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ABSTRACT 

This paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The 

procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system 

stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB 

software. The results show that by using Improved Ant Colony Optimization (IACO) the system 

will give better performance with less number of iterations as it compared with a previous 

modification on ACO. In addition, the probability of selecting the arc depends on the best ant 

performance and the evaporation rate.  
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                                  الخلاصة

 (PSS) مع مثبت نظام القدرة  SMIB(.الفكرة مطبقة على نظام ACOيقدم البحث تقنية محسنة لخوارزمية مستعمرة النمل ) 

مستعمرة النمل  .بينت النتائج ان النظام باستخدام تقنية  MATLAB برنامج المحاكاة باستخدامحيث تمت في ثلاثة احمال مختلفة 

ن لك اكذ المتطورة يعطي اداء افضل مع اقل عدد من التكرارات بالمقارنة مع تحويرات سابقة اجريت على مستعمرة النمل.

 مله.  تفرزها الن للنمل ومعدل التبخر لمادة الفيرومون التيلى افضل اداء يعتمد ايضا ع احتمالية اختيار او تحديد مسار النمله
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1.  INTRODUCTION  

In the last years, much effort has been invested in improving the damping performance of power 

systems using Power system stabilizers (PSS). PSS provides a supplementary excitations control 

signal that enhances the damping capabilities of synchronous machines. The choice of 

parameters for the PSS is important as it affects the overall dynamic performance of the power 

system, there are various forms of PSS controllers, and the famous types are lead-lag 

compensator (i.e., classical PSS) and PID. 

Kundur, 1993, illustrated the construction, function, and operation of a PSS that uses auxiliary 

stabilizing signals to control the excitation system so as to improve power system dynamic 

performance. Commonly used input signals to the power system stabilizer are shaft speed, 

terminal frequency, and power. PSS will add a component of electrical torque in phase with the 

rotor speed. 

A robust PID stabilizer was proposed by Otaru, et al., 2004. The authors used a genetic 

algorithm to enhance the performance of the considered system which is a synchronous 

generator connected to an infinite bus, this model is sufficient for low-frequency oscillations 

studies, the PID stabilizer gains are designed optimally using Genetic Algorithm (GA) to arrive 

at the optimal setting of the controller. Another PID-PSS was proposed by Hosseini, et al., 2007, 

where the gain setting of PID-PSS is optimized by minimizing an objective function using GA. 

The dynamic response was compared with other two stabilizers named FUZZY-PSS and LQR-

PSS. The authors revealed that their stabilizer gave better performance. They applied the 

proposed stabilizer on single machine infinite bus (SMIB) system and the simulations were made 

in MATLAB. 

Abdul-Ghaffar, et al., 2013, used hybrid particle swarm bacteria foraging optimization (PSO-

BFA) in tuning the PID parameters. This research considers the stabilization of a synchronous 

machine connected to an infinite bus via a PID. Simulation results were presented with and 

without the proposed controller then compared with the classical PID. They applied the 

controller to SMIB system. The results showed that using of hybrid control gave better 

performance. 

Duman and Ozturk, 2010, presented a Real Coded Genetic Algorithm (RCGA) based PID 

controller to improve power system dynamic stability applied on (SMIB). Different controllers' 

structures are presented; conventional power system stabilizer (CPSS), optimized PSS and 

RCGAPID are used to improve the stability. Two performance indexes; integral absolute error 

(IAE) and integral squared error (ISE) were used as objective functions. Different loading 

conditions were studied. The results show that the ISE is better than IAE for the optimization 

problem.    

A Harmony Search Algorithm (HSA) approach is presented by Abdul Hameed, et al., 2014, for 

the robust and optimal design of PID controller to PSS for damping low-frequency power 

oscillation. Also, they applied their technique to infinite bus single machine system, Eigenvalue 

analysis by using genetic algorithm based PSS (GAPSS) under different operating conditions 

reveals that under-damped and lightly damped oscillation modes are shifted to a specific stable 

zone in the S- Plane. 

Boroujeni, et al., 2011, demonstrated a different type of stabilizers to generate supplementary 

damping control signals for the excitation system to damp the low frequency oscillation of the 

electric power system, they applied a new optimal technique PID type PSS based on (PSO-PSS) 

to a typical single machine infinite bus power system. The simulation results demonstrated that 

these design is showing the guarantee of the robust stability and robust performance of the power 

system to some conditions. 



Journal  of  Engineering    Volume    24      January      2018 Number  1 
 

 

125 
 

A new technique in designing a power system stabilizer PSS was presented by Mahmoud and 

Soliman, 2012, based on a combination of Particle Swarm Optimization (PSO) and Linear 

Matrix Inequality (LMI) in order to eliminate the number of variables. They applied their idea on 

(SMIB) using MATLAB environment. Finally, they concluded that their method was effective 

and convergence as the system confirms better performance under different loading conditions.   

Soliman, et al., 2008, demonstrated another type of  PSS that minimizes the maximum 

overshoot in order to alleviate the generator shaft fatigue. They used PSO algorithm in order to 

fix the gain of the PSS and lead time compensator. They applied their stabilizer to SMIB system 

at different loading conditions, the results showed the effectiveness and robustness of the 

proposed technique.  

The rest of this paper is organized as follows: the mathematical model is illustrated in the next 

section. Ant colony optimization and its' modifications are demonstrated in the third section 

while the fourth section contains the results and discussion. Finally, a conclusion is demonstrated 

in the last section.  

 

2. MATHEMATICAL MODEL 

In this section, the mathematical model of the system with PSS and finding the transfer function 

are described. 

2.1 SMIB 

A synchronous machine with infinite bus system was taken in this research as a test system, as 

shown in Fig.1. The state space model "A, B, C, and D" are shown in appendix Abdul-Ghaffar, 

et al., 2013, and Mahmoud and Soliman, 2012, with the machine data in pu are Xd=1.6,�̇�𝑑 =

0.32 Xq=1.55, d=2*π*50 rad/sec, 𝑇𝑑𝑜
′ = 6 𝑠𝑒𝑐,  and M=10, transmission line reactance Xe=0.4, 

re=0. The machine constants k1 to k6 are as ref. Mahmoud and Soliman, 2012, and their values 

are depending on the loading conditions.   

The transfer functions of the system for three loading conditions are tabulated in Table 1. 

2.2 Power System Stabilizer (PSS) 

The transfer function of power system stabilizer is  

𝑝𝑠𝑠 𝑇𝐹 = 𝐾𝑖  
𝑠𝑇𝑤

1 + 𝑠𝑇𝑤
 [
1 + 𝑠𝑇1

1 + 𝑠𝑇2
 
1 + 𝑠𝑇3

1 + 𝑠𝑇4
]                                                                    (1) 

Where Ki represents the gain of the PSS 

 
𝑠𝑇𝑤

1+𝑠𝑇𝑤
   washout 

 [
1+𝑠𝑇1

1+𝑠𝑇2
 
1+𝑠𝑇3

1+𝑠𝑇4
]  lead-lag compensator. 

The limits for T1 to T4, TW and Ki as ref. Mahdiyeh, et al., 2010. 

0.01 < T1, T2, T3, & T4 < 2 sec. 

1< Ki < 50 
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2.3 System with PSS 

After connecting the PSS with the system as shown in Fig.1, the signal flow graph of the overall 

system will be as shown in Fig.2. 

3. CLASSICAL ANT COLONY OPTIMIZATION (CACO) ALGORITHM 

CACO is kind of optimization that is based on the behavior of ants in searching of the food 

process. The flow chart of CACO is illustrated in Fig.3. 

3.1 Modified Ant Colony Optimization (MACO) Algorithm  

The flowchart of this method is shown in Fig.4. A modification was made by Mathiyalagan, et 

al., 2010, that deal with the process of updating the pheromone. This equation is illustrated in the 

flowchart of Fig.4, as one can see there the new pheromone depends on the pheromone 

evaporation rate (). In addition to this, the initial pheromone is entered in a random way with a 

dependency on the pheromone evaporation rate. 

3.2 Improved Ant Colony Optimization (IACO) Algorithm 

The proposed ACO algorithm in this research work is represented by a new improvement 

through modifying the updating pheromone equation; by adding the pheromone deposited by the 

best ant (*fbest / fworst) multiplied by (k) in case more than one ant take the best path. The 

flowchart of this process is illustrated in Fig. 5. 

4. RESULTS AND DISCUSSION 

The results of this research are simulated by MATLAB R2013 environment executed on the core 

(TM) i5, 2.5GHz and 4 RAM system. 8 overall proper transfer functions (SMIB with PSS) were 

taken for 3 loading regimes (heavy load, nominal load, and light load). 4 design variables were 

taken; T1, T2, TW, and gain of PSS. Two different methods of optimization were taken; modified 

ant colony optimization (MACO) introduced by Mathiyalagan, et al., 2010, and proposed 

improved ant colony optimization (IACO), 4 ants were taken for each variable and two 

evaporation rate ( = 0.5 and 0.2). Table 1, shows the results; the system alone, the system with 

PSS applying MACO and the system with PSS applying IACO at =0.5. 

Table 2, shows the results of the system with PSS applying MACO and the system with PSS 

based on IACO at =0.2. 

In spite of getting the same results sometimes, IACO algorithm is better than the MACO 

algorithm that because of two reasons; the number of iterations in the first method (MACO) is 

between 10-500 iterations while it is between 1-15 iterations in the second method (IACO). This 

means the second method is faster. 

The second reason deals with the process of updating the pheromone that affects the probability 

of selecting the arc.  

MACO  𝜏1𝑗
(2)

= [{𝜌 + (
1−𝜌

1+𝜌
)}𝜏1𝑗

𝑜𝑙𝑑] + [{𝜌 − (
𝜌

1+𝜌
𝜌} ∗ ∆𝜏1𝑗]                        (2) 
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IACO  𝜏1𝑗
(2)

= [{𝜌 + (
1−𝜌

1+𝜌
)} ∗ 𝜏1𝑗

𝑜𝑙𝑑] + [{𝜌 − (
𝜌

1+𝜌
)} ∗ 𝑘 ∗

𝜉𝑓𝑏𝑒𝑠𝑡

𝑓𝑤𝑜𝑟𝑠𝑡
]              (3)         

It is clear from the 1st equation that the last term (1j ) is constant while the last term in the 2nd 

equation takes the effect of the best ant that makes the probability of selecting the arc closer to 

the optimal solution then the number of iteration will be less  

5. CONCLUSIONS  

Many researchers studied the stability problem of power system with the existence of PSS, and 

many methods were taken in order to analyze the system performance. One of these methods is 

ACO, an additional improvement to a previous modification of ACO algorithm is proposed in 

this paper. It is clear from the results that the system gives better performance when using IACO 

than when using MACO. That because the number of iterations is less and the simulation process 

will be faster. The process of updating the pheromone depends on the effect of the best ant. 

Detailed illustrations about the used programs and the followed execution procedure: 

The pare presents 3 flowcharts; Fig.3 shows Conventional ACO, Fig.4 shows Modified ACO, Fig.5 

Improved ACO. Illustrations of MATLAB codes for Modified ACO and Improved ACO are presented. 

While Conventional ACO was presented in a previous paper by another researcher.  

Program 1/ no flowchart presented in this paper. 

clear 
clc 
% from paper Soliman, et al, 2008. 
% system alone (machine data) 
xq=1.55; xd=1.6; xd_dash=0.32;M=10; wo=100*pi;Tdo_dash=6;D=0; 
xe=0.4;re=0; Te=0.05; Ke=25; V=1; 
%  three load conditions are considered  
% ====================================== 
% heavy load    nominal load    light load 
% -----------[]--------------[]----------- 
%   P = 1    []   P=0.7      []  P=0.4 
%   Q=0.5    []   Q=0.3      []  Q=0.1 
% ---------------------------------------- 
P=input('input active power') 
Q=input('input reactive power') 
% calculations of c1-c7 and k1-k6 constants 
c1=V^2/(xe+xq); 
c2=(xd_dash+xe)/(xd+xe); 
c3=c1*((xq-xd_dash)/(xe+xd_dash)); 
c4=V/(xe+xd_dash); 
c5=(xd-xd_dash)/(xe+xd_dash); 
c6=c1*xq*((xq-xd_dash)/(xe+xq)); 
c7=xe/(xe+xd_dash); 

  
K1=c3*(P^2/(P^2+(Q+c1)^2))+Q+c1; 
K2=c4*(P/(sqrt(P^2+(Q+c1)^2))); 
K3=c2; 
K4=c5*(P/(sqrt(P^2+(Q+c1)^2))); 
K5=c4*xe*(P/(V^2+Q*xe))*(c6*((c1+Q)/(P^2+(c1+Q)^2))-xd_dash); 
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K6=c7*((sqrt(P^2+(Q+c1)^2))/(V^2+Q*xe))*(xe+(c1*xq*(c1+Q))/(P^2+(c1+Q)^2)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%__________________________%%%%%%%%%%%%% 

  
% x=[delta(delta)  delta(w)  delta(Eq')  delta(Efd)] 
A=[  0            wo    0                      0 
   -K1/M        -D/M   -K2/M                   0 
   -K4/Tdo_dash    0   -1/(K3*Tdo_dash)       1/Tdo_dash 
   -K5*Ke/Te       0   -K6*Ke/Te              -1/Te]; 

  

  
B=[0 0 0  Ke/Te]'; 
C=[0  1 0 0]; 
D=0  ; 
[num,Den]=ss2tf(A,B,C,D); 
disp('sys alone') 
G=tf(num,Den)% tf of sys alone 
eig(G); 
s=stepinfo(G) 
     tr=s.RiseTime; 
     ts=s.SettlingTime; 
     Mp=s.Overshoot; 
     Ess=abs(1-dcgain(G)) 
figure(1); 
step(G); 
title('sys alone'); 

  
%  pss 
syms s 
 % T1 T2 T3 T4 compensators time 
 T1= [0.02 0.05 0.11   0.2   0.3  0.4   0.55   0.15 ]; 
 T3=T1; 
 T2 =[0.01 0.03  0.07  0.09  0.12  0.22  0.45  0.065 ]; 
 T4=T2; 
 ks=[1  7  11  17  26  35  40  45];   % pss gain 
 Tw=[1  2  6   8   10  12  14  16] ;  % washout time 
for i=1:8  % 8 is the number of states of T1 T2 T3 T4 
    

G1=ks(i)*(s*Tw(i)/(1+s*Tw(i)))*((1+s*T1(i))/(1+s*T2(i)))*((1+s*T3(i))/(1+s*T4

(i)));  %pss TF 
    [N1,D1]=numden(G1);  % of pss 
    n1=sym2poly(N1); 
    d1=sym2poly(D1); 
    disp('TF of PSS'); 
    GG1=tf(n1,d1); % TF of PSS 
%figure(2) 
%step(GG1) 
%title('pss alone') 
              %%% pss with sys 
     [n_sp,d_sp]=feedback(num,Den,n1,d1,+1); 
     disp('sys with pss'); 
     i 
     G_sp=tf(n_sp,d_sp); 
     figure; 
     step(G_sp); 
     title('sys with pss'); 
     S=stepinfo(G_sp) 
     tr=S.RiseTime; 
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     ts=S.SettlingTime; 
     Mp=S.Overshoot; 
     Ess=abs(1-dcgain(G_sp)) 
     % the objective function 
     fitt(i)= (0.25*tr) + (0.5*ts) + (0.25*Ess); 
     TF(i)=G_sp; 
end 
fitt;TF; 
     %%%%%% this is the end %%%%%% 

     

How to execute the programs: 

First of all, execute the program 1 by entering active and reactive powers according to the load regimes 

(heavy, nominal and light) loads. Taking, for example, the first case (heavy load condition; active power 

is 1 and reactive power is 0.5. The program will continue its execution until getting the transfer function 

of the system alone as:  

      

   
                                    -8.132 s 
         G = ---------------------------------------------------------- 
                 s^4 + 20.46 s^3 + 98.45 s^2 + 922.7 s + 2363 
 ts, tr and ESS can be obtained from "stepinfo" MATLAB command as: 

s =  
        RiseTime: 0 
    SettlingTime: 156.2869 
     SettlingMin: -0.0114 
     SettlingMax: 0.0084 
       Overshoot: Inf 
      Undershoot: Inf 
            Peak: 0.0114 
        PeakTime: 0.4433 
Ess = 
     1 

 

We have 4 variables (T1, T2, Ks, and Tw) each one of 8 values as stated in the program. At the end of the 

program, we will get 8 transfer functions (TF) and 8 values of the objective function (fitt). 

Now go to the second program 

Program 2: flowchart of Fig.4 in this paper depending on equation of ref. Mathiyalagan, et al., 2010. 

%% Modified Ant colony optimization Mathiyalagan, et al., 2010. 
% applied on SMIB WITH PSS 
clear 
clc 
N= input('the no. of ants') % write N=4; no_of_ants for each variable 
p=input('no. of states')% write 8; no_of_states  
% for min < T1, T2, ks, Tw < max, from program1 
n=input('no. of design') % write 1 for each time u execute the program  
% because we have4 design variables are PSS gain, T1 T2 Tw 
% x is a matrix of 8 overall TF obtained from program1 
syms TF1,syms TF2, syms TF3, syms TF4, syms TF5, syms TF6, syms TF7, syms TF8 
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x=[TF1  TF2  TF3  TF4  TF5  TF6  TF7  TF8] 

  
%fx=fitt results from program1 
disp('1:heavy load,2:nominal load, 3:light load') 
load=input('load') 
if load==1 
   fx= [55.4714  18.2018  9.3514  2.3952  1.1983  3.3588  52.3429  1.2541] % 

heavy load 
elseif load==2 
   fx=[18.5437   10.7712    6.8578    2.3386    1.2461    2.6462   11.7511    

1.3481]% nominal load 
elseif load==3 
   fx =[11.0834    7.5520    5.4010    2.2261    1.0898    1.9588    5.4122    

1.5132] %light load 
end 

  
jj=1:8  % the order at the 8 states 

  
roo=input('roo');  % roo=0.2   0.5   0.9 
iteration=1 

  
tao=1-roo*rand;    % initial pheromone 
for i=1:p   
    tao1(i)=tao; 
end 

  
p1j=tao/sum(tao1); 

  
x1=[0    p1j   2*p1j  3*p1j  4*p1j  5*p1j   6*p1j   1] 

  
syms ant1, syms ant2, syms ant3, syms ant4 
ant=[ ant1    ant2     ant3      ant4] 

  
r=rand(1,N)  %N is the number of ants 
for i=1:N 
    for j=1:p 
        if r(i)> x1(j) & r(i)<x1(j+1) 
           xx(i)=x(j);    % to present the TF 
           fx1(i)=fx(j);  % to present the fitness 
           order(i)=jj(j); % to present the index 
        end 
    end 
end 
xx;         
fx1, order 
fbest=min(fx1) 
fworst=max(fx1) 
% to print ant number and x 
k=0; 
for i=1:N 
    if fbest==fx1(i) 
        best_ant =[xx(i),   ant(i),   order(i)] 
        k=k+1; 
    elseif fworst==fx1(i) 
        worst_ant=[xx(i),   ant(i),   order(i)] 
    else  
    end 
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end 
k 

  
t1_j=tao 

   
while k<N 
   % step 4 
   % ants return home and start again in search of food 
   iteration=iteration+1 

    
   % modification 
   %t_new=t1_j=(roo+((1-roo)/(1+roo)))*t1_j+(roo-(roo/(1+roo)))*0.2; from 

ref. Mathiyalagan, et al., 2010. 

    
   t1_j=(roo+((1-roo)/(1+roo)))*t1_j+(roo-(roo/(1+roo)))*0.2 % new value 
   % go to step 2 
   for j=1:p 
       t(j)=t1_j; 
   end 
   sum(t); 
   p1_j=t/sum(t); 
   p1_j 

    

    
    % to prepare x11:x18 in range 0-1 
   x11(1)=0; 
   x1=0; 
   for i=2:7 
       x1=x1+p1_j(i-1); 
       x11(i)=x1; 
   end 
   x11(8)=1; 
   x11 

    
   r=rand(1,N) 
   for i=1:N 
       for j=1:p 
           if r(i)> x11(j) & r(i)<x11(j+1) 
              xx(i)=x(j); 
              fx1(i)=fx(j); 
              order(i)=jj(j); 
           end 
       end 
   end 
   xx         
   fx1, order 
   fbest=min(fx1) 
   fworst=max(fx1) 
   % to print ant number and x 
   k=0; % k is the no. of best ants 
   for i=1:N 
       if fbest==fx1(i) 
          best_ant= [xx(i), ant(i), order(i)] 
          k=k+1; 
       elseif fworst==fx1(i) 
          worst_ant=[ xx(i), ant(i), order(i)] 
       else  
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       end 
   end 
   k 

  
end  
 

To execute program 2 input  
N=4;  

P=8; 

n=1; 

Remove the lines: 
syms TF1,syms TF2, syms TF3, syms TF4, syms TF5, syms TF6, syms TF7, syms TF8 
x=[TF1  TF2  TF3  TF4  TF5  TF6  TF7  TF8] 

Write x=TF, to let x=8 transfer function that described in program 1. 

Then input load 1, to execute for heavy load case. 

Input roo=0.2;  

After that, the Ant Colony will be operated with the fitness function according to that presented in 

Mathiyalagan, et al., 2010. 
Wait for the final results. All the ants will follow the same direction. And the program will give you the 

best transfer function also the program will give you the number of iterations. 

The results are shown in Table2. 

Now repeat for roo=0.5, the results are shown in Table 3.  
  

Finally, follow the same procedure as described above but this time on program 3. The difference is the 

analysis is done according to our fitness equation. 

  

Program 3/ flowchart of Fig.5 in this paper depending on our equation 

%% Modified Ant colony optimization   "our equations" 
% applied on SMIB WITH PSS 
clear 
clc 
N= input('the no. of ants') % write N=4; no_of_ants for each variable 
p=input('no. of states')% write 8; no_of_states  
% for  min < T1, T2, ks,Tw < max, from program1 
n=input('no. of design') % write 1 for each time u execute the program  
% because we have4 design variables are PSS gain, T1 T2 Tw 
% x is a matrix of 8 overall TF obtained from program1 
syms TF1,syms TF2, syms TF3, syms TF4, syms TF5, syms TF6, syms TF7, syms TF8 
x=[TF1  TF2  TF3  TF4  TF5  TF6  TF7  TF8] 

  
%fx=fitt results from program1 
disp('1:heavy load,2:nominal load, 3:light load') 
load=input('load') 
if load==1 
   fx= [55.4714  18.2018  9.3514  2.3952  1.1983  3.3588  52.3429  1.2541] % 

heavy load 
elseif load==2 
   fx=[18.5437   10.7712    6.8578    2.3386    1.2461    2.6462   11.7511    

1.3481]% nominal load 
elseif load==3 
   fx =[11.0834    7.5520    5.4010    2.2261    1.0898    1.9588    5.4122    

1.5132] %light load 
end 

  
jj=1:8  % the order at the 8 states 
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roo=input('roo');  % roo=0.2   0.5   0.9 

  
iteration=1 

  
tao=1-roo*rand;    % initial pheromone 
for i=1:p   
    tao1(i)=tao; 
end 

  
p1j=tao/sum(tao1); 

  
x1=[0    p1j   2*p1j  3*p1j  4*p1j  5*p1j   6*p1j   1] 

  
syms ant1, syms ant2, syms ant3, syms ant4 
ant=[ ant1    ant2     ant3      ant4] 

  
r=rand(1,N)  %N is the number of ants 
for i=1:N 
    for j=1:p 
        if r(i)> x1(j) & r(i)<x1(j+1) 
            xx(i)=x(j);    % to present the TF 
            fx1(i)=fx(j);  % to present the fitness 
            order(i)=jj(j); % to present the index 
        end 
    end 
end 
xx;         
fx1, order 
fbest=min(fx1) 
fworst=max(fx1) 
% to print ant number and x 
k=0; 
for i=1:N 
    if fbest==fx1(i) 
        best_ant =[xx(i),   ant(i),   order(i)] 
        k=k+1; 
    elseif fworst==fx1(i) 
        worst_ant=[xx(i),   ant(i),   order(i)] 
    else  
    end 
end 
k 

  
t1_j=tao; 
t_2=tao; 

  
while k<N 
   % step 4 
   % ants return home and start again in search of food 
   iteration=iteration+1 

    
   % modification 
   %t_new=(p+(1-p)/(1+p))*t_old+(p-p/(1+p))*sum(delta(t)) our equation 
   t1_j=(roo+((1-roo)/(1+roo)))*t1_j % old value 
   zeta=2; % scaling parameter 
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   sum_delta_t=k*zeta*fbest/fworst 
   t_2=(roo+((1-roo)/(1+roo)))*t_2+sum_delta_t 

  
   % go to step 2 
   for j=1:p 
       if j==best_ant(3)  % at j=3 best ant for the first case  
          t(j)=t_2; 
       else 
          t(j)=t1_j; 
       end 
   end 
   sum(t); 
   p1_j=t/sum(t); 
   p1_j 

       
    % to prepare x11:x18 in range 0-1 
   x11(1)=0; 
   x1=0; 
   for i=2:7 
       x1=x1+p1_j(i-1); 
       x11(i)=x1; 
   end 
   x11(8)=1; 
   x11 

    
   r=rand(1,N) 
   for i=1:N 
       for j=1:p 
           if r(i)> x11(j) & r(i)<x11(j+1) 
              xx(i)=x(j); 
              fx1(i)=fx(j); 
              order(i)=jj(j); 
           end 
       end 
   end 
   xx         
   fx1, order 
   fbest=min(fx1) 
   fworst=max(fx1) 
   % to print ant number and x 
   k=0; % k is the no. of best ants 
   for i=1:N 
       if fbest==fx1(i) 
          best_ant= [xx(i), ant(i), order(i)] 
          k=k+1; 
       elseif fworst==fx1(i) 
          worst_ant=[ xx(i), ant(i), order(i)] 
       else  
       end 
   end 
   k 

  
end  

 

The same is done for nominal and light loads. The results are shown in Tables 2 and 3. 
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Figure 2.  Signal flow graph of the system with PSS. 
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refV 

1 the no. of paths or arcs is the 

permissible discrete values 

(X11, X12, X13, …, X1P) within 

a    selected range. 
 

2 the design variables are T1,   

T2, TW, and GPSS. 
 

3 the fitness function 

=0.25*tr+0.5*ts+0.25*Ess 
 

4 generate 4 random numbers, 

one for each ant. 
 

5 K is the number of best ant  

         is the scaling factor 

assumed to be 2. Rao, 2009.  

        1j 
old=(1-)*1j 

(1) , =0.5 

pheromone decay factor Rao, 

2009. 
 

6 if the no. of best ants (k)=the 

no. of ants (N), that means all 

the ants follow the same path 

if not the program will 

continue. 
 



Journal  of  Engineering    Volume    24      January      2018 Number  1 
 

 

137 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The flowchart of CACO algorithm. 
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Figure 4. The flowchart of MACO algorithm. 
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7  1j=0.2 constant value according to ref. Mathiyalagan, et al., 2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The flowchart of IACO algorithm. 
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Table 1. Loading conditions and transfer functions 

Loading condition  Transfer function 

Light load                     -6.326 s 

--------------------------------------------------------- 

  s4 + 20.46 s3 + 79.4 s2 + 558.4 s + 1242 

Nominal load                     -7.553 s 

  ---------------------------------------------------------- 

  s4 + 20.46 s3 + 89.15 s2 + 756.9 s + 1795 

Heavy load                                   -8.132 s 

  -------------------------------------------------------- 

    s4 + 20.46 s3 + 98.45 s2 + 922.7 s + 2363 

 

Table 2. The system time response performance at =0.5 

  System alone MACO  =0.5 IACO   =0.5 

Heavy load 

P=1 

Q=0.5 

ts =156.28 sec ts=1.89 ts=1.89 

tr=0 sec tr=0 tr=0 

Ess=1 Ess=1 Ess=1 

Fig.  6 Fig. 7, TF5 Fig. 7, TF5 

Nominal load ts=41.40 ts=1.99 ts=1.99 

P=0.7 

Q=0.3 

tr=0 tr=0 tr=0 

Ess=1 Ess=1 Ess=1 

Fig.  8 Fig. 9, TF5 Fig.  9,  TF5 

Light load ts=23.58 ts=3.41 ts=1.67 

P=0.4 

Q=0.1 

tr=0 tr=0 tr=0 

Ess=1 Ess=1 Ess=1 

Fig. 10 Fig. 11, TF6 Fig. 12, TF5 

 

Table 3. The system time response performance at =0.2 

 MACO =0.2 IACO  =0.2 

Heavy load 

P=1 

Q=0.5 

ts=18.20 ts=1.89 

tr=0 tr=0 

Ess=1 Ess=1 

Fig. 13, TF3 Fig.  7, TF5 

Nominal load ts=1.99 ts=1.99 

P=0.7 

Q=0.3 

tr=0 tr=0 

Ess=1 Ess=1 

Fig. 9, TF5 Fig. 9, TF5 

Light load ts=1.67 ts=1.67 

P=0.4 

Q=0.1 

tr=0 tr=0 

Ess=1 Ess=1 

Fig. 12, TF5 Fig. 12, TF5 
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Figure 6. System alone (without PSS) for heavy load regime. 

                                  -8.132 s 

TF =   ----------------------------------------------------------- 

           s4 + 20.46 s5 + 98.45 s2 + 922.7 s + 2363 
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Figure 8.  System alone (without PSS) for nominal load regime. 
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Figure 10. The system alone (without PSS) for light load regime. 
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Figure 11. The system with PSS for light load regime based on MACO at =0.5. 
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                  4.001*107 s + 3.104*106 

 

Figure 12. The system with PSS for light load regime based on MACO & IACO at =0.5 & 0.2. 
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           +2.363*107  

  

Appendix: 

The system A, B, C, and D are Mahmoud, and Soliman, 2012. 

𝐴 =

[
 
 
 
 
 
 
 

0 𝑤𝑜 0 0

−
𝑘1

𝑀
0 −

𝑘2

𝑀
0

−
𝑘4

𝑇𝑑𝑜
′

0 −
1

𝑇
−

1

𝑇𝑑𝑜
′

−
𝑘𝐸𝑘5

𝑇𝐸
0 −

𝑘𝐸𝑘6

𝑇𝐸
−

1

𝑇𝐸 ]
 
 
 
 
 
 
 

  

 

𝑥 = [∆𝛿 ∆𝑤 ∆𝐸𝑞
′        ∆𝐸𝑓𝑑] 

𝐵 =

[
 
 
 
 
0
0
0
𝑘𝐸

𝑇𝐸]
 
 
 
 

                              C=[ 0  1  0  0], T=k3 T'do 

 

 

 

 

 

 

 

 

 

 

  


