PSS controllers, and the famous types are lead-lag

compensator (i.e., classical PSS) and PID.

Kundur, 1993, illustrated the construction, function, and operation of a PSS that uses auxiliary

stabilizing signals to control the excitation system so as to improve power system dynamic

performance. Commonly used input signals to the power system stabilizer are shaft speed,

terminal frequency, and power. PSS will add a component of electrical torque in phase with the

rotor speed.

A robust PID stabilizer was proposed by Otaru, et al., 2004. The authors used a genetic

algorithm to enhance the performance of the considered system which is a synchronous

generator connected to an infinite bus, this model is sufficient for low-frequency oscillations

studies, the PID stabilizer gains are designed optimally using Genetic Algorithm (GA) to arrive

at the optimal setting of the controller. Another PID-PSS was proposed by Hosseini, et al., 2007,

where the gain setting of PID-PSS is optimized by minimizing an objective function using GA.

The dynamic response was compared with other two stabilizers named FUZZY-PSS and LQR-

PSS. The authors revealed that their stabilizer gave better performance. They applied the

proposed stabilizer on single machine infinite bus (SMIB) system and the simulations were made

in MATLAB.

Abdul-Ghaffar, et al., 2013, used hybrid particle swarm bacteria foraging optimization (PSO-

BFA) in tuning the PID parameters. This research considers the stabilization of a synchronous

machine connected to an infinite bus via a PID. Simulation results were presented with and

without the proposed controller then compared with the classical PID. They applied the

controller to SMIB system. The results showed that using of hybrid control gave better

performance.

Duman and Ozturk, 2010, presented a Real Coded Genetic Algorithm (RCGA) based PID

controller to improve power system dynamic stability applied on (SMIB). Different controllers'

structures are presented; conventional power system stabilizer (CPSS), optimized PSS and

RCGAPID are used to improve the stability. Two performance indexes; integral absolute error

(IAE) and integral squared error (ISE) were used as objective functions. Different loading

conditions were studied. The results show that the ISE is better than IAE for the optimization

problem.

A Harmony Search Algorithm (HSA) approach is presented by Abdul Hameed, et al., 2014, for

the robust and optimal design of PID controller to PSS for damping low-frequency power

oscillation. Also, they applied their technique to infinite bus single machine system, Eigenvalue

analysis by using genetic algorithm based PSS (GAPSS) under different operating conditions

reveals that under-damped and lightly damped oscillation modes are shifted to a specific stable

zone in the S- Plane.

Boroujeni, et al., 2011, demonstrated a different type of stabilizers to generate supplementary

damping control signals for the excitation system to damp the low frequency oscillation of the

electric power system, they applied a new optimal technique PID type PSS based on (PSO-PSS)

to a typical single machine infinite bus power system. The simulation results demonstrated that

these design is showing the guarantee of the robust stability and robust performance of the power

system to some conditions.

Journal of Engineering Volume 24 January 2018 Number 1

125

A new technique in designing a power system stabilizer PSS was presented by Mahmoud and

Soliman, 2012, based on a combination of Particle Swarm Optimization (PSO) and Linear

Matrix Inequality (LMI) in order to eliminate the number of variables. They applied their idea on

(SMIB) using MATLAB environment. Finally, they concluded that their method was effective

and convergence as the system confirms better performance under different loading conditions.

Soliman, et al., 2008, demonstrated another type of PSS that minimizes the maximum

overshoot in order to alleviate the generator shaft fatigue. They used PSO algorithm in order to

fix the gain of the PSS and lead time compensator. They applied their stabilizer to SMIB system

at different loading conditions, the results showed the effectiveness and robustness of the

proposed technique.

The rest of this paper is organized as follows: the mathematical model is illustrated in the next

section. Ant colony optimization and its' modifications are demonstrated in the third section

while the fourth section contains the results and discussion. Finally, a conclusion is demonstrated

in the last section.

2. MATHEMATICAL MODEL

In this section, the mathematical model of the system with PSS and finding the transfer function

are described.

2.1 SMIB

A synchronous machine with infinite bus system was taken in this research as a test system, as

shown in Fig.1. The state space model "A, B, C, and D" are shown in appendix Abdul-Ghaffar,

et al., 2013, and Mahmoud and Soliman, 2012, with the machine data in pu are Xd=1.6,�̇�𝑑 =

0.32 Xq=1.55, d=2*π*50 rad/sec, 𝑇𝑑𝑜
′ = 6 𝑠𝑒𝑐, and M=10, transmission line reactance Xe=0.4,

re=0. The machine constants k1 to k6 are as ref. Mahmoud and Soliman, 2012, and their values

are depending on the loading conditions.

The transfer functions of the system for three loading conditions are tabulated in Table 1.

2.2 Power System Stabilizer (PSS)

The transfer function of power system stabilizer is

𝑝𝑠𝑠 𝑇𝐹 = 𝐾𝑖
𝑠𝑇𝑤

1 + 𝑠𝑇𝑤
 [
1 + 𝑠𝑇1

1 + 𝑠𝑇2

1 + 𝑠𝑇3

1 + 𝑠𝑇4
] (1)

Where Ki represents the gain of the PSS

𝑠𝑇𝑤

1+𝑠𝑇𝑤
 washout

 [
1+𝑠𝑇1

1+𝑠𝑇2

1+𝑠𝑇3

1+𝑠𝑇4
] lead-lag compensator.

The limits for T1 to T4, TW and Ki as ref. Mahdiyeh, et al., 2010.

0.01 < T1, T2, T3, & T4 < 2 sec.

1< Ki < 50

Journal of Engineering Volume 24 January 2018 Number 1

126

2.3 System with PSS

After connecting the PSS with the system as shown in Fig.1, the signal flow graph of the overall

system will be as shown in Fig.2.

3. CLASSICAL ANT COLONY OPTIMIZATION (CACO) ALGORITHM

CACO is kind of optimization that is based on the behavior of ants in searching of the food

process. The flow chart of CACO is illustrated in Fig.3.

3.1 Modified Ant Colony Optimization (MACO) Algorithm

The flowchart of this method is shown in Fig.4. A modification was made by Mathiyalagan, et

al., 2010, that deal with the process of updating the pheromone. This equation is illustrated in the

flowchart of Fig.4, as one can see there the new pheromone depends on the pheromone

evaporation rate (). In addition to this, the initial pheromone is entered in a random way with a

dependency on the pheromone evaporation rate.

3.2 Improved Ant Colony Optimization (IACO) Algorithm

The proposed ACO algorithm in this research work is represented by a new improvement

through modifying the updating pheromone equation; by adding the pheromone deposited by the

best ant (*fbest / fworst) multiplied by (k) in case more than one ant take the best path. The

flowchart of this process is illustrated in Fig. 5.

4. RESULTS AND DISCUSSION

The results of this research are simulated by MATLAB R2013 environment executed on the core

(TM) i5, 2.5GHz and 4 RAM system. 8 overall proper transfer functions (SMIB with PSS) were

taken for 3 loading regimes (heavy load, nominal load, and light load). 4 design variables were

taken; T1, T2, TW, and gain of PSS. Two different methods of optimization were taken; modified

ant colony optimization (MACO) introduced by Mathiyalagan, et al., 2010, and proposed

improved ant colony optimization (IACO), 4 ants were taken for each variable and two

evaporation rate (= 0.5 and 0.2). Table 1, shows the results; the system alone, the system with

PSS applying MACO and the system with PSS applying IACO at =0.5.

Table 2, shows the results of the system with PSS applying MACO and the system with PSS

based on IACO at =0.2.

In spite of getting the same results sometimes, IACO algorithm is better than the MACO

algorithm that because of two reasons; the number of iterations in the first method (MACO) is

between 10-500 iterations while it is between 1-15 iterations in the second method (IACO). This

means the second method is faster.

The second reason deals with the process of updating the pheromone that affects the probability

of selecting the arc.

MACO 𝜏1𝑗
(2)

= [{𝜌 + (
1−𝜌

1+𝜌
)}𝜏1𝑗

𝑜𝑙𝑑] + [{𝜌 − (
𝜌

1+𝜌
𝜌} ∗ ∆𝜏1𝑗] (2)

Journal of Engineering Volume 24 January 2018 Number 1

127

IACO 𝜏1𝑗
(2)

= [{𝜌 + (
1−𝜌

1+𝜌
)} ∗ 𝜏1𝑗

𝑜𝑙𝑑] + [{𝜌 − (
𝜌

1+𝜌
)} ∗ 𝑘 ∗

𝜉𝑓𝑏𝑒𝑠𝑡

𝑓𝑤𝑜𝑟𝑠𝑡
] (3)

It is clear from the 1st equation that the last term (1j) is constant while the last term in the 2nd

equation takes the effect of the best ant that makes the probability of selecting the arc closer to

the optimal solution then the number of iteration will be less

5. CONCLUSIONS

Many researchers studied the stability problem of power system with the existence of PSS, and

many methods were taken in order to analyze the system performance. One of these methods is

ACO, an additional improvement to a previous modification of ACO algorithm is proposed in

this paper. It is clear from the results that the system gives better performance when using IACO

than when using MACO. That because the number of iterations is less and the simulation process

will be faster. The process of updating the pheromone depends on the effect of the best ant.

Detailed illustrations about the used programs and the followed execution procedure:

The pare presents 3 flowcharts; Fig.3 shows Conventional ACO, Fig.4 shows Modified ACO, Fig.5

Improved ACO. Illustrations of MATLAB codes for Modified ACO and Improved ACO are presented.

While Conventional ACO was presented in a previous paper by another researcher.

Program 1/ no flowchart presented in this paper.

clear
clc
% from paper Soliman, et al, 2008.
% system alone (machine data)
xq=1.55; xd=1.6; xd_dash=0.32;M=10; wo=100*pi;Tdo_dash=6;D=0;
xe=0.4;re=0; Te=0.05; Ke=25; V=1;
% three load conditions are considered
% ======================================
% heavy load nominal load light load
% -----------[]--------------[]-----------
% P = 1 [] P=0.7 [] P=0.4
% Q=0.5 [] Q=0.3 [] Q=0.1
% --
P=input('input active power')
Q=input('input reactive power')
% calculations of c1-c7 and k1-k6 constants
c1=V^2/(xe+xq);
c2=(xd_dash+xe)/(xd+xe);
c3=c1*((xq-xd_dash)/(xe+xd_dash));
c4=V/(xe+xd_dash);
c5=(xd-xd_dash)/(xe+xd_dash);
c6=c1*xq*((xq-xd_dash)/(xe+xq));
c7=xe/(xe+xd_dash);

K1=c3*(P^2/(P^2+(Q+c1)^2))+Q+c1;
K2=c4*(P/(sqrt(P^2+(Q+c1)^2)));
K3=c2;
K4=c5*(P/(sqrt(P^2+(Q+c1)^2)));
K5=c4*xe*(P/(V^2+Q*xe))*(c6*((c1+Q)/(P^2+(c1+Q)^2))-xd_dash);

Journal of Engineering Volume 24 January 2018 Number 1

128

K6=c7*((sqrt(P^2+(Q+c1)^2))/(V^2+Q*xe))*(xe+(c1*xq*(c1+Q))/(P^2+(c1+Q)^2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%__________________________%%%%%%%%%%%%%

% x=[delta(delta) delta(w) delta(Eq') delta(Efd)]
A=[0 wo 0 0
 -K1/M -D/M -K2/M 0
 -K4/Tdo_dash 0 -1/(K3*Tdo_dash) 1/Tdo_dash
 -K5*Ke/Te 0 -K6*Ke/Te -1/Te];

B=[0 0 0 Ke/Te]';
C=[0 1 0 0];
D=0 ;
[num,Den]=ss2tf(A,B,C,D);
disp('sys alone')
G=tf(num,Den)% tf of sys alone
eig(G);
s=stepinfo(G)
 tr=s.RiseTime;
 ts=s.SettlingTime;
 Mp=s.Overshoot;
 Ess=abs(1-dcgain(G))
figure(1);
step(G);
title('sys alone');

% pss
syms s
 % T1 T2 T3 T4 compensators time
 T1= [0.02 0.05 0.11 0.2 0.3 0.4 0.55 0.15];
 T3=T1;
 T2 =[0.01 0.03 0.07 0.09 0.12 0.22 0.45 0.065];
 T4=T2;
 ks=[1 7 11 17 26 35 40 45]; % pss gain
 Tw=[1 2 6 8 10 12 14 16] ; % washout time
for i=1:8 % 8 is the number of states of T1 T2 T3 T4

G1=ks(i)*(s*Tw(i)/(1+s*Tw(i)))*((1+s*T1(i))/(1+s*T2(i)))*((1+s*T3(i))/(1+s*T4

(i))); %pss TF
 [N1,D1]=numden(G1); % of pss
 n1=sym2poly(N1);
 d1=sym2poly(D1);
 disp('TF of PSS');
 GG1=tf(n1,d1); % TF of PSS
%figure(2)
%step(GG1)
%title('pss alone')
 %%% pss with sys
 [n_sp,d_sp]=feedback(num,Den,n1,d1,+1);
 disp('sys with pss');
 i
 G_sp=tf(n_sp,d_sp);
 figure;
 step(G_sp);
 title('sys with pss');
 S=stepinfo(G_sp)
 tr=S.RiseTime;

Journal of Engineering Volume 24 January 2018 Number 1

129

 ts=S.SettlingTime;
 Mp=S.Overshoot;
 Ess=abs(1-dcgain(G_sp))
 % the objective function
 fitt(i)= (0.25*tr) + (0.5*ts) + (0.25*Ess);
 TF(i)=G_sp;
end
fitt;TF;
 %%%%%% this is the end %%%%%%

How to execute the programs:

First of all, execute the program 1 by entering active and reactive powers according to the load regimes

(heavy, nominal and light) loads. Taking, for example, the first case (heavy load condition; active power

is 1 and reactive power is 0.5. The program will continue its execution until getting the transfer function

of the system alone as:

 -8.132 s
 G = --
 s^4 + 20.46 s^3 + 98.45 s^2 + 922.7 s + 2363
 ts, tr and ESS can be obtained from "stepinfo" MATLAB command as:

s =
 RiseTime: 0
 SettlingTime: 156.2869
 SettlingMin: -0.0114
 SettlingMax: 0.0084
 Overshoot: Inf
 Undershoot: Inf
 Peak: 0.0114
 PeakTime: 0.4433
Ess =
 1

We have 4 variables (T1, T2, Ks, and Tw) each one of 8 values as stated in the program. At the end of the

program, we will get 8 transfer functions (TF) and 8 values of the objective function (fitt).

Now go to the second program

Program 2: flowchart of Fig.4 in this paper depending on equation of ref. Mathiyalagan, et al., 2010.

%% Modified Ant colony optimization Mathiyalagan, et al., 2010.
% applied on SMIB WITH PSS
clear
clc
N= input('the no. of ants') % write N=4; no_of_ants for each variable
p=input('no. of states')% write 8; no_of_states
% for min < T1, T2, ks, Tw < max, from program1
n=input('no. of design') % write 1 for each time u execute the program
% because we have4 design variables are PSS gain, T1 T2 Tw
% x is a matrix of 8 overall TF obtained from program1
syms TF1,syms TF2, syms TF3, syms TF4, syms TF5, syms TF6, syms TF7, syms TF8

Journal of Engineering Volume 24 January 2018 Number 1

130

x=[TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8]

%fx=fitt results from program1
disp('1:heavy load,2:nominal load, 3:light load')
load=input('load')
if load==1
 fx= [55.4714 18.2018 9.3514 2.3952 1.1983 3.3588 52.3429 1.2541] %

heavy load
elseif load==2
 fx=[18.5437 10.7712 6.8578 2.3386 1.2461 2.6462 11.7511

1.3481]% nominal load
elseif load==3
 fx =[11.0834 7.5520 5.4010 2.2261 1.0898 1.9588 5.4122

1.5132] %light load
end

jj=1:8 % the order at the 8 states

roo=input('roo'); % roo=0.2 0.5 0.9
iteration=1

tao=1-roo*rand; % initial pheromone
for i=1:p
 tao1(i)=tao;
end

p1j=tao/sum(tao1);

x1=[0 p1j 2*p1j 3*p1j 4*p1j 5*p1j 6*p1j 1]

syms ant1, syms ant2, syms ant3, syms ant4
ant=[ant1 ant2 ant3 ant4]

r=rand(1,N) %N is the number of ants
for i=1:N
 for j=1:p
 if r(i)> x1(j) & r(i)<x1(j+1)
 xx(i)=x(j); % to present the TF
 fx1(i)=fx(j); % to present the fitness
 order(i)=jj(j); % to present the index
 end
 end
end
xx;
fx1, order
fbest=min(fx1)
fworst=max(fx1)
% to print ant number and x
k=0;
for i=1:N
 if fbest==fx1(i)
 best_ant =[xx(i), ant(i), order(i)]
 k=k+1;
 elseif fworst==fx1(i)
 worst_ant=[xx(i), ant(i), order(i)]
 else
 end

Journal of Engineering Volume 24 January 2018 Number 1

131

end
k

t1_j=tao

while k<N
 % step 4
 % ants return home and start again in search of food
 iteration=iteration+1

 % modification
 %t_new=t1_j=(roo+((1-roo)/(1+roo)))*t1_j+(roo-(roo/(1+roo)))*0.2; from

ref. Mathiyalagan, et al., 2010.

 t1_j=(roo+((1-roo)/(1+roo)))*t1_j+(roo-(roo/(1+roo)))*0.2 % new value
 % go to step 2
 for j=1:p
 t(j)=t1_j;
 end
 sum(t);
 p1_j=t/sum(t);
 p1_j

 % to prepare x11:x18 in range 0-1
 x11(1)=0;
 x1=0;
 for i=2:7
 x1=x1+p1_j(i-1);
 x11(i)=x1;
 end
 x11(8)=1;
 x11

 r=rand(1,N)
 for i=1:N
 for j=1:p
 if r(i)> x11(j) & r(i)<x11(j+1)
 xx(i)=x(j);
 fx1(i)=fx(j);
 order(i)=jj(j);
 end
 end
 end
 xx
 fx1, order
 fbest=min(fx1)
 fworst=max(fx1)
 % to print ant number and x
 k=0; % k is the no. of best ants
 for i=1:N
 if fbest==fx1(i)
 best_ant= [xx(i), ant(i), order(i)]
 k=k+1;
 elseif fworst==fx1(i)
 worst_ant=[xx(i), ant(i), order(i)]
 else

Journal of Engineering Volume 24 January 2018 Number 1

132

 end
 end
 k

end

To execute program 2 input
N=4;

P=8;

n=1;

Remove the lines:
syms TF1,syms TF2, syms TF3, syms TF4, syms TF5, syms TF6, syms TF7, syms TF8
x=[TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8]

Write x=TF, to let x=8 transfer function that described in program 1.

Then input load 1, to execute for heavy load case.

Input roo=0.2;

After that, the Ant Colony will be operated with the fitness function according to that presented in

Mathiyalagan, et al., 2010.
Wait for the final results. All the ants will follow the same direction. And the program will give you the

best transfer function also the program will give you the number of iterations.

The results are shown in Table2.

Now repeat for roo=0.5, the results are shown in Table 3.

Finally, follow the same procedure as described above but this time on program 3. The difference is the

analysis is done according to our fitness equation.

Program 3/ flowchart of Fig.5 in this paper depending on our equation

%% Modified Ant colony optimization "our equations"
% applied on SMIB WITH PSS
clear
clc
N= input('the no. of ants') % write N=4; no_of_ants for each variable
p=input('no. of states')% write 8; no_of_states
% for min < T1, T2, ks,Tw < max, from program1
n=input('no. of design') % write 1 for each time u execute the program
% because we have4 design variables are PSS gain, T1 T2 Tw
% x is a matrix of 8 overall TF obtained from program1
syms TF1,syms TF2, syms TF3, syms TF4, syms TF5, syms TF6, syms TF7, syms TF8
x=[TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8]

%fx=fitt results from program1
disp('1:heavy load,2:nominal load, 3:light load')
load=input('load')
if load==1
 fx= [55.4714 18.2018 9.3514 2.3952 1.1983 3.3588 52.3429 1.2541] %

heavy load
elseif load==2
 fx=[18.5437 10.7712 6.8578 2.3386 1.2461 2.6462 11.7511

1.3481]% nominal load
elseif load==3
 fx =[11.0834 7.5520 5.4010 2.2261 1.0898 1.9588 5.4122

1.5132] %light load
end

jj=1:8 % the order at the 8 states

Journal of Engineering Volume 24 January 2018 Number 1

133

roo=input('roo'); % roo=0.2 0.5 0.9

iteration=1

tao=1-roo*rand; % initial pheromone
for i=1:p
 tao1(i)=tao;
end

p1j=tao/sum(tao1);

x1=[0 p1j 2*p1j 3*p1j 4*p1j 5*p1j 6*p1j 1]

syms ant1, syms ant2, syms ant3, syms ant4
ant=[ant1 ant2 ant3 ant4]

r=rand(1,N) %N is the number of ants
for i=1:N
 for j=1:p
 if r(i)> x1(j) & r(i)<x1(j+1)
 xx(i)=x(j); % to present the TF
 fx1(i)=fx(j); % to present the fitness
 order(i)=jj(j); % to present the index
 end
 end
end
xx;
fx1, order
fbest=min(fx1)
fworst=max(fx1)
% to print ant number and x
k=0;
for i=1:N
 if fbest==fx1(i)
 best_ant =[xx(i), ant(i), order(i)]
 k=k+1;
 elseif fworst==fx1(i)
 worst_ant=[xx(i), ant(i), order(i)]
 else
 end
end
k

t1_j=tao;
t_2=tao;

while k<N
 % step 4
 % ants return home and start again in search of food
 iteration=iteration+1

 % modification
 %t_new=(p+(1-p)/(1+p))*t_old+(p-p/(1+p))*sum(delta(t)) our equation
 t1_j=(roo+((1-roo)/(1+roo)))*t1_j % old value
 zeta=2; % scaling parameter

Journal of Engineering Volume 24 January 2018 Number 1

134

 sum_delta_t=k*zeta*fbest/fworst
 t_2=(roo+((1-roo)/(1+roo)))*t_2+sum_delta_t

 % go to step 2
 for j=1:p
 if j==best_ant(3) % at j=3 best ant for the first case
 t(j)=t_2;
 else
 t(j)=t1_j;
 end
 end
 sum(t);
 p1_j=t/sum(t);
 p1_j

 % to prepare x11:x18 in range 0-1
 x11(1)=0;
 x1=0;
 for i=2:7
 x1=x1+p1_j(i-1);
 x11(i)=x1;
 end
 x11(8)=1;
 x11

 r=rand(1,N)
 for i=1:N
 for j=1:p
 if r(i)> x11(j) & r(i)<x11(j+1)
 xx(i)=x(j);
 fx1(i)=fx(j);
 order(i)=jj(j);
 end
 end
 end
 xx
 fx1, order
 fbest=min(fx1)
 fworst=max(fx1)
 % to print ant number and x
 k=0; % k is the no. of best ants
 for i=1:N
 if fbest==fx1(i)
 best_ant= [xx(i), ant(i), order(i)]
 k=k+1;
 elseif fworst==fx1(i)
 worst_ant=[xx(i), ant(i), order(i)]
 else
 end
 end
 k

end

The same is done for nominal and light loads. The results are shown in Tables 2 and 3.

Journal of Engineering Volume 24 January 2018 Number 1

135

REFERENCES:

 Abdul Hameed, K., and Palani, S., 2014, Robust Design of Power System Stabilizer using

Harmony Search Algorithm, Automatika, Vol. 55, No. 2, PP. 162–169.

 Abdul-Ghaffar, H. I., Ebrahim, E. A., and Azzam, M., 2013, Design of PID Controller

for Power System Stabilization Using Hybrid Particle Swarm-Bacteria Foraging

Optimization, WSEAS Transactions on Power Systems, Issue 1, Vol. 8, PP. 12-23.

 Boroujeni, S. M. S., Hemmati, R., Delafkar, H., and Boroujeni, A. S., 2011, Optimal PID

Power System Stabilizer Tuning based on Particle Swarm Optimization, Indian Journal of

Science and Technology, Vol. 4, No. 4, PP. 379-383.

 Duman, S., and Öztürk, A., 2010, Robust Design of PID Controller for Power System

Stabilization by Using Real Coded Genetic Algorithm, International Review of Electrical

Engineering (I.R.E.E.), Vol.5, No. 5, PP. 2159-2170.

 Hosseini, S. H., Reza, R., and Hamed, K., 2007, Application of Genetic Algorithm to

Design PID Controller for Power System Stabilization, 5th International Conference on

Electrical and Electronics Engineering (ELECO 2007), Bursa, Turkey.

 Kundur., P., 1993, power system stability and control, McGraw-Hill, New York.

 Mahdiyeh Eslami, Hussain Shareef, Azah Mohamed and S. P. Ghoshal,2010, Tuning of

power system stabilizers using particle swarm optimization with passive congregation,

International Journal of the Physical Sciences Vol. 5(17), PP. 2574-2589, Available

online at http://www.academicjournals.org/IJPS

ISSN 1992 - 1950 ©2010 Academic Journals.

 Mahmoud, M. S., and Soliman, H. M., 2012, Design of Robust Power System Stabilizer

Based on Particle Swarm Optimization, Circuits and Systems, Vol.3, PP. 82-89.

 Mathiyalagan, P., Dhepthie, U. R., and Sivanandam, S. N., 2010, Enhanced Hybrid PSO-

ACO Algorithm for Grid Scheduling, ICTACT journal on soft computing, Issue:01, PP.

54-59.

 Otaru, M. U., Al-Musabi, N. A., and Al-Baiyat, S. A., 2004, Robust PID Stabilizer

Design using Genetic Algorithms, Proceedings of the 2nd IEEE GCC Conference,

Bahrain, PP. 33-36 ,

 Rao, S. S., 2009, Engineering Optimization Theory and Practice, 4th edition, John Wiley

& Sons. INC.

 Soliman, H. M., Bayoumi, E. H. E., and Hassan, M. F., 2008, PSO–Based Power System

Stabilizer for Minimal Overshoot and Control Constraints, Journal of Electrical

Engineering, Vol. 59, No. 3, PP. 153–159.

Figure 1. A synchronous machine with the infinite bus.

AVR Exciter Generator

Transmission

line

𝑝𝑠𝑠 𝑇𝐹 = 𝐾𝑖
𝑠𝑇𝑤

1 + 𝑠𝑇𝑤
 [
1 + 𝑠𝑇1

1 + 𝑠𝑇2

1 + 𝑠𝑇3

1 + 𝑠𝑇4
]

Vref
+

+ _



Infinite

bus Efd

V
P
Q

re Xe

Journal of Engineering Volume 24 January 2018 Number 1

136

Figure 2. Signal flow graph of the system with PSS.

Where:

G1 =
KE

1 + sTE
, G2 =

K3

1 + sT3
, G3 = K2, G4 =

1

M

H1 = K6, H2 = K5, H3 = K4, H4 = K1, H5 =
314

s
 , H6 = Pss

1
1G 2G 3G 1

1

4G

1H

2H 3H-
4H

5H

mT

1

6H


refV

1 the no. of paths or arcs is the

permissible discrete values

(X11, X12, X13, …, X1P) within

a selected range.

2 the design variables are T1,

T2, TW, and GPSS.

3 the fitness function

=0.25*tr+0.5*ts+0.25*Ess

4 generate 4 random numbers,

one for each ant.

5 K is the number of best ant

  is the scaling factor

assumed to be 2. Rao, 2009.

 1j
old=(1-)*1j

(1) , =0.5

pheromone decay factor Rao,

2009.

6 if the no. of best ants (k)=the

no. of ants (N), that means all

the ants follow the same path

if not the program will

continue.

Journal of Engineering Volume 24 January 2018 Number 1

137

Figure 3. The flowchart of CACO algorithm.

start

Results
end

Input no. of ants N=4

Input no. of paths P=8 1

Input no. of design variables n=4 2

Define the fitness function 3
Set the iteration =1

Assume the initial pheromone 1j=1

probability of selecting path for any ant

𝑝
1𝑗

=
𝜏1𝑗

σ 𝜏1𝑝
𝑝

1

 … … . (𝑎)

Set the paths X1p =(0 to 1 step p1j)

searching where r fall in X11, X12, X13, … X1P

write the objective function values corresponding to the
paths.
Find fbest and fworst

5Iteration = iteration+1
Update the pheromone

𝜏1𝑗
(2)

= 𝜏1𝑗
𝑜𝑙𝑑 + 𝑘 ∗

𝜉 𝑓𝑏𝑒𝑠𝑡

𝑓𝑤𝑜𝑟𝑠𝑡
 5

 ?
K = N 6

Journal of Engineering Volume 24 January 2018 Number 1

138

Figure 4. The flowchart of MACO algorithm.

Start

Get results
end

Calculate the probability of selecting path for any
ant

𝑝
1𝑗

=
𝜏1𝑗

σ 𝜏1𝑝
𝑝

1

 … … . (𝑎)

Set the paths X1p =(0 to 1 step p1j)

r = rand(1,4) 4
searching where r fall in X11, X12, X13, … X1P

write the objective function values corresponding
to the paths.
Find fbest and fworst

Iteration = iteration+1
Update the pheromone

𝜏1𝑗
(2)

= [{𝜌 + (
1−𝜌

1+𝜌
)}𝜏1𝑗

𝑜𝑙𝑑] + [{𝜌 − (
𝜌

1+𝜌
𝜌} ∗ ∆𝜏1𝑗] 7

If ?
K = N 6

No

Input no. of ants N=4

Input no. of paths P=8 1

Input no. of design variables n=4 2

Define the fitness function 3
Set the iteration =1

Yes

Assume the initial pheromone 1j=1-*rand

Journal of Engineering Volume 24 January 2018 Number 1

139

7 1j=0.2 constant value according to ref. Mathiyalagan, et al., 2010.

Figure 5. The flowchart of IACO algorithm.

StartS

start

Get results
endGet results

end

Input no. of ants N=4

Input no. of paths P=8 1

Input no. of design variables n=4 2

Define the fitness function 3
Set the iteration =1

Input no. of ants N=4

Calculate the probability of selecting path for any
ant

𝑝
1𝑗

=
𝜏1𝑗

σ 𝜏1𝑝
𝑝

1

 … … . (𝑎)

Set the paths X1p =(0 to 1 step p1j)Calculate the
probability of selecting path for any ant

r = rand(1,4) 4
searching where r fall in X11, X12, X13, … X1P

write the objective function values corresponding
to the paths.

Find fbest and fworstr = rand(1,4) 4
searching where r fall in X11, X12, X13, … X1P

Iteration = iteration+1
Update the pheromone

𝜏1𝑗
(2)

= [{𝜌 + (
1−𝜌

1+𝜌
)} ∗ 𝜏

1𝑗

𝑜𝑙𝑑

] + [{𝜌 − (
𝜌

1+𝜌
)} ∗ 𝑘 ∗

𝜉𝑓𝑏𝑒𝑠𝑡

𝑓𝑤𝑜𝑟𝑠𝑡

] 5Iteration =

iteration+1

 ?
K = N 6
?

NoNo

YesYes

Assume the initial pheromone 1j=1-*rand

Journal of Engineering Volume 24 January 2018 Number 1

140

Table 1. Loading conditions and transfer functions

Loading condition Transfer function

Light load -6.326 s

 s4 + 20.46 s3 + 79.4 s2 + 558.4 s + 1242

Nominal load -7.553 s

 --

 s4 + 20.46 s3 + 89.15 s2 + 756.9 s + 1795

Heavy load -8.132 s

 --

 s4 + 20.46 s3 + 98.45 s2 + 922.7 s + 2363

Table 2. The system time response performance at =0.5

 System alone MACO =0.5 IACO =0.5

Heavy load

P=1

Q=0.5

ts =156.28 sec ts=1.89 ts=1.89

tr=0 sec tr=0 tr=0

Ess=1 Ess=1 Ess=1

Fig. 6 Fig. 7, TF5 Fig. 7, TF5

Nominal load ts=41.40 ts=1.99 ts=1.99

P=0.7

Q=0.3

tr=0 tr=0 tr=0

Ess=1 Ess=1 Ess=1

Fig. 8 Fig. 9, TF5 Fig. 9, TF5

Light load ts=23.58 ts=3.41 ts=1.67

P=0.4

Q=0.1

tr=0 tr=0 tr=0

Ess=1 Ess=1 Ess=1

Fig. 10 Fig. 11, TF6 Fig. 12, TF5

Table 3. The system time response performance at =0.2

 MACO =0.2 IACO =0.2

Heavy load

P=1

Q=0.5

ts=18.20 ts=1.89

tr=0 tr=0

Ess=1 Ess=1

Fig. 13, TF3 Fig. 7, TF5

Nominal load ts=1.99 ts=1.99

P=0.7

Q=0.3

tr=0 tr=0

Ess=1 Ess=1

Fig. 9, TF5 Fig. 9, TF5

Light load ts=1.67 ts=1.67

P=0.4

Q=0.1

tr=0 tr=0

Ess=1 Ess=1

Fig. 12, TF5 Fig. 12, TF5

Journal of Engineering Volume 24 January 2018 Number 1

141

Figure 6. System alone (without PSS) for heavy load regime.

 -8.132 s

TF = ---

 s4 + 20.46 s5 + 98.45 s2 + 922.7 s + 2363

Figure 7. The system with PSS for heavy load regime based on MACO and IACO at =0.5 &

0.2.

 -731.9 s4 - 1.227*104 s3 - 5.204*104 s2 - 5082 s

 TF= --

 90 s7 + 3351 s6 + 4.614e04 s5 + 4.821*105 s4 + 3.041*106 s3 + 1.085*107 s2 + 1.57*107 s + 1.477*106

sys alone

Time (seconds)

A
m

p
li
t
u
d
e

0 20 40 60 80 100 120 140 160
-0.015

-0.01

-0.005

0

0.005

0.01

System: G

Settling time (seconds): 156

0 0.5 1 1.5 2 2.5 3 3.5
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1
x 10

-3 sys w ith pss

Time (seconds)

A
m

p
lit

u
d
e

Journal of Engineering Volume 24 January 2018 Number 1

142

Figure 8. System alone (without PSS) for nominal load regime.

 -7.553 s

TF= --

 s4 + 20.46 s3 + 89.15 s2 + 756.9 s + 1795

Figure 9. The system with PSS for nominal load regime based on M1CO and IACO at =0.5 &

0.2.

 -679.8 s4 - 1.14*104 s3 - 4.834*104 s2 - 4720 s

 TF= --

 90 s7 + 3351 s6 + 4.53*104 s5 + 4.447*105 s4 + 2.623*106 s3 + 8.836*106 s2 + 1.196*107 s

 + 1.122*106

0 10 20 30 40 50 60
-0.015

-0.01

-0.005

0

0.005

0.01

sys alone

Time (seconds)

A
m

p
lit

u
d
e

0 0.5 1 1.5 2 2.5 3
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1
x 10

-3 sys w ith pss

Time (seconds)

A
m

p
lit

u
d
e

Journal of Engineering Volume 24 January 2018 Number 1

143

Figure 10. The system alone (without PSS) for light load regime.

 -6.326 s

TF= --

 s4 + 20.46 s3 + 79.4 s2 + 558.4 s + 1242

Figure 11. The system with PSS for light load regime based on MACO at =0.5.

 -9186 s4 - 8.427*104 s3 - 1.967*105 s2 - 1.582*104 s

TF= ---

 1452 s7 + 4.303*104 s6 + 4.19*105 s5 + 3.57*106 s4 + 1.707*107 s3 + 4.074*107 s2 +

0 5 10 15 20 25 30 35
-0.015

-0.01

-0.005

0

0.005

0.01

sys alone

Time (seconds)

A
m

p
lit

u
d
e

0 1 2 3 4 5 6 7
-10

-8

-6

-4

-2

0

2
x 10

-3 sys w ith pss

Time (seconds)

A
m

p
lit

u
d
e

Journal of Engineering Volume 24 January 2018 Number 1

144

 4.001*107 s + 3.104*106

Figure 12. The system with PSS for light load regime based on MACO & IACO at =0.5 & 0.2.

 -569.4 s4 - 9546 s3 - 4.049*104 s2 - 3954 s

TF= --

 90 s7 + 3351 s6 + 4.442*104 s5 + 3.942*105 s4 + 2.092*106 s3 + 6.525*106 s2 + 8.295*106 s

 + 7.76*105

Figure 13. The system with PSS for heavy load regime based on MACO at =0.2.

 -2391 s^4 - 6.871e04 s^3 - 4.993e05 s2 - 8.132e04 s

TF= --

 294 s7 + 1.447*104 s6 + 2.632*105 s5 + 2.434*106 s4 + 1.592*107 s3 + 8.297*107 s2 + 1.543*108 s

0 0.5 1 1.5 2 2.5
-0.01

-0.009

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

sys w ith pss

Time (seconds)

A
m

p
lit

u
d
e

0 5 10 15 20 25 30
-12

-10

-8

-6

-4

-2

0

2

4

6

8
x 10

-3 sys w ith pss

Time (seconds)

A
m

pl
itu

de

Journal of Engineering Volume 24 January 2018 Number 1

145

 +2.363*107

Appendix:

The system A, B, C, and D are Mahmoud, and Soliman, 2012.

𝐴 =

[

0 𝑤𝑜 0 0

−
𝑘1

𝑀
0 −

𝑘2

𝑀
0

−
𝑘4

𝑇𝑑𝑜
′

0 −
1

𝑇
−

1

𝑇𝑑𝑜
′

−
𝑘𝐸𝑘5

𝑇𝐸
0 −

𝑘𝐸𝑘6

𝑇𝐸
−

1

𝑇𝐸]

𝑥 = [∆𝛿 ∆𝑤 ∆𝐸𝑞
′ ∆𝐸𝑓𝑑]

𝐵 =

[

0
0
0
𝑘𝐸

𝑇𝐸]

 C=[0 1 0 0], T=k3 T'do

