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ABSTRACT 

In this investigation, Rayleigh–Ritz method is used to calculate the natural 

frequencies of rectangular isotropic and laminated symmetric and anti-symmetric 

cross and angle ply composite plate with general elastic supports along its edges. Each 

of the admissible functions here is composed of a trigonometric function and an 

arbitrary continuous function that is introduced to ensure the sufficient smoothness of 

the so-called residual displacement function at the edges. Perhaps more importantly, 

this study has developed a general approach for deriving a complete set of admissible 

functions that can be applied to various boundary conditions. Several numerical 

examples are studied to demonstrate the accuracy and convergence of the current 

solution with considering some design parameters such as boundary conditions, 

aspect ratio, lamination angle, thickness ratio, orthotropy ratio, also these results are 

compared with other researchers and give a good agreement . 

Key words: free vibration, Rayleigh–Ritz method, general boundary condition, 

composite laminated plate  
 

اسناد حافات هرنة وعاهةهع  هركبة صفيحة ل الحرلاهحسازجحليل ا  

رأفث أسعذ غني                                                                                                 أ.م.د وداد هجيذ ابراهين          

طانة ياجسريش                                                                                                            يساػذ تشوفيسىس          

كهيح انهُذسح   -جايؼح تغذاد               كهيح انهُذسح                                                                            -جايؼح تغذاد  

قسى انهُذسح انًيكاَيكيح                                     قسى انهُذسح انًيكاَيكيح                                                              

 

لخلاصةا  

 

انًىدذج انخىاص   لأيجاد انرشدد انطثيؼي نهصفيذح Rayleigh–Ritz, ذسرخذو طشيقح  هزج انذساسحفي 

. اذها يخرهفح اسُاد نذاف ظشوفيغ  انًرؼايذج وانًائهح ,انًرًاثهح وانغيش يرًاثهحراخ انضوايا   انًشكثح انًسرطيهحو

نضًاٌ انسلاسح انذوال انًسرخذيح في هزا انثذث يًكٍ اٌ ذًثم تذوال يثهثيح و دوال ػشىائيح يسرًشج و رنك و

ػاو لاشرقاق يجًىػح قذ طىسخ اسهىب  هزِ انذساسح اٌ ونؼم الأهى يٍ رنك,  انًطهىتح نؼًم انذانح انشئيسيح .

ذ ذى دساسح ػذج ايثهح ػذديح لاثثاخ قن انًخرهفح. افاخانذاسُاد نششوط ًقثىنح انري يًكٍ ذطثيقها ان انذوالكايهح يٍ 

في تؼض يؼاييش انرصًيى يثم ششوط انذذود, الاػرثاس ذغييش ُظش يغ الاخز ت دقح وذقاسب َرائج انذم انذاني

دثيٍ ,ديث ذى يقاسَح انُرائج يغ تا orthotropyـ انَسثح الاسذفاع, وصاويح انرصفيخ, وَسثح سًاكح, وَسثح 

 اخشيٍ واػطد ذقاسب جيذ جذا .

 

 َظشيح انقض راخ انشذثح انؼانيح , الانىاح انطثقيح انًشكثح , انرذهيم الاسراذيكي . الكلوات الرئيسية:
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1. INTRODUCTION: 

Composite materials are so necessary in many engineering applications, as 

vehicles parts industry, aero structures industry and medical devices industry. With 

the wide use of composite plate in the modern industry, static and dynamic analysis of 

plate structure under different types of loads and different boundary condition become 

a main part in design procedure. In the past few years, many researchers resorted to 

the development of many theories to clearly predict the response of laminated plate 

composite material. It is necessary to know the theories of laminated composite 

plates, because it is not possible to provide accurate analysis without knowledge of 

theories. These theories can be classified in to three type's single layer theories, layer-

wise theories and continuum based 3D elasticity theories. 

Many researchers had studied Vibration analysis of rectangular plates with general 

elastic boundary supports by classical plate theory (CLPT), and other researchers have 

studied the natural frequency of composite plates with all boundary conditions. 

Pervez, Al-Zebdeh, and Farooq, 2010 

W.L. Li ,2004. used Rayleigh–Ritz method to determine the modal characteristics of 

a rectangular isotropic plate with general elastic supports alone its edges. Each of the 

admissible functions here is composed of a trigonometric function and an arbitrary 

continuous function. He firstly investigated the convergence of his function then he 

studied many different cases of isotropic plate such as different aspect ratio and 

different values of elastic restraint constant (k,K). Y.F. Xing and B. Liu ,2009. solved 

new exact solutions for free vibrations of thin orthotropic rectangular plates by using 

a novel separation of variables. The exact normal eigenfunctions and eigenvalue 

equations for the boundary condition combinations SSCC, SCCC and CCCC are 

obtained through the mode formulation and boundary conditions. Henry Khov, Wen 

L. Li and Ronald F. Gibson ,2009.presented an accurate solution method for the 

static and dynamic deflections of orthotropic plates with general boundary conditions. 

The displacement function is expressed as a 2-D Fourier cosine series supplemented 

with several terms in the form of 1-D series. Thus, a classical solution can be derived 

by letting the series exactly satisfy the governing differential equation at every field 

point and all the boundary conditions at every boundary point, respectively. W.L. Li, 

X.Zhang, J.Du and Z.Liu  ,2009. studied an exact series solution for the transverse 

vibration of rectangular isotropic plates with general elastic boundary supports. An 

analytical method is developed for the vibration analysis of rectangular plates with 

elastically restrained edges. The displacement solution is expressed as a two-

dimensional Fourier series supplemented with several one-dimensional Fourier series. 

Thus, an exact solution can be obtained by letting the series simultaneously satisfy the 

governing differential equation and the boundary conditions on a point-wise basis. 

H.DAL and O.K.MORGUL,2011. studied vibrations of elastically restrained 

rectangular isotropic plates. Vibrations of plates with boundary conditions were 

elastic along full edges. Deflections function was expressed as the combination of a 

Fourier sine series and an auxiliary polynomial. Solution function as employed by Li 
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2002. has been adopted for plates with fully elastic edges. Frequency parameters of 

plate were calculated for different plate parameters. H.T.Thai , S.E.Kim ,2012. 

obtained Levy-type solution for free vibration analysis of orthotropic plates based on 

two variable refined plate theory. The theory, which has strong similarity with 

classical plate theory in many aspects, accounts for a quadratic variation of the 

transverse shear strains across the thickness, and satisfies the zero traction boundary 

conditions on the top and bottom surfaces of the plate without using shear correction 

factors. Kookhyun Kim, B. Kim, T.Choi and D.Cho ,2012. presented free vibration 

analysis of rectangular isotropic plate with arbitrary edge constraints using 

characteristic orthogonal polynomials in assumed mode method. Natural frequencies 

and their mode shapes of the plate are calculated by solving an eigenvalue problem of 

a multi-degree-of-freedom system matrix equation derived by using Lagrange's 

equations of motion. Characteristic orthogonal polynomials having the property of 

Timoshenko beam functions which satisfies edge constraints corresponding to those 

of the objective plate are used. A. Pagani ,2014. extended free vibration analysis of 

composite plates by higher-order 1D dynamic stiffness elements based on Carrera 

Unified Formulation (CUF) and experiments. The principle of virtual displacements is 

then used to derive the equations of motion and the natural boundary conditions, 

which are subsequently expressed in the frequency domain by assuming a harmonic 

solution. After the resulting system of ordinary differential equations of second order 

with constant coefficients is solved, the frequency dependent DS matrix of the system 

is derived.  Finally the algorithm of Wittrick and Williams is applied to extrapolate 

the free vibration characteristics of laminated composite plate. Wan-You Li, W.Li, 

B. Lv, H. Ouyang, J. Du,H. Zhou, and D. Wang ,2014. presented a Hybrid Finite 

Element-Fourier Spectral Method for Vibration Analysis of Structures with Elastic 

Boundary Conditions. A novel hybrid method, which simultaneously possesses the 

efficiency of Fourier spectral method (FSM) and the applicability of the finite element 

method (FEM), is used for the vibration analysis of structures with elastic boundary 

conditions. The computational domain of general shape is divided into several 

subdomains firstly, some of which are represented by the FSM while the rest by the 

FEM. Then, fictitious springs are introduced for connecting these subdomains. 

Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-

dimensional rectangular plate show that the present method has good accuracy and 

efficiency. Further, one irregular-shaped plate which consists of one rectangular plate 

and one semi-circular plate also demonstrates the capability of the present method 

applied to irregular structures. Firas Hamzah Taya,2014. presented free vibration 

and buckling behavior of laminated composite thin plates subjected to in-plane 

uniform, parabolic, and linear distributed loads is studied using classical laminated 

plate theory (CLPT). Different functions were used for different boundary conditions 

applying Ritz method to get homogeneous set of equations and solved as Eigen value 

problems of buckling load solution for laminated plate. The boundary conditions 

considered in this study are (SSSS, CCCC, CSCS, SFSF, and CFCF). G. Jin, T. Ye, 

and S. Shi ,2015. presented Three-Dimensional Vibration Analysis of Isotropic and 
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Orthotropic Open Shells and Plates with Arbitrary Boundary Conditions. Vibration 

characteristics of the shells and plates have been obtained via a unified three-

dimensional displacement-based energy formulation represented in the general shell 

coordinates, in which the displacement in each direction is expanded as a triplicate 

product of the cosine Fourier series with the addition of certain supplementary terms 

were introduced to eliminate any possible jumps with the original displacement 

function and its relevant derivatives at the boundaries. All the expansion coefficients 

are then treated equally as independent generalized coordinates and determined by the 

Rayleigh-Ritz procedure. 

         In present work the function proposed by W.L. Li ,2004. is used for laminated 

symmetric and antisymmetric cross and angle ply composite plate with general elastic 

supports along its edges. 

 

2. THEORETICAL ANALYSIS: 

2.1 Classical Laminated Plate Theory: 

       The equivalent single layer ESL laminated plate theories are those in which a 

heterogeneous laminated plate is treated as a statically equivalent single layer having 

a complex constitutive behavior, reducing the 3-D continuum problem to a 2-D 

problem. The ESL theories are developed by assuming the form of the displacement 

field or stress field as a linear combination of unknown functions and the thickness 

coordinate: J.N. REDDY,2004. 

   (       )  ∑ ( ) 
 

   

  
 
(     )                             (   ) 

where     is the component of displacement or stress, (   ) is the in-plane 

coordinates,   is the thickness coordinate, t is the time, and   
 
 are functions to be 

determined. When     displacements, then the equations governing are   
 
 are 

determined by the principle of virtual displacements (or its dynamic version when 

time dependency is to be included) 

  ∫ (         )   
 

 
                                (2.2) 

where δ , δ , and δEc denote the virtual strain energy, virtual work done by external 

applied forces, and the virtual kinetic energy, respectively. These quantities are 

determined in terms of actual stresses and virtual strains, which depend on the 

assumed displacement functions, and their variations. 

   The simplest laminated plate theory is the classical laminated plate theory (or 

CLPT), which is an extension of the Kirchhoff (classical) plate theory to laminated 

composite plates. It is based on the displacement field 
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 (       )    (     )                                  (2.3) 

where (uo, vo, wo) are the displacement components along the (x, y, z ) coordinate 

directions, respectively, of a point on the midplane (i.e., z = 0). 

The governing differential equation for the free vibration of laminated thin 

plate is given by: Henry Khov,2009. 

   
   

   
    

   

   
  (        )

   

      
     

   

     
     

   

     
 

     (   )                                                                                                           (2.4) 

 

2.2 Total Mechanical Energy: 

The first law of thermodynamics or the principle of conservation of energy 

serves as the foundation for energy-based methods employed in the analysis of 

structures, including plates. In the absence of energy dissipation and other non-

conservative forces, i.e. if the forces acting on the system are conservative, this 

principle is reduced to the principle of stationery total energy, Victor Birman ,2011. 

   The total mechanical energy (defined as the sum of its potential and kinetic 

energies) of a particle being acted on by only conservative forces is constant, Robert 

G. Brown ,2007. 

                                                        (2.5) 

where      E: Total mechanical energy of a system 

                Ec: Total kinetic energy of the system 

                Π: Total potential energy of the system    

      In static problems, the principle of stationary total energy reduces to the principle 

of minimum total potential energy implying that the virtual work of forces acting on 

the system in equilibrium is equal to zero Victor Birman,2011. so that:  
 

                                ∆E=0  OR  E= Constant                                          (2.6) 
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and 
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2.3 Boundary Conditions: 

In terms of the flexural displacement, the bending and twisting moments and 

transverse shearing forces can be expressed as, Henry Khov ,2009. 
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The boundary conditions for an elastically restrained rectangular plate are 

                
  

  
        .......at x=0                                                     (2.14-15) 

              
  

  
          ..........at x=a                                                  (2.16-17) 

                
  

  
        ...........at y=0                                                (2.18-19) 

                
  

  
        .............at y=b                                             (2.20-21) 

where     and    (    and    ) are the linear spring constants, and    and     (    

and    ) are the rotational spring constants at x =0 and a (y = 0 and b), respectively. 

Eqs. (14)–(21) represent a set of general boundary conditions from which, for 

example, all the classical homogeneous boundary conditions can be directly obtained 

by accordingly setting the spring constants equal to an extremely large or small 

number Fig 2 

    From Eqs. (9–21), the boundary conditions can be finally written as: 
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2.4 Admissible functions 

Admissible functions play a critical role in the Rayleigh–Ritz method. For plate 

problems, the products of the beam functions are often chosen as the admissible 

functions and the displacement function can be accordingly expressed as, W.L. Li 

,2004. 

 

 (   )  ∑    

     

  ( )  ( )                                           (    ) 

 

where   ( ) and   ( ) are the characteristic functions for beams that have the same 

boundary conditions in the x- and y-direction, respectively. 

Although beam functions can be generally obtained as a linear combination of 

trigonometric and hyperbolic functions, they include some unknown parameters that 

have to be determined from the boundary conditions. Consequently, each boundary 

condition basically leads to a different set of beam functions. In real applications, this 

is clearly inconvenient, not to mention the tediousness of determining the 

characteristic functions for a generally supported beam. In order to avoid this 

difficulty, an improved Fourier series method have been proposed for beams with 

arbitrary supports at both ends in which the characteristic functions are sought in the 

form of, W.L. Li,2000. 

 ( )  ∑   
 
            ( )      (        )                  (    ) 

The function  ( ) in Eq. (27) represents an arbitrary continuous function that, 

regardless of boundary conditions, is always chosen to satisfy the following 

equations: 

    ( )=    ( )      ,          ( )=    ( )                                            (2.28-29) 

  ( )=  ( )         ,        ( )=  ( )                                               (2.30-31) 

As explained in Ref. W.L. Li ,2000. the function  ( ) is here introduced to take care 

of the potential discontinuities of the (original) displacement function and its 

derivatives at the end points. Accordingly, the Fourier series now simply represents a 

residual displacement function, Ẃ(x) = W(x) -  ( ) ; that is periodic continuous and 

has at least three continuous derivatives over the entire x-axis. Mathematically, it is 

already known that the smoother a periodic function is, the faster its Fourier 

expansion converges. Therefore, the addition of the function  ( ) will have two 
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immediate benefits: (1) the Fourier series expansion is now applicable to any 

boundary conditions, and (2) the Fourier series solution can be drastically improved 

regarding its accuracy convergence.  

So far,  ( ) has only been understood as a continuous function that satisfies Eqs. 

(28)–(31), its form is not a concern with respect to the convergence of the series 

solution. Thus, the function  ( ) can be selected in any desired form. As a 

demonstration, suppose that  ( ) is a polynomial function 

 

 ( )  ∑    

 

   

.
 

 
/                                                                          (    ) 

 

where    is the expansion coefficient and   ( ) is the Legendre function of order n. It 

is obvious that the function  ( ) needs to be at least a fourth order polynomial to 

simultaneously satisfy Eqs. (28)–(31). Substituting  Eq. (32) into Eqs. (28)–(31) 

results in 

    
   ( )      

   ( )                                                                         (2.33) 

    
   ( )      

   ( )                                                                          (2.34) 

    
 ( )      

 ( )      
 ( )      

 ( )                                        (2.35) 

    
 ( )      

 ( )      
 ( )      

 ( )                                        (2.36) 

From the above equations, the coefficients,    (n = 1, 2, 3, 4), are directly obtainable 

in terms of the boundary constants,   ,     ,    and   . Since the constant    does not 

actually appear in Eqs. (33)–(36), it can be an arbitrary number theoretically. For 

instance,    is here selected to satisfy 

∫ ( )     

 

 

                                                                                (    ) 

The final expression for the function  ( ) can be written as 

 ( )    ( )                                                                                   (    ) 

Where                                  *              +                                          (    ) 

and                  ( )
  

{
 
 

 
  (   

                 )     

(               )     

(           )   

(      )   }
 
 

 
 

        (    ) 

The results in Eqs. (38)–(40) were previously derived from a more straightforward but 

less general approach, W.L. Li,2004 . 

In order to determine the unknown boundary constants,   ,   ,    and   , substitution 

of Eqs. (27) and (38) into the boundary conditions Eqs. (22)–(25) results in 
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It should be mentioned that the matrix Ha will become singular for a completely free 

beam. However, this problem can be overcome to a certain extent by artificially 

attaching one or more springs with very small stiffness to the ends of a beam. It has 

been shown in W.L. Li ,2002. that although the matrix may be ill-conditioned in such 

a treatment, the natural frequencies can still be accurately calculated for a completely 

free beam.  

Nevertheless, the characteristic functions are well known for this particular case and 

can be readily used as the admissible functions in the Rayleigh–Ritz method.  

    Making use of Eqs. (38) and (41), Eq. (27) can be rewritten as 

 ( )  ∑     
 ( )

 

   

                                                                          (    ) 

Where                        
 ( )            ( )  

                               (    ) 

Mathematically, Eq. (44) indicates that each of the beam functions can be viewed as a 

function in the functional space spanned by the basic functions {  
 ( ); m = 0, 1, 

2,.......}. Thus, Eq. (26) can be accordingly rewritten as 

 (   )  ∑     
 ( )  

 ( )

 

     

                                                (    ) 

Where                       
 ( )            ( )  

                                (    ) 

The expressions for   ( ),    and     can be, respectively, obtained from Eqs. (40), 

(42) and (43) by simply replacing the x-related parameters by the y-related. 
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2.5 Determination of Natural Frequency:  

         Consider an orthotropic laminated plate, the material directions of which 

coincide with the plate directions. This plate is subjected to free vibration along the 

edges x = 0-a and y = 0-b.  

          Where the transverse displacement ( ) is substituted in the total mechanical 

energy as mentioned in section 2.4. To calculate the natural frequency  . Performing 

the required mathematical processes (differentiations and then integrations) of eqs. 

(2.7) and (2.8) and then putting the mechanical energy in the following equation: 

  

    
                                                                                                (    ) 

eq. 2.48 will lead to a set of linear homogeneous algebraic equations as follow: 

 (     )                                                                         (    ) 

Solving the last equation as an Eigen-value problem to get the following form: 

[

        (   )

   
 (   )    (   ) (   )

] {
   
 

   

}                                       (    ) 

 

where aij are the coefficients of the nonzero unknowns    . Finding the determinant 

of the first term of eq. (2.50) and equating it to zero will lead to get the natural 

frequency  . When M and N are more than 1, the natural frequency   are determined 

by solving Eigen value problem. For different arbitrary boundary conditions and M & 

N are greater than 1, the solution becomes more difficult and needs computer 

programming to determine the natural frequency  . In this work, Matlab R2013a is 

used to solve the Eigen-value problem. 

 

3-RESULT AND CONCLUSIONS 

3-1-Results 

The natural frequency of isotropic and composite laminated plate with elastic 

boundary condition is analyzed and solved using MATLAP version13 programming. 

To examine the validly of the derived equations and performance of computer 

programming for vibration analysis of composite laminated plate, numerical results of 

isotropic plate are compared with those obtained by W.L. Li ,2004. and Hüseyin 

DAL ,2011. as shown in Tables (1,2)  which give very close results for different 

boundary conditions. While present results for laminated composite plate with 

different boundary conditions give good agreement when compared with Henry 

(2009) and those obtained by numerical program ANSYS as shown in Table 3. and 

figures (3) and (4), also present work results are compared with those obtained by 

Reddy for ssss cross ply plate with different orthotropy ratio as shown in table(4). 

Also cross ply scheme (symmetric and non-symmetric) with different layer 

number was studied as shown in Table 5. where the frequency parameter for 

symmetric ply is more than that for non-symmetric because the stiffness of the rare is 

larger than symmetric ply as proved by many researchers, while the other presented 
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scheme is angle ply scheme (symmetric and non-symmetric) with different layer 

number as shown in Table6. where the frequency parameter for symmetric angle ply 

have no great change than that for non-symmetric because the stiffness of the two 

type are close to each other as proved by many researchers  Also we study isotropic 

scheme in Tables (7,8) which give very close results for different boundary 

conditions and aspect ratio with Wen le 2004, it can be noted that when the aspect 

ratio increases the frequency parameter increases for same boundary condition .  

While the other presented scheme is laminated cross ply scheme (symmetric 

and non-symmetric) with different boundary conditions and aspect ratio as shown in 

Table 9. where the frequency parameter decreases when the aspect ratio increases, 

and the largest frequency parameter for clamped boundary at all edges of the 

symmetric cross-ply plate. The next presented scheme is laminated angle ply     

,       -  as shown in Table10. where the frequency parameter decreases when the 

aspect ratio increases. Also the next presented scheme is laminated angle ply ,     

  -  as shown in Table11. where the frequency parameter decreases when the aspect 

ratio increases. It can be noted that in Tables (10,11) the largest frequency parameter 

for SSCC boundary conditions for square plate . 

        The thickness ratio schemes of laminated plate with different boundary 

conditions are changed, once symmetric cross ply and ,       -  schemes are 

studied with different boundary conditions and thickness ratio as shown in Table12. 

where the frequency parameter decreases when the thickness ratio increase (reduces 

the thickness) for same boundary condition and the largest frequency parameter for 

clamped boundary at all edges because it has largest stiffness. The next presented 

scheme is angle ply ,       -  as shown in Tables 13. Where the frequency 

parameter decreases when the thickness ratio increase (reduces the thickness) for 

same boundary condition and the largest frequency parameter for clamped boundary 

at all edges because it has largest stiffness. 

      Rotational restraint along edges of laminated and isotropic plate with 

different boundary conditions are changed, consider plates are elastically restrained 

along edges. The first one involves a simply supported square isotropic plate with a 

uniform elastic restraint against rotation along each edge, that is,       =       

                  , in Table 14. the first six frequency parameters are 

shown for a few different stiffness values. Because of the symmetries about the x- and 

y-axis, the second and third frequency parameters are identical. The fifth and sixth 

frequency parameters are also the same for        . However, they become 

slightly different for other stiffness values. The frequency parameter increases when 

the stiffness values increases, when it zero the behavior of the frequency parameter 

like a simply supported along all edge , but when the stiffness values equal to infinity 

the behavior of the frequency parameter like a clamped along all edge. Table 15 

shows the frequency parameter of a simply supported square laminated plate 

,    -  with a uniform elastic restraint against rotation along each edge, that is, 

         =                                  , the first four frequency 
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parameters are shown for a few different stiffness values. Because of the symmetries 

about the x- and y-axis, the second and third frequency parameters are identical.  

The frequency parameter increases when the stiffness values increases, when 

it is zero the behavior of the frequency parameter is like a simply supported along all 

edge, but when the stiffness values is equal to infinity the behavior of the frequency 

parameter like a clamped along all edge.The orthotropy ratio schemes of laminated 

plate with different boundary conditions are changed, Fig.5 shows the frequency 

parameter of non-symmetric cross ply with different boundary conditions and 

orthotropy ratio , where the frequency parameter increases when the orthotropy ratio 

increases, the largest frequency parameter for CFCF boundary conditions and then 

less in SSSS and smallest in SFSF boundary conditions. Fig6 shows the frequency 

parameter of angle ply,       - , where the frequency parameter increases when 

the orthotropy ratio increases, the largest frequency parameter for SSSS boundary 

conditions and then less in CFCF and smallest in SFSF boundary conditions . 

3.2. Conclusions 

This study presented investigations for free vibration of a composite laminated plate. 

Some assumptions are made to solve the vibration problems and determine the results 

desired for this paper. 

   The results are determined mainly by analytic method and compared with 

numerically found results, and with obtained by other researchers; the comparison 

showed high agreement between them. 

   The vibration results lead to the following conclusions: 

1- The number of half wavelengths affects the natural frequency, where the increasing 

aspect ratio requires larger number (M & N) to get more accurate results where the 

error is found 4.71% for cccc isotropic plate a/b=2.5 at (     ).  

2- The boundary conditions affect the fundamental natural frequency. Clamped edges 

conditions offer high stiffness, results in high natural frequency. Clamped boundaries 

make the plate holds larger frequency than simply supported boundaries, where the 

fundamental natural frequency for SSSS cross ply, is less by 47.3% than fundamental 

natural frequency of CCCC cross ply, while for angle ply, is less by 58.21%,and the 

fundamental natural frequency for SSSS isotropic plate, is less by 55.28% than of 

CCCC plate.  

3- The aspect ratio is inversely proportional to the frequency parameter Ω= ω   

   (      ) of the orthotropic plate and frequency parameter Ω= ω      (   

 ) of the isotropic plate. 

4- Rotational restraint along edges of laminated and isotropic plate affects the natural 

frequency, where the value of (    ) and (      ) is zero the behavior of the 

natural frequency like a (SSSS) boundary conditions, but when the value is infinity 

the behavior of the natural frequency like a (CCCC) boundary conditions. 

5- The orthotropy ratio is directly proportional with the frequency parameters, Ω= 

ω     (    ) of the orthotropic plate. 

6- The increasing of the lamination angle is inversely proportional with frequency 

parameters, Ω= ω      (      ) of the orthotropic plate. 
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7- The thickness ratio is inversely proportional with the natural frequency of the 

orthotropic plate. 

 

NOMENCLATURE 

Symbol Discretion Units 

a Length of a plate m 

b width of a plate m 

h Plate thickness m 

A vector of the expansion or 

Rayleigh–Ritz coefficients 

 

    expansion or Rayleigh–Ritz 

coefficients 

 

   expansion or Rayleigh–Ritz 

coefficient 

 

     

 

flexural rigidity - 

       , E3 Elastic modulus components Gpa 

             Shear modulus components Gpa 

M,N numbers of expansion terms used 

in x- and y-direction, respectively 

 

             Moment result per unit length N.m/m 

        Transverse shear force result N 

          rotational stiffnesses at x = 0 and 

a, respectively 

Rad.N/m 

          rotational stiffnesses at y = 0 and 

b, respectively 

Rad.N/m. 

          translational stiffnesses at x = 0 

and a, respectively 

N/m 

          translational stiffnesses at y = 0 

and b, respectively 

N/m 

P(x) a simple polynomial function  

x,y,z Cartesian coordinate system m 

E, Ec Total mechanical and kinetic 

energies of a system 

N.m 

Π Total potential energy of the 

system 

N.m 

  Strain energy of deformation N.m 

   the elastic potential energy N.m 

         Strain components  

          Transverse shear strain  

    Poisson’s ratio components - 

    ,               Stress components Gpa 
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u, v, w Displacements in x, y, z 

directions 

m 

uo, vo, wo Displacements of the reference 

surface in the x, y, z directions  

m 

 ( ) flexural displacement of a beam  m 

 (   ) flexural displacement of a plate  m 

  ( ) ,  

  ( ) 

beam characteristic function  

        =    ( )     ( )  

      =  ( )   ( )  

      

 
 

- 

      

 
 

- 

ρ Density of material Kg/m
3

 

  
 ( ) admissible functions in x-

direction 

- 

  
 ( ) admissible functions in y-

direction 

 

ω Natural frequency Cycle/sec 
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Figure 1 Distances from the reference plane. 

 

 

 
Figure 2  A rectangular plate elastically restrained along edges. 
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Table 1. Frequency parameters, Ω= ω   (    ) , for all clamped boundary 

conditions (cccc) plate with (
 

 
    ). For          . 

 

 

a : Wen le 2004 . 

 

Tabel 2. Frequency parameters, Ω= ω   (    ) , for squar plates of different 

boundary conditions 

mod 6 mod 5 mod 4 mod 3 mod2 mod 1  B C S 

98.38 98.37 78.04 49.14 49.14 19.67 present ssss 

98.56 98.56 78.88 49.32 49.32 19.72 H. DAL 

0.19 0.19 1.06 0.36 0.36 0.25 Diff % 

98.70 98.70 78.96 49.35 49.35 19.74 Wen le 

2004 

o.33 0.33 1.16 0.42 0.42 0.35 Diff % 

128.55 101.36 92.2 68.73 54.18 28.71 present cscs 

128.58 102.04 93.91 69.37 54.64 28.91 H.DAL 

0.02 0.66 1.82 0.92 0.84 0.69 Diff % 

129.09 102.23 94.61 69.32 54.74 28.95 Wen le 

2002 

0.41 0.85 2.54 0.85 1.02 0.82 Diff % 

91.09 63.28 59.22 41.55 27.92 11.82 present Ssfs 

90.42 62.93 59.20 41.11 27.68 11.58 H. DAL 

-0.74 -0.55 -0.03 -1.07 -0.86 -2.07 Diff % 

90.51 62.37 59.24 41.23 27.79 11.68 Wen le 

2002 

-0.64 -1.45 0.03 -0.77 -0.46 -1.19 Diff % 

 

 

 

mod 5 mod 4 mod 3 mod2 mod 1 M=N 

-------- 419.39 395.47 172.60 147.43 1 

419.39 394.94 220.33 172.54 147.87 2 

(     )  

387.85 

-0.89% 

(     )  

293.49 

-0.61% 

(     )  

220.33 

0.48% 

(     )  

172.52 

0.73% 

(     )  

146.87 

0.62% 

 

3 
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Table 3. Natural frequencies (Hz) of graphite–epoxy plates consisting of 12 plies 

oriented at 0 under different boundary conditions (E1=127.9Gpa , E2 =10.27Gpa , 

G12=7.312Gpa , 𝜐12=0.22) 

               ccfc                                  ssss    Mod   

   Diff 

% 

Present Henry 

2009 

Ansys Diff 

% 

Present Henry 

2009 

Ansys 

-0.07 71.01 70.96 70.63 -0.11 108.82 108.7 108.10 1 

 

-1.10 169.35 167.5 166.96 -0.29 171.91 171.4 170.09 2 

 

-0.08 219.88 219.7 215.69 -0.93 297.55 294.8 292.84 3 

 

-0.23 298.8 298.1 294.77 -0.54 390.52 388.4 384.97 4 

 

-2.69 323.27 314.8 314.51 -0.52 437.27 435.0 429.83 5 

 

 

 

 

 

 
 

Figure 3 . First Mode shape for free vibration of a CCFC orthotropic square plate. 
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Figure 4 . First Mode shape for free vibration of a SSSS orthotropic square plate. 

 

Table 4.Frequency parameters, Ω= ω     (    ) , for s-s-s-s   squar plates and 

(a/h=10, G12=0.6E2, 𝜐12=0.25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[0 90 90 0]    /   

Diff % Reddy Present 

-0.80 7.47 7.53 3 

-0.85 10.56 10.65 10 

-0.86 13.83 13.95 20 

-0.85 16.47 16.61 30 

-0.90 18.73 18.90 40 



Journal of Engineering Volume       23   April          2017      Number 4 
 

 

 

119 
 

Table 5. Frequency parameters, Ω= ω      (      ) , of a square plate of 

various laminations and boundary conditions.  (E1/E2=10, G12=0.6E2, 𝜐12=0.25) 

 

cfcf cscs cccc ssss  Angle Ply Orientations 

 

4.65 4.93 5.37 2.56 present [0 90]s 

4.63 4.91 5.35 2.55 Firas 

-0.43 -0.40 -0.37 -0.39 Diff % 

4.63 4.91 5.31 2.55 Ansys 

2.27 2.606 3.33 1.58 present [0 90 0 90] 

2.26 2.606 3.33 1.58 Firas 

-0.44 0 0 0 Diff % 

2.31 2.58 3.39 1.60 Ansys 

3.45 3.73 4.28 2.04 present [0 90 0]s 

  3.43 3.72 4.31 2.03 Ansys 

2.27 2.61 3.33 1.59 present ,    -  

2.19 2.55 3.24 1.58 Ansys 

 

Table 6. frequency parameters, Ω= ω      (      ) , of a square plate of 

various laminations and boundary conditions.  (E1/E2=10, G12=0.6E2, 𝜐12=0.25). 

cfcf cscs cccc ssss  Angle Ply Orientations 

 

2.27 3.38 4.09 2.52 present [45 -45]s 

2.26 3.39 4.12 2.51 Firas 

-0.44 0.29 0.78 -0.39 Diff % 

1.98 3.15 4.49 2.72 Ansys 

2.27 3.38 4.09 2.52 present [45 -45 45 -45] 

2.26 3.39 4.12 2.51 Firas 

-0.44 0.29 0.78 -0.39 Diff % 

2.25 3.24 4.01 2.31 Ansys 

4.32 5.30 5.84 3.40 present 
[30 -30]s 

4.12 5.14 5.76 3.17 Ansys 

4.32 5.30 5.84 3.40 present 
[30 -30 30 -30] 

4.09 5.04 5.62 3.30 Ansys 

2.27 3.38 4.09 2.52 present [45 -45 45]s 

2.16 3.31 4.08 2.43 Ansys 

2.27 3.38 4.09 2.52 present ,      -  

2.14 3.30 3.98 2.48 Ansys 
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4.32 5.30 5.84 3.40 present [30 -30 30]s 

4.19 5.23 5.84 3.31 Ansys 

4.32 5.30 5.84 3.40 present ,      -  

4.13 5.18 5.79 3.36 Ansys 

 

Tabel 7. Frequency parameters, Ω= ω   (    ) , for all clamped boundary 

conditions(cccc) plates with different  aspect ratios. 

mod 6 mod 5 mod 4 mod 3 mod2 mod 1  a/b 

131.44 130.18 104.48 72.44 72.44 35.58 present 1 

132.2 131.6 108.2 73.4 73.4 35.99 Wen.le 

0.57 1.07 3.43 1.30 1.30 1.13 Diff % 

225.82 176.38 149.88 148.28 93.05 60.31 present 1.5 

226.8 179.6 149.7 148.8 93.84 60.76 Wen.le 

0.43 1.79 -0.12 0.34 0.84 0.74 Diff % 

278.91 256.46 251.68 178.75 126.24 97.67 present 2 

284.3 255.9 253.3 179.1 127.3 98.31 Wen.le 

1.89 -0.21 0.63 0.19 0.83 0.65 Diff % 

413.81 387.85 293.49 220.33 172.52 146.87 present 2.5 

394.3 384.4 291.7 221.4 173.8 147.8 Wen.le 

-4.94 -0.89 -0.61 0.48 0.73 0.62 Diff % 

 

Table 8. Frequency parameters, Ω= ω   (    ) , for CSSF plates with different  

aspect ratios . 

     

mod 6 mod 5 mod 4 mod 3 mod2  mod 1 Reference a/b  

  

100.31 67.27 65.19 51.67 31.18 16.88 present work 1 

101.2 67.64 64.03 51.64 31.14 16.87 Wen.le 

0.87 0.54 -1.81 -0.05 -1.27 -0.05 Diff % 

130.16 110.64 89.09 54.14 50.62 18.68 present work 1.5 

126.10 108.2 88.78 53.72 50.43 18.54 Wen.le 

-3.21 -2.25 -0.34 -0.78 -0.37 -0.75 Diff % 

176.94 117.81 113.13 77.54 56.83 20.89 present work 2 

176.0 117.3 111.3 77.33 56.54 20.65 Wen.le 

-0.53 -0.43 -1.64 -0.27 -0.51 -1.16 Diff % 

196.47 153.89 117.19 112.14 60.46 23.41 present work 2.5 

189.6 153.1 115.1 111.9 59.97 23.07 Wen.le 

-3.62 -0.51 -1.18 -0.21 -0.81 -1.47 Diff % 
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Table 9. show Frequency parameters, Ω= ω      (      ) , of effect of aspect 

ratio and boundary conditions. (E1/E2=10, G12=0.6E2, 𝜐12=0.25). 

 

               [0 90]s                                  [0 90 0 90]  a/b    

cffc   cccc     ssss   cffc   cccc     ssss 

0.94 5.37 2.56 0.583 3.33 1.58 present     1      

0.95 5.35 2.55 0.592 3.33 1.58 Firas   

1.05 -0.37 -0.39 1.52 0 0 Diff % 

0.579 3.24 1.57 0.435 2.55 1.19 present     1.5 

0.467 2.67 1.27 0.393 2.38 1.09 present      2 

0.421 2.48 1.16 0.377 2.32 1.052 present     2.5 

 

Table 10. Frequency parameters, Ω= ω      (      ), for (45/-45/45/-45) plates 

of different aspect ratios and boundary conditions ,(E1/E2=10, G12=0.6E2, 

𝜐12=0.25). 

 

Type of boundary conditions  

ccfc ccff ssff sscc ssss a/b 

2.581 0.854 0.496 3.239 2.52 1 

2.405 0.596 0.329 2.326 1.77 1.5 

2.347 0.494 0.246 1.998 1.467 2 

2.321 0.444 0.196 1.844 1.313 2.5 

 

Table 11. Frequency parameters, Ω= ω      (      ), for (30/-30/30/-30) plates 

of different aspect ratios and boundary conditions,(E1/E2=10, G12=0.6E2, 𝜐12=0.25). 

 

Type of boundary conditions  

ccfc ccff ssff sscc ssss a/b 

2.818 1.166 0.633 4.502 3.404 1 

2.499 0.754 0.422 2.862 2.194 1.5 

2.396 0.589 0.316 2.291 1.723 2 

2.351 0.507 0.252 2.027 1.486 2.5 
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Table 12.Natural Frequency ω(rad/sec) , of effect of thickness ratio for squar plate    

(E1/E2=10, G12=0.6E2, 𝜐12=0.25) . 

 

[45 -45 -45 45] [0 90 90 0]  

 cscs ssss cccc cscs ssss cccc a/t 

0.90 0.67 1.09 1.025 0.532 1.11 20 

0.45 0.335 0.545 0.513 0.266 0.55 40 

0.18 0.134 0.218 0.205 0.106 0.223 100 

 

Table 13.  Natural Frequency ω(rad/sec), effect of thickness ratio for square plate    

(E1/E2=10, G12=0.6E2, 𝜐12=0.25) (30/-30/-30/30). 

 

Type of boundary conditions a/t 

sfsf cfcf cscs ssss cccc 

0.356 0.811 0.995 0.638 1.097 20 

0.178 0.405 0.497 0.319 0.548 40 

0.071 0.162 0.199 0.127 0.219 100 

 

Table 14. Frequency parameters, Ω= ω   (    ) , for SSSS square plate with 

different uniform rotational restraint along edges. 

 

mod 6 mod 5 mod 4 mod 3 mod2 mod 1 Reference K a/D 

98.38 98.38 78.04 49.14 49.14 19.67 present work 0 

98.70 98.70 78.96 49.35 49.35 19.74 Wen.le 2004 

0.32 0.32 1.16 0.42 0.42 0.35 Diff % 

113.07 112.82 90.97 60.52 60.52 28.50 present work 10 

111.40 111.20 90.81 60.22 60.22 28.50 Wen.le 2004 

-1.49 -1.45 -0.17 -0.49 -0.49 0 Diff % 

119.25 118.83 95.97 64.68 64.68 31.08 present work 20 

117.20 116.80 95.82 64.31 64.31 31.08 Wen.le 2004 

-1.74 -1.73 -0.15 -0.57 -0.57 0 Diff % 

130.36 129.69 104.61 71.27 71.27 34.67 present work 100 

127.60 127 104.50 70.78 70.78 34.67 Wen.le 2004 

-2.16 -2.11 -0.10 -0.69 -0.69 0 Diff % 

131.44 130.18 104.48 72.44 72.44 35.58 present work   

132.20 131.60 108.20 73.40 73.40 35.99 Wen.le 2004 

0.57 1.07 3.431 1.30 1.30 1.13 Diff % 
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Table 15. Frequency parameters, Ω= ω      (      ) ,for SSSS square plate [0 

90 0 90] with uniform rotational restraint along edges. 

 

mod 4 mod 3 mod2 mod 1 K a      

6.39 4.39 4.39 1.59 0 

7.80 5.61 5.61 2.60 10 

8.34 6.04 6.04 2.86 20 

9.19 6.69 6.69 3.21 100 

9.54 6.95 6.95 3.33   

 

 
 

Figure 5. Frequency parameters, Ω= ω     (    ) , for square plates with 

different orthotropic ratio, (a/h=20, G12=0.6E2, 𝜐12=0.25) (0/90/0/90). 
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Figure 6. Frequency parameters, Ω= ω     (    ) , for square plates with 

different orthotropic ratio, (a/h=20, G12=0.6E2, 𝜐12=0.25) (60/-60/60/-60). 
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