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ABSTRACT

In this investigation, Rayleigh—Ritz method is used to calculate the natural
frequencies of rectangular isotropic and laminated symmetric and anti-symmetric
cross and angle ply composite plate with general elastic supports along its edges. Each
of the admissible functions here is composed of a trigonometric function and an
arbitrary continuous function that is introduced to ensure the sufficient smoothness of
the so-called residual displacement function at the edges. Perhaps more importantly,
this study has developed a general approach for deriving a complete set of admissible
functions that can be applied to various boundary conditions. Several numerical
examples are studied to demonstrate the accuracy and convergence of the current
solution with considering some design parameters such as boundary conditions,
aspect ratio, lamination angle, thickness ratio, orthotropy ratio, also these results are
compared with other researchers and give a good agreement .
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1. INTRODUCTION:

Composite materials are so necessary in many engineering applications, as
vehicles parts industry, aero structures industry and medical devices industry. With
the wide use of composite plate in the modern industry, static and dynamic analysis of
plate structure under different types of loads and different boundary condition become
a main part in design procedure. In the past few years, many researchers resorted to
the development of many theories to clearly predict the response of laminated plate
composite material. It is necessary to know the theories of laminated composite
plates, because it is not possible to provide accurate analysis without knowledge of
theories. These theories can be classified in to three type's single layer theories, layer-
wise theories and continuum based 3D elasticity theories.

Many researchers had studied Vibration analysis of rectangular plates with general
elastic boundary supports by classical plate theory (CLPT), and other researchers have
studied the natural frequency of composite plates with all boundary conditions.
Pervez, Al-Zebdeh, and Farooq, 2010

W.L. Li ,2004. used Rayleigh—-Ritz method to determine the modal characteristics of
a rectangular isotropic plate with general elastic supports alone its edges. Each of the
admissible functions here is composed of a trigonometric function and an arbitrary
continuous function. He firstly investigated the convergence of his function then he
studied many different cases of isotropic plate such as different aspect ratio and
different values of elastic restraint constant (k,K). Y.F. Xing and B. Liu ,2009. solved
new exact solutions for free vibrations of thin orthotropic rectangular plates by using
a novel separation of variables. The exact normal eigenfunctions and eigenvalue
equations for the boundary condition combinations SSCC, SCCC and CCCC are
obtained through the mode formulation and boundary conditions. Henry Khov, Wen
L. Li and Ronald F. Gibson ,2009.presented an accurate solution method for the
static and dynamic deflections of orthotropic plates with general boundary conditions.
The displacement function is expressed as a 2-D Fourier cosine series supplemented
with several terms in the form of 1-D series. Thus, a classical solution can be derived
by letting the series exactly satisfy the governing differential equation at every field
point and all the boundary conditions at every boundary point, respectively. W.L. Lli,
X.Zhang, J.Du and Z.Liu ,2009. studied an exact series solution for the transverse
vibration of rectangular isotropic plates with general elastic boundary supports. An
analytical method is developed for the vibration analysis of rectangular plates with
elastically restrained edges. The displacement solution is expressed as a two-
dimensional Fourier series supplemented with several one-dimensional Fourier series.
Thus, an exact solution can be obtained by letting the series simultaneously satisfy the
governing differential equation and the boundary conditions on a point-wise basis.
H.DAL and O.K.MORGUL,2011. studied vibrations of elastically restrained
rectangular isotropic plates. Vibrations of plates with boundary conditions were
elastic along full edges. Deflections function was expressed as the combination of a
Fourier sine series and an auxiliary polynomial. Solution function as employed by Li
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2002. has been adopted for plates with fully elastic edges. Frequency parameters of
plate were calculated for different plate parameters. H.T.Thai , S.E.Kim ,2012.
obtained Levy-type solution for free vibration analysis of orthotropic plates based on
two variable refined plate theory. The theory, which has strong similarity with
classical plate theory in many aspects, accounts for a quadratic variation of the
transverse shear strains across the thickness, and satisfies the zero traction boundary
conditions on the top and bottom surfaces of the plate without using shear correction
factors. Kookhyun Kim, B. Kim, T.Choi and D.Cho ,2012. presented free vibration
analysis of rectangular isotropic plate with arbitrary edge constraints using
characteristic orthogonal polynomials in assumed mode method. Natural frequencies
and their mode shapes of the plate are calculated by solving an eigenvalue problem of
a multi-degree-of-freedom system matrix equation derived by using Lagrange's
equations of motion. Characteristic orthogonal polynomials having the property of
Timoshenko beam functions which satisfies edge constraints corresponding to those
of the objective plate are used. A. Pagani ,2014. extended free vibration analysis of
composite plates by higher-order 1D dynamic stiffness elements based on Carrera
Unified Formulation (CUF) and experiments. The principle of virtual displacements is
then used to derive the equations of motion and the natural boundary conditions,
which are subsequently expressed in the frequency domain by assuming a harmonic
solution. After the resulting system of ordinary differential equations of second order
with constant coefficients is solved, the frequency dependent DS matrix of the system
is derived. Finally the algorithm of Wittrick and Williams is applied to extrapolate
the free vibration characteristics of laminated composite plate. Wan-You Li, W.Li,
B. Lv, H. Ouyang, J. Du,H. Zhou, and D. Wang ,2014. presented a Hybrid Finite
Element-Fourier Spectral Method for Vibration Analysis of Structures with Elastic
Boundary Conditions. A novel hybrid method, which simultaneously possesses the
efficiency of Fourier spectral method (FSM) and the applicability of the finite element
method (FEM), is used for the vibration analysis of structures with elastic boundary
conditions. The computational domain of general shape is divided into several
subdomains firstly, some of which are represented by the FSM while the rest by the
FEM. Then, fictitious springs are introduced for connecting these subdomains.
Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-
dimensional rectangular plate show that the present method has good accuracy and
efficiency. Further, one irregular-shaped plate which consists of one rectangular plate
and one semi-circular plate also demonstrates the capability of the present method
applied to irregular structures. Firas Hamzah Taya,2014. presented free vibration
and buckling behavior of laminated composite thin plates subjected to in-plane
uniform, parabolic, and linear distributed loads is studied using classical laminated
plate theory (CLPT). Different functions were used for different boundary conditions
applying Ritz method to get homogeneous set of equations and solved as Eigen value
problems of buckling load solution for laminated plate. The boundary conditions
considered in this study are (SSSS, CCCC, CSCS, SFSF, and CFCF). G. Jin, T. Ye,
and S. Shi ,2015. presented Three-Dimensional Vibration Analysis of Isotropic and
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Orthotropic Open Shells and Plates with Arbitrary Boundary Conditions. Vibration
characteristics of the shells and plates have been obtained via a unified three-
dimensional displacement-based energy formulation represented in the general shell
coordinates, in which the displacement in each direction is expanded as a triplicate
product of the cosine Fourier series with the addition of certain supplementary terms
were introduced to eliminate any possible jumps with the original displacement
function and its relevant derivatives at the boundaries. All the expansion coefficients
are then treated equally as independent generalized coordinates and determined by the
Rayleigh-Ritz procedure.

In present work the function proposed by W.L. Li ,2004. is used for laminated
symmetric and antisymmetric cross and angle ply composite plate with general elastic
supports along its edges.

2. THEORETICAL ANALYSIS:
2.1 Classical Laminated Plate Theory:
The equivalent single layer ESL laminated plate theories are those in which a

heterogeneous laminated plate is treated as a statically equivalent single layer having
a complex constitutive behavior, reducing the 3-D continuum problem to a 2-D
problem. The ESL theories are developed by assuming the form of the displacement
field or stress field as a linear combination of unknown functions and the thickness
coordinate: J.N. REDDY,2004.

N

PiCeyz =) (190 @1)

j=0

where y_i is the component of displacement or stress, (x,y) is the in-plane
coordinates, z is the thickness coordinate, t is the time, and 1/1{' are functions to be

determined. When _i displacements, then the equations governing are 1/){ are
determined by the principle of virtual displacements (or its dynamic version when
time dependency is to be included)

0= [ (811 +8W — 8E,) dt (2.2)

where o611, W, and JE. denote the virtual strain energy, virtual work done by external
applied forces, and the virtual kinetic energy, respectively. These quantities are
determined in terms of actual stresses and virtual strains, which depend on the
assumed displacement functions, and their variations.

The simplest laminated plate theory is the classical laminated plate theory (or
CLPT), which is an extension of the Kirchhoff (classical) plate theory to laminated
composite plates. It is based on the displacement field
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aw,
0x

(6,9,2,6) = v (3, £) — 7020
v(x,y,z,t) =v,(x,y, Zay

u(x,y, z,t) =uy(x,y,t)

w(x,y,z,t) = w,(x,y,t) (2.3)

where (U,, Vo, W) are the displacement components along the (X, y, z ) coordinate
directions, respectively, of a point on the midplane (i.e., z = 0).

The governing differential equation for the free vibration of laminated thin
plate is given by: Henry Khov,20009.

24w 24w

Dlla4+D2234+2(D12+2D66) 282+4D26663+4D16m_
phw?w(x,y) (2.4)

2.2 Total Mechanical Energy:

The first law of thermodynamics or the principle of conservation of energy
serves as the foundation for energy-based methods employed in the analysis of
structures, including plates. In the absence of energy dissipation and other non-
conservative forces, i.e. if the forces acting on the system are conservative, this
principle is reduced to the principle of stationery total energy, Victor Birman ,2011.

The total mechanical energy (defined as the sum of its potential and kinetic
energies) of a particle being acted on by only conservative forces is constant, Robert
G. Brown ,2007.

E = E. + I = Constant (2.5)
where  E: Total mechanical energy of a system
E.: Total kinetic energy of the system
IT: Total potential energy of the system
In static problems, the principle of stationary total energy reduces to the principle
of minimum total potential energy implying that the virtual work of forces acting on
the system in equilibrium is equal to zero Victor Birman,2011. so that:

AE=0 OR E= Constant (2.6)
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Where
Lb ’w 22w)? 9%w 9%w 02w
H=§f0 fo [Du( ) +Dzz(ﬁ) +4D66(a 3y ) +2D12555 2]dxdy+
b 2 2
1 fo [kxow2 + Ko (—Vzv) ] dy + f [k w2+ Ky (a 2) ] dy +
X

o (] _

and

2
dx + 2 [k w2+ K, (Z¥ ] dx 2.7
o I ot K () | @

Ec = w? [[ I,w2dx dy (2.8)

2.3 Boundary Conditions:

In terms of the flexural displacement, the bending and twisting moments and
transverse shearing forces can be expressed as, Henry Khov ,2009.

92w 0w
My = =Dy, ﬁ — Dy, a_yz (2.9)
0w 0w
M, = =D, a_yz — Dy, Ix? (2.10)
62
My, = — Dﬁ6ﬁ (2.11)
3w 3w
Qx =-Dny 93 (D12 + 4Dg) ay20x (2.12)
3w 3w
Qy = =Dy, i (D12 + 4Dse)m (2.13)
The boundary conditions for an elastically restrained rectangular plate are
kwoW = Qx  Kpooo=—My ... at x=0 (2.14-15)
aw
k.aw=-0, K. ol =M, ... at x=a (2.16-17)
]
kyow =Q,  Kyo % =M, s at y=0 (2.18-19)
ow
y]_W = Qy Kyl 5 == My ............. a.t y:b (220'21)

where k,, and k4 (k,0 and k,,;) are the linear spring constants, and K,oand K,; (Ky
and K,,) are the rotational spring constants at x =0 and a (y = 0 and b), respectively.
Egs. (14)—(21) represent a set of general boundary conditions from which, for
example, all the classical homogeneous boundary conditions can be directly obtained
by accordingly setting the spring constants equal to an extremely large or small
number Fig 2

From Egs. (9-21), the boundary conditions can be finally written as:
3 3

w a0°w
kxow = —Djq EEI (D12 + 4Dg)

W (2.22)
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3w 03
kxiw = D14 ErEl + (D12 + 4De6) 9xay? (2.23)
ko2 p 2 p, LY (2.24)
x0 ax 11 axz 12 ayz .
g, W __p v, Pw (2.25)
x1 ax - 11 axz 12 ayz .

2.4 Admissible functions

Admissible functions play a critical role in the Rayleigh—Ritz method. For plate
problems, the products of the beam functions are often chosen as the admissible
functions and the displacement function can be accordingly expressed as, W.L. Li
,2004.

WEY) = D Ay X (DY) (2.26)

mmn=1

where X,,,(x) and Y,,(y) are the characteristic functions for beams that have the same
boundary conditions in the x- and y-direction, respectively.

Although beam functions can be generally obtained as a linear combination of
trigonometric and hyperbolic functions, they include some unknown parameters that
have to be determined from the boundary conditions. Consequently, each boundary
condition basically leads to a different set of beam functions. In real applications, this
is clearly inconvenient, not to mention the tediousness of determining the
characteristic functions for a generally supported beam. In order to avoid this
difficulty, an improved Fourier series method have been proposed for beams with
arbitrary supports at both ends in which the characteristic functions are sought in the
form of, W.L. Li,2000.

W(X) = Ym0 am COSAgmx + p(x)  (Agm =mm/a), 0<x<a (2.27)

The function p(x) in Eqg. (27) represents an arbitrary continuous function that,
regardless of boundary conditions, is always chosen to satisfy the following
equations:

p (0=w (D=a , p (@=w (=0 (2.28-29)

p(O=w (=8 , p@=w(=4 (2.30-31)

As explained in Ref. W.L. Li ,2000. the function p(x) is here introduced to take care
of the potential discontinuities of the (original) displacement function and its
derivatives at the end points. Accordingly, the Fourier series now simply represents a
residual displacement function, W(x) = W(x) - p(x) ; that is periodic continuous and
has at least three continuous derivatives over the entire x-axis. Mathematically, it is
already known that the smoother a periodic function is, the faster its Fourier
expansion converges. Therefore, the addition of the function p(x) will have two
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immediate benefits: (1) the Fourier series expansion is now applicable to any
boundary conditions, and (2) the Fourier series solution can be drastically improved
regarding its accuracy convergence.

So far, p(x) has only been understood as a continuous function that satisfies Eqs.
(28)—(31), its form is not a concern with respect to the convergence of the series
solution. Thus, the function p(x) can be selected in any desired form. As a
demonstration, suppose that p(x) is a polynomial function

p(x) = z CnPn (g) (2.32)

n=0

where ¢, is the expansion coefficient and p,, (x) is the Legendre function of order n. It
is obvious that the function p(x) needs to be at least a fourth order polynomial to
simultaneously satisfy Egs. (28)-(31). Substituting Eq. (32) into Egs. (28)—(31)
results in

c3p3 (0) + ¢4py (0) = aaq (2.33)
csp3 (1) + capy (1) = @’ay (2.34)
c191(0) + ¢2p2(0) + ¢3p3(0) + c4ps(0) = afo (2.35)
c1p1(1) + P2 (1) + €3p3(1) + capa(1) = ap; (2.36)

From the above equations, the coefficients, ¢, (n =1, 2, 3, 4), are directly obtainable
in terms of the boundary constants, «,, @; , B, and S;. Since the constant c, does not
actually appear in Egs. (33)—(36), it can be an arbitrary number theoretically. For

instance, c, is here selected to satisfy
a

]p(x) dx =0 (2.37)
0
The final expression for the function p(x) can be written as
p(x) = {g(x)a (2.38)
(—(15x*—60x3+60a?x? — 8a*)/360a)
4 2.2 4
and (0T = J (15x*—=30a“x“ + 7a*) /360a L (2.40)

(6ax — 2a* — 3x?)/6a
(3x% —a?)/6a

The results in Egs. (38)—(40) were previously derived from a more straightforward but
less general approach, W.L. Li,2004 .

In order to determine the unknown boundary constants, a,, a;, 8, and f;, substitution
of Egs. (27) and (38) into the boundary conditions Egs. (22)—(25) results in

107



Number 4 Volume 23 April 2017 Journal of Engineering

o= Z Hngamam (2.41)
m=0
Where
1 8k, oa’ Tkyoa® —kyoa  —kxoa]
* 360D, 360D, 3D14 6D,
7k a3 8kyad “haa  —kna
H,=| 360D, * 360D, 6D 3Du (2.42)
a @ Ko 1 -l
3 6 Dy; a a
a a 1 Kal
6 3 a D;; al
and
_ kxO mkxl 2 m 2 r
Qam - (_1)_ (_1) N Aam (_1) /1am (2-43)
D11 D11

It should be mentioned that the matrix Ha will become singular for a completely free
beam. However, this problem can be overcome to a certain extent by artificially
attaching one or more springs with very small stiffness to the ends of a beam. It has
been shown in W.L. Li,2002. that although the matrix may be ill-conditioned in such
a treatment, the natural frequencies can still be accurately calculated for a completely
free beam.

Nevertheless, the characteristic functions are well known for this particular case and
can be readily used as the admissible functions in the Rayleigh—Ritz method.

Making use of Egs. (38) and (41), Eq. (27) can be rewritten as

W) = ) anph(o) (2.44)
m=0
Where 02 (x) = cosAgmx + {a(X)H1Qpm (2.45)
Mathematically, Eq. (44) indicates that each of the beam functions can be viewed as a

function in the functional space spanned by the basic functions {5 (x); m =0, 1,
2,.......}. Thus, Eq. (26) can be accordingly rewritten as

Wy = D Anph()eh () (246)
mn=0
Where PR (¥) = coslpny + {p(¥)Hp * Qun (2.47)

The expressions for {,(y), Hp, and Q,,, can be, respectively, obtained from Egs. (40),
(42) and (43) by simply replacing the x-related parameters by the y-related.
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2.5 Determination of Natural Frequency:

Consider an orthotropic laminated plate, the material directions of which
coincide with the plate directions. This plate is subjected to free vibration along the
edges x = 0-a and y = 0-b.

Where the transverse displacement (w) is substituted in the total mechanical
energy as mentioned in section 2.4. To calculate the natural frequency w. Performing
the required mathematical processes (differentiations and then integrations) of egs.
(2.7) and (2.8) and then putting the mechanical energy in the following equation:

O0E
A 0 (2.48)
eq. 2.48 will lead to a set of linear homogeneous algebraic equations as follow:
f(Apn, @) =0 for vibration (2.49)
Solving the last equation as an Eigen-value problem to get the following form:
a1 a1,(msn) Aqq
: - : { : } =0 (2.50)
Amsn)1 * A(men), (mn)] Amn

where a;; are the coefficients of the nonzero unknowns A4,,,,. Finding the determinant
of the first term of eq. (2.50) and equating it to zero will lead to get the natural
frequency w. When M and N are more than 1, the natural frequency w are determined
by solving Eigen value problem. For different arbitrary boundary conditions and M &
N are greater than 1, the solution becomes more difficult and needs computer
programming to determine the natural frequency w. In this work, Matlab R2013a is
used to solve the Eigen-value problem.

3-RESULT AND CONCLUSIONS
3-1-Results

The natural frequency of isotropic and composite laminated plate with elastic
boundary condition is analyzed and solved using MATLAP versionl13 programming.
To examine the validly of the derived equations and performance of computer
programming for vibration analysis of composite laminated plate, numerical results of
isotropic plate are compared with those obtained by W.L. Li ,2004. and Huseyin
DAL ,2011. as shown in Tables (1,2) which give very close results for different
boundary conditions. While present results for laminated composite plate with
different boundary conditions give good agreement when compared with Henry
(2009) and those obtained by numerical program ANSYS as shown in Table 3. and
figures (3) and (4), also present work results are compared with those obtained by
Reddy for ssss cross ply plate with different orthotropy ratio as shown in table(4).

Also cross ply scheme (symmetric and non-symmetric) with different layer
number was studied as shown in Table 5. where the frequency parameter for
symmetric ply is more than that for non-symmetric because the stiffness of the rare is
larger than symmetric ply as proved by many researchers, while the other presented
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scheme is angle ply scheme (symmetric and non-symmetric) with different layer
number as shown in Table6. where the frequency parameter for symmetric angle ply
have no great change than that for non-symmetric because the stiffness of the two
type are close to each other as proved by many researchers Also we study isotropic
scheme in Tables (7,8) which give very close results for different boundary
conditions and aspect ratio with Wen le 2004, it can be noted that when the aspect
ratio increases the frequency parameter increases for same boundary condition .

While the other presented scheme is laminated cross ply scheme (symmetric
and non-symmetric) with different boundary conditions and aspect ratio as shown in
Table 9. where the frequency parameter decreases when the aspect ratio increases,
and the largest frequency parameter for clamped boundary at all edges of the
symmetric cross-ply plate. The next presented scheme is laminated angle ply
[45 — 45], as shown in Tablel0. where the frequency parameter decreases when the
aspect ratio increases. Also the next presented scheme is laminated angle ply [30 —
30], as shown in Tablell. where the frequency parameter decreases when the aspect
ratio increases. It can be noted that in Tables (10,11) the largest frequency parameter
for SSCC boundary conditions for square plate .

The thickness ratio schemes of laminated plate with different boundary
conditions are changed, once symmetric cross ply and [45 — 45], schemes are
studied with different boundary conditions and thickness ratio as shown in Tablel2.
where the frequency parameter decreases when the thickness ratio increase (reduces
the thickness) for same boundary condition and the largest frequency parameter for
clamped boundary at all edges because it has largest stiffness. The next presented
scheme is angle ply [30 — 30]; as shown in Tables 13. Where the frequency
parameter decreases when the thickness ratio increase (reduces the thickness) for
same boundary condition and the largest frequency parameter for clamped boundary
at all edges because it has largest stiffness.

Rotational restraint along edges of laminated and isotropic plate with
different boundary conditions are changed, consider plates are elastically restrained
along edges. The first one involves a simply supported square isotropic plate with a
uniform elastic restraint against rotation along each edge, that is, K,,a/D=K,,a/D =
Kyoa/D = Ky,1a/D = Ka/D, in Table 14. the first six frequency parameters are
shown for a few different stiffness values. Because of the symmetries about the x- and
y-axis, the second and third frequency parameters are identical. The fifth and sixth
frequency parameters are also the same for Ka/D = 0. However, they become
slightly different for other stiffness values. The frequency parameter increases when
the stiffness values increases, when it zero the behavior of the frequency parameter
like a simply supported along all edge , but when the stiffness values equal to infinity
the behavior of the frequency parameter like a clamped along all edge. Table 15
shows the frequency parameter of a simply supported square laminated plate
[090] ,with a uniform elastic restraint against rotation along each edge, that is,
Kyoa/Dyy =Ky1a/D,5 = Kyga /D,y = Kyya/D,; = Ka/D,, , the first four frequency
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parameters are shown for a few different stiffness values. Because of the symmetries
about the x- and y-axis, the second and third frequency parameters are identical.

The frequency parameter increases when the stiffness values increases, when
it is zero the behavior of the frequency parameter is like a simply supported along all
edge, but when the stiffness values is equal to infinity the behavior of the frequency
parameter like a clamped along all edge.The orthotropy ratio schemes of laminated
plate with different boundary conditions are changed, Fig.5 shows the frequency
parameter of non-symmetric cross ply with different boundary conditions and
orthotropy ratio , where the frequency parameter increases when the orthotropy ratio
increases, the largest frequency parameter for CFCF boundary conditions and then
less in SSSS and smallest in SFSF boundary conditions. Fig6 shows the frequency
parameter of angle ply[60 — 60],, where the frequency parameter increases when
the orthotropy ratio increases, the largest frequency parameter for SSSS boundary
conditions and then less in CFCF and smallest in SFSF boundary conditions .

3.2. Conclusions

This study presented investigations for free vibration of a composite laminated plate.
Some assumptions are made to solve the vibration problems and determine the results
desired for this paper.

The results are determined mainly by analytic method and compared with
numerically found results, and with obtained by other researchers; the comparison
showed high agreement between them.

The vibration results lead to the following conclusions:
1- The number of half wavelengths affects the natural frequency, where the increasing
aspect ratio requires larger number (M & N) to get more accurate results where the
error is found 4.71% for cccc isotropic plate a/b=2.5 at (m = n = 3).
2- The boundary conditions affect the fundamental natural frequency. Clamped edges
conditions offer high stiffness, results in high natural frequency. Clamped boundaries
make the plate holds larger frequency than simply supported boundaries, where the
fundamental natural frequency for SSSS cross ply, is less by 47.3% than fundamental
natural frequency of CCCC cross ply, while for angle ply, is less by 58.21%,and the
fundamental natural frequency for SSSS isotropic plate, is less by 55.28% than of
CCCC plate.
3- The aspect ratio is inversely proportional to the frequency parameter Q= wb?/
%V(ph / D22) of the orthotropic plate and frequency parameter Q= wb? /% (ph /
D) of the isotropic plate.
4- Rotational restraint along edges of laminated and isotropic plate affects the natural
frequency, where the value of (Ka/D) and (Ka/D,,) is zero the behavior of the
natural frequency like a (SSSS) boundary conditions, but when the value is infinity
the behavior of the natural frequency like a (CCCC) boundary conditions.
5- The orthotropy ratio is directly proportional with the frequency parameters, Q=
wa?/h(p / E,) of the orthotropic plate.
6- The increasing of the lamination angle is inversely proportional with frequency
parameters, Q= wb?/m2V(ph / D22) of the orthotropic plate.
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=

7- The thickness ratio is inversely proportional with the natural frequency of the
orthotropic plate.

NOMENCLATURE
Symbol Discretion Units
a Length of a plate m
b width of a plate m
h Plate thickness m
A vector of the expansion or
Rayleigh—Ritz coefficients
Amn expansion or Rayleigh-Ritz
coefficients
A expansion or Rayleigh-Ritz
coefficient
D;; flexural rigidity -
E,, E, Es3 Elastic modulus components Gpa
G12,G23,G13 Shear modulus components Gpa
M,N numbers of expansion terms used
in X- and y-direction, respectively
My, My, , M,, Moment result per unit length N.m/m
Qx, Qy Transverse shear force result N
Kyo, Ker rotational stiffnesses at x = 0 and | Rad.N/m
a, respectively
Ky, Ky rotational stiffnesses at y =0 and | Rad.N/m.
b, respectively
kyo, kx1 translational stiffnesses at x = 0 N/m
and a, respectively
kyo, ky1 translational stiffnesses aty = 0 N/m
and b, respectively
P(x) a simple polynomial function
X,Y,Z Cartesian coordinate system m
E, Ec Total mechanical and kinetic N.m
energies of a system
IT Total potential energy of the N.m
system
U Strain energy of deformation N.m
/A the elastic potential energy N.m
€Ex) €y, €7 Strain components
Yxz» Vyz Transverse shear strain
Vi Poisson’s ratio components -
Oxx 1 Oyy » Oxy » Oyz Stress components Gpa
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=

O-XZ
u, v, w Displacements in x, y, z m
directions
Uo, Vo, Wo Displacements of the reference m
surface in the X, vy, z directions
W(X) flexural displacement of a beam m
w(x,y) flexural displacement of a plate m
Xm(x), beam characteristic function
Ya(y)
a; ,Qq =w (a),w (0)
B1, Bo =w (a),w (0)
Aam E -
a
Abn E -
b
P Density of material Kg/m®
P (x) admissible functions in x- -
direction
oL (y) admissible functions in y-
direction
® Natural frequency Cycle/sec
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Table 1. Frequency parameters, Q= wa?V(ph / D) , for all clamped boundary

M=N mod 1 mod?2 mod 3 mod 4 mod 5
1 147.43 172.60 395.47 41939 | -
2 147.87 172.54 220.33 394.94 419.39
146.87 172.52 220.33 293.49 387.85
3 (147.8)* | (173.8)* | (221.4)¢ | (291.7)* | (384.4)¢
0.62% 0.73% 0.48% -0.61% -0.89%
a:Wen le 2004 .
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conditions (cccc) plate with (% =2.5).Form=n=123.

Tabel 2. Frequency parameters, Q= wa?V(ph / D) , for squar plates of different
boundary conditions

BCS mod 1 mod2 mod 3 mod 4 mod 5 mod 6
SSSS present 19.67 49.14 49.14 78.04 98.37 08.38
H. DAL 19.72 49.32 49.32 78.88 98.56 98.56
Diff % 0.25 0.36 0.36 1.06 0.19 0.19
Wen le 19.74 49.35 49.35 78.96 98.70 98.70
2004
Diff % 0.35 0.42 0.42 1.16 0.33 0.33
H.DAL 28.91 54.64 69.37 93.91 102.04 | 128.58
Diff % 0.69 0.84 0.92 1.82 0.66 0.02
Wen le 28.95 54.74 69.32 94.61 102.23 | 129.09
2002
Diff % 0.82 1.02 0.85 2.54 0.85 0.41
Ssfs present 11.82 27.92 41.55 59.22 63.28 91.09
H. DAL 11.58 27.68 41.11 59.20 62.93 90.42
Diff % -2.07 -0.86 -1.07 -0.03 -0.55 -0.74
Wen le 11.68 27.79 41.23 59.24 62.37 90.51
2002
Diff % -1.19 -0.46 -0.77 0.03 -1.45 -0.64
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Table 3. Natural frequencies (Hz) of graphite—epoxy plates consisting of 12 plies
oriented at 0 under different boundary conditions (E1=127.9Gpa , E2 =10.27Gpa ,
G12=7.312Gpa , v12=0.22)

Mod SSSS ccfc
Ansys Henry | Present | Diff | Ansys | Henry | Present | Diff
2009 % 2009 %

1 108.10 | 108.7 | 108.82 | -0.11 |} 70.63 | 70.96 | 71.01 | -0.07

2 170.09 1714 | 17191 | -0.29 | 166.96 | 167.5 | 169.35 | -1.10

3 292.84 | 2948 | 297.55 | -0.93 | 215.69 | 219.7 | 219.88 | -0.08

4 38497 | 388.4 | 390.52 | -0.54 | 294.77 | 298.1 | 298.8 | -0.23

5 429.83 | 435.0 | 437.27 | -0.52 | 314.51 | 314.8 | 323.27 | -2.69

1 ANSYS
NODAL SOLUTION R1AS
JUL 21 2016

0=70.9244
(AVG)

1.80009 3.60019 5.40028 7.20037

.900046 2.70014 4.50023 6.30032 8.10042

Figure 3 . First Mode shape for free vibration of a CCFC orthotropic square plate.
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8.527
(AVG)

1.14141°
.570703 1.71211

Figure 4 . First Mode shape for free vibration of a SSSS orthotropic square plate.

Table 4.Frequency parameters, Q= oa?/hV(p / E,) , for s-s-s-s  squar plates and
(a/h=10, G12=0.6E2, v12=0.25).

E, IE, [09090 0]
Present | Reddy | Diff %
3 7.53 7.47 -0.80
10 10.65 10.56 -0.85
20 13.95 13.83 -0.86
30 16.61 16.47 -0.85
40 18.90 18.73 -0.90
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Table 5. Frequency parameters, Q= ob? /n2V(ph / D22) , of a square plate of
various laminations and boundary conditions. (E1/E2=10, G12=0.6E2, v12=0.25)

Angle Ply Orientations SSSS ccee CsCs cfcf
[0 90]s present 2.56 5.37 4.93 4.65
Firas 2.55 5.35 491 4.63

Diff % -0.39 -0.37 -0.40 -0.43

Ansys 2.55 531 491 4.63

[0 90 0 90] present 1.58 3.33 2.606 2.27
Firas 1.58 3.33 2.606 2.26

Diff % 0 0 0 -0.44

Ansys 1.60 3.39 2.58 2.31

[0 90 Q]s present 2.04 4.28 3.73 3.45
Ansys 2.03 4.31 3.72 3.43

[090]; present 1.59 3.33 2.61 2.27
Ansys 1.58 3.24 2.55 2.19

Table 6. frequency parameters, Q= wb? /n%V(ph / D22) , of a square plate of
various laminations and boundary conditions. (E1/E2=10, G12=0.6E2, v12=0.25).

Angle Ply Orientations SSSS ccee CSCS cfcf
[45 -45]s present 2.52 4.09 3.38 2.27
Firas 2.51 4.12 3.39 2.26
Diff % -0.39 0.78 0.29 -0.44
Ansys 2.72 4.49 3.15 1.98
[45 -45 45 -45] present 2.52 4.09 3.38 2.27
Firas 2.51 4.12 3.39 2.26
Diff % -0.39 0.78 0.29 -0.44
Ansys 2.31 4.01 3.24 2.25
present 3.40 5.84 5.30 4.32
[30-30]s

Ansys 3.17 5.76 5.14 4.12
present 3.40 5.84 5.30 4.32

[30-30 30 -30]
Ansys 3.30 5.62 5.04 4.09
[45 -45 45]s present 2.52 4.09 3.38 2.27
Ansys 2.43 4.08 331 2.16
[45 —45]; present 2.52 4.09 3.38 2.27
Ansys 2.48 3.98 3.30 2.14
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[30-30 30]s present 3.40 5.84 5.30 4.32
Ansys 3.31 5.84 5.23 4.19
[30 —30]; present 3.40 5.84 5.30 4.32
Ansys 3.36 5.79 5.18 4.13

Tabel 7. Frequency parameters, Q= wa?V(ph / D) , for all clamped boundary
conditions(cccc) plates with different aspect ratios.

alb mod 1 mod?2 mod 3 mod 4 mod 5 mod 6
1 present 35.58 72.44 72.44 104.48 | 130.18 | 131.44
Wen.le 35.99 73.4 73.4 108.2 131.6 132.2

Diff % 1.13 1.30 1.30 3.43 1.07 0.57
1.5 present 60.31 93.05 148.28 | 149.88 | 176.38 | 225.82
Wen.le 60.76 93.84 148.8 149.7 179.6 226.8

Diff % 0.74 0.84 0.34 -0.12 1.79 0.43
2 present 97.67 126.24 | 178.75 | 251.68 | 256.46 | 278.91
Wen.le 98.31 127.3 179.1 253.3 255.9 284.3

Diff % 0.65 0.83 0.19 0.63 -0.21 1.89
2.5 present | 146.87 | 172.52 | 220.33 | 293.49 | 387.85 | 413.81
Wen.le 147.8 173.8 221.4 291.7 384.4 394.3

Diff % 0.62 0.73 0.48 -0.61 -0.89 -4.94

Table 8. Frequency parameters, Q= wa?V(ph / D) , for CSSF plates with different
aspect ratios .

alb Reference mod 1| mod2 mod 3 mod 4 mod 5 mod 6
1 present work 16.88 31.18 51.67 65.19 67.27 100.31
Wen.le 16.87 31.14 51.64 64.03 67.64 101.2
Diff % -0.05 -1.27 -0.05 -1.81 0.54 0.87
1.5 | present work 18.68 50.62 54.14 89.09 110.64 | 130.16
Wen.le 18.54 50.43 53.72 88.78 108.2 126.10
Diff % -0.75 -0.37 -0.78 -0.34 -2.25 -3.21
2 present work 20.89 56.83 77.54 113.13 | 117.81 | 176.94
Wen.le 20.65 56.54 77.33 111.3 117.3 176.0
Diff % -1.16 -0.51 -0.27 -1.64 -0.43 -0.53
2.5 present work 23.41 60.46 112.14 | 117.19 | 153.89 | 196.47
Wen.le 23.07 59.97 111.9 115.1 153.1 189.6
Diff % -1.47 -0.81 -0.21 -1.18 -0.51 -3.62
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Table 9. show Frequency parameters, Q= wb? /% (ph / D22) , of effect of aspect
ratio and boundary conditions. (E1/E2=10, G12=0.6E2, v12=0.25).

a/b [090090] [0 90]s
SSSS ccee cffc SSSS ccee cffc

1 present 1.58 3.33 0.583 2.56 5.37 0.94
Firas 1.58 3.33 0.592 2.55 5.35 0.95
Diff % 0 0 1.52 -0.39 -0.37 1.05
1.5 present 1.19 2.55 0.435 1.57 3.24 0.579
2 present 1.09 2.38 0.393 1.27 2.67 0.467
2.5 present 1.052 2.32 0.377 1.16 2.48 0.421

Table 10. Frequency parameters, Q= ob?/m2V(ph / D22), for (45/-45/45/-45) plates
of different aspect ratios and boundary conditions ,(E1/E2=10, G12=0.6E2,
v12=0.25).

Type of boundary conditions

alb SSSS ssce ssff ccff ccfc
1 2.52 3.239 0.496 0.854 2.581
1.5 1.77 2.326 0.329 0.596 2.405
2 1.467 1.998 0.246 0.494 2.347
2.5 1.313 1.844 0.196 0.444 2.321

Table 11. Frequency parameters, Q= wb? /m2V(ph / D22), for (30/-30/30/-30) plates
of different aspect ratios and boundary conditions,(E1/E2=10, G12=0.6E2, v12=0.25).

Type of boundary conditions

alb SSSS ssce ssff ccff ccfc
1 3.404 4.502 0.633 1.166 2.818
1.5 2.194 2.862 0.422 0.754 2.499
2 1.723 2.291 0.316 0.589 2.396
2.5 1.486 2.027 0.252 0.507 2.351
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Table 12.Natural Frequency w(rad/sec) , of effect of thickness ratio for squar plate
(E1/E2=10, G12=0.6E2, v12=0.25) .

[09090 0] [45 -45 -45 45]
alt CCccC SSSS CSCS Ccccc SSSS CSCS
20 1.11 0.532 1.025 1.09 0.67 0.90
40 0.55 0.266 0.513 0.545 0.335 0.45
100 0.223 0.106 0.205 0.218 0.134 0.18
Table 13. Natural Frequency w(rad/sec), effect of thickness ratio for square plate

(EL/E2=10, G12=0.6E2, v12=0.25) (30/-30/-30/30).

alt Type of boundary conditions

ccee SSSS CsCs cfcf sfsf
20 1.097 0.638 0.995 0.811 0.356
40 0.548 0.319 0.497 0.405 0.178
100 0.219 0.127 0.199 0.162 0.071

Table 14. Frequency parameters, Q= wa?V(ph / D) , for SSSS square plate with
different uniform rotational restraint along edges.

Ka/D Reference mod 1 mod2 mod 3 | mod4 mod 5 mod 6
0 present work 19.67 49.14 49.14 78.04 98.38 98.38
Wen.le 2004 19.74 49.35 49.35 78.96 98.70 98.70

Diff % 0.35 0.42 0.42 1.16 0.32 0.32
10 present work 28.50 60.52 60.52 90.97 112.82 | 113.07
Wen.le 2004 28.50 60.22 60.22 90.81 111.20 | 111.40

Diff % 0 -0.49 -0.49 -0.17 -1.45 -1.49
20 present work 31.08 64.68 64.68 95.97 118.83 | 119.25
Wen.le 2004 31.08 64.31 64.31 95.82 116.80 | 117.20

Diff % 0 -0.57 -0.57 -0.15 -1.73 -1.74
100 present work 34.67 71.27 71.27 | 104.61 | 129.69 | 130.36
Wen.le 2004 34.67 70.78 70.78 | 104.50 127 127.60

Diff % 0 -0.69 -0.69 -0.10 -2.11 -2.16
o0 present work 35.58 72.44 7244 | 104.48 | 130.18 | 131.44
Wen.le 2004 35.99 73.40 73.40 | 108.20 | 131.60 | 132.20

Diff % 1.13 1.30 1.30 3.431 1.07 0.57
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Table 15. Frequency parameters, Q= ob?/m?V(ph / D22) for SSSS square plate [0
90 0 90] with uniform rotational restraint along edges.

Ka/ D22 | mod1 mod2 mod 3 mod 4
0 1.59 4.39 4.39 6.39
10 2.60 5.61 5.61 7.80
20 2.86 6.04 6.04 8.34
100 3.21 6.69 6.69 9.19
00 3.33 6.95 6.95 9.54
40
35 -
> /
S 30
3
2 /
% 25 /
5
e 20 / SSss
é 15 / / e cfCf
'g / sfsf
c
g 10
B
5
0
0 10 20 30 40 50 60 70
E1/E2

Figure 5. Frequency parameters, Q= wa?/hV(p / E,) , for square plates with
different orthotropic ratio, (a/h=20, G12=0.6E2, v12=0.25) (0/90/0/90).
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Figure 6. Frequency parameters, Q= wa?/hV(p / E,) , for square plates with
different orthotropic ratio, (a/h=20, G12=0.6E2, v12=0.25) (60/-60/60/-60).
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