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ABSTRACT

Nowadays, the power plant is changing the power industry from a centralized and vertically
integrated form into regional, competitive and functionally separate units. This is done with the
future aims of increasing efficiency by better management and better employment of existing
equipment and lower price of electricity to all types of customers while retaining a reliable system.
This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to
minimize the total generations fuel cost function. Optimal power flow may be single objective or
multi objective function. In this thesis, an attempt is made to minimize the objective function with
keeping the voltages magnitudes of all load buses, real output power of each generator bus and
reactive power of each generator bus within their limits. The proposed method in this thesis is the
Flexible Continuous Genetic Algorithm or in other words the Flexible Real-Coded Genetic
Algorithm (RCGA) using the efficient GA's operators such as Rank Assignment (Weighted)
Roulette Wheel Selection, Blending Method Recombination operator and Mutation Operator as well
as Multi-Objective Minimization technique (MOM). This method has been tested and checked on
the IEEE 30 buses test system and implemented on the 35-bus Super Iragi National Grid (SING)
system (400 KV). The results of OPF problem using IEEE 30 buses typical system has been
compared with other researches.

Key Words: Active power generator, Bus voltage magnitude, cost function, optimal power flow
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1. INTRODUCTION

The backbone of a power system is the load flow studies. They are the means by which the future
operation of the system are known gaining of time. Digital computer have been used widely for
power system analysis, and variables determinations under normal/contingent conditions, since
their latest days and in particular for load flow studies. The problem of load flow study had been
expressed in many altered methods and several different powerful result techniques have been
established. The OPF has been taken years to improve effective algorithm for its solution because it
is a very large. In general, the optimal load flow is a not convex, nonlinear, static optimization
problem with both discrete and continuous control variables. OPF problem is non-convex because
of the presence of the nonlinearity of the alternating current power flow equality limitations, Hari,
2016. Analysis of a simple power flow provides important and needed information but not an
optimal. A simple economic load dispatch gives the optimal operating state of the power system
such as real, reactive power balance which are not confirmed after the changes in generation
pattern. The economic operation, the essential of reactive and real power balance are to limit
physical and depended variables within boundaries, to develop an Optimal Power Flow (OPF),
Ravi and Christober, 2013. From the observation point of OPF, the maintenance of system security
need to care for every device in the power system within its normal operation. This will comprise
maximum and minimum outputs for maximum MVA drifts of transformers and transmission lines,
generators, in addition to maintaining the bus voltages of the system within their limitations. To
perform this, the optimal load flow will implement all the normal control functions of the power
plant. These functions may consist of the control of generator (excluding slack bus) and the control
of transmission lines. Generators, the OPF will control generator MW outputs as well as generator
voltage magnitude. For the transmission lines, the OPF may control the tap ratio of Under Load
Tapping Transformer (ULTT) or Phase Shift Transformers (PST) and switched shunt control,
Wankhade and Vaidya, 2000. Before two decades the Optimal Power Flow Problems are
implemented by using numerical (conventional) methods like Gauss Seidal Method (G-S), Newton
Raphson Method (N-R), Linear Programming Method, Lagrangian Multiplier Method, Quadratic
Programming Method, Interior Point Method.... etc. The drawbacks of these methods are
sometimes diverging; they depend upon the characteristics of the objective function for example, the
1st and 2nd derivatives of the mathematical model of the problem. Artificial Intelligence Methods
(Al remedy the drawbacks of these traditional approaches. The Artificial Intelligence Methods are
Fuzzy Logic applications, Genetic Algorithm, Artificial Neural Networks and other intelligent
systems.
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2. OPTIMAL POWER FLOW

Carpentier and Hari, 2016, hade first introduced the optimal power flow (OPF). The purpose of
OPF is to calculate the optimal settings of a given power system that optimize the system objective
functions such as total generation (fuel) cost, network loss, the deviation of bus voltag, the
generating units emission, number of control equipment's, and load shedding while satisfying its
power flow problems, security system, and limits of operating equipment's. Many controlled
variables, such as output active powere of generators and voltages, under load transformer tap
settings, phase shift transformers, reactors and switched capacitors, are manipulated to perform an
optimal system setting based on the problem formulation. There are various mathematical
formulations for the optimal power flow problem according to different objective function, and
constraints, they are classifid as follows, Bhavani and Kumar, 2014:
1. Linear mathematical making or problem which the constraints and objectives are linearly
represented with continuous control variables.
2. The objectives or constraints as well as both combined are nonlinear problem with
continuous control variables.
3. If control variables are discrete and continuous, unmix — integer linear problems are a
must, Ravi and Christober, 2013.
The optimal power flow can be classified as Conventional and Intelligence approaches. The
traditional approaches include the well-known approaches like Gradient method, Newton method,
Quadratic Programming method, Linear Programming method, and Interior pointed method.
Intelligent approaches include the recently developed and common methods such as Genetic
Algorithm Solution approaches for optimal power flow problem, Wankhade and Vaidya, 2014.
The main purpose of optimal power flow are to decrease the costs of generation (fuel cost) of a
power system whereas maintaining the system security. From the topics of an optimal power flow,
the system security needs maintaining any equipment in the power network within its required
operation range at steady-state condition. The minimum and maximum outputs for generators must
be inside theirs bounds. The maximum MVA flows on transmission lines and transformers, as well
as keeping system voltages of bus writhin constrained limits, Ravi, et al., 2014. The calculation of
system marginal cost data is the secondary purpose of an optimal power flow. This marginal cost
data can support in then pricing of active power (MW) transaction as well as the voltage support
through MVAr support is the pricing auxiliary services. The durability of optimal power flow for
all of the controll function is essential for the power system. Whereas, the economic power
dispatch of a power system must control generator MW output, the optimal power flow controls
under load transformers tap ratios and phase shiftg angles as well. Monitoring system security
issues like bus overload and high or low voltage problem must perform by optimal power flow. If
any security problem occur, the optimal power flow will adjust its controls to repair them, i.e.,
remove a transmission line overload, Bhavani and Kumar, 2014.

2.1 Optimal Power Flow solution Methodology

The solution approaches can be classified into two methods which are:

1. Conventional (classical) approaches

2. Artificial Intelligence approaches.

The sub classification of each approach is given below Fig. 1, Kumaraswamy and Ramesh, 2012.
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2.2 OPF Objective Function For Fuel Cost Minimization
The optimal power flow problem can be described as an optimization problem and is as follows:

Total Generation cost function is expressed as, Hari, 2016:
F(Pgi) = ::Gl a; + 3, Pe+v: PE) (1)
Where: Fi (Pai) : cost function, i, Bi, v; : cost coefficients

The objective function is denoted as:

Min F(Pg) =f(x, u) )
Subjected satisfaction of nonlinear equality constraint:

g(x,u)=0 @)

and nonlinear inequality constraints are:

hix, u) <0 (4)
um'in <u< ymax (5)
XMin <y < yMmax (6)

F(Pg) is the total cost function for n of generators depend on the actual power of each generator and
the cost coefficients for each generator too, which is obtained by experience or by calculation by
least mean square, f (x, u) is the scalar objective, g (X, u) acts nonlinear equality constraints
(equations of load flow), and h (x, u) is the nonlinear inequality constraints of vector arguments X,
u, where X is the vector of dependent variables (the bus voltage and phase angles magnitudes), u is
a vector of control variables (as active power generation and active power flow), Selvakumar and
Rajan, 2013.

3. THE CONTINUOUS GENETIC ALGORITHM (REAL-CODED)

The binary genetic algorithm is imagined to solve many optimization problems that stump
traditional methods. But, what if it will be tried to resolve a problem where the variables values are
real and it needs to describe them to the full machine accuracy? In such a problem, individual
variable needs several bits to represent it. The size of the chromosome is large, if the number of
variables are large. Of course, zeros and ones are not the alone method to represent the variable.
One could, in principle, use any illustration possible for encoding the variable. When the ariables
are normally quantized, the binary genetic algorithm fit kindly. However, while if the variables are
reals, it is further logical to represent them by floating-point numbers (real number). In addition,
since the binary genetic algorithm has its accuracy limited by the binary representation of
variables, using floating-point numbers in its place simply permits representation to the machine
accuracy. This Real-Coded Genetic Algorithm also has the benefit of needful less storage than the
binary genetic algorithm because a single floating-point number represents then variable other of
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(Nbits) integers. The real-coded genetic algorithm (RCGA) is naturally quicker than the binary
genetic algorithm, as the individuals do not have to be decoded prior to the evaluation of the
objective function (cost function). Most of references name this kind of the genetic algorithm a real-
coded genetic algorithm. But, the term continuous is used rather than real-coded genetic algorithm
to avoid confusion between real and complex numbers.

3.1 Components of a Continuous Genetic Algorithm

The flow chart shown in the Fig. 2 offers a "large picture” summary of a continuous genetic
algorithm. Every block is illustrated in detail in the following sections. This continuous genetic
algorithm is very like to the binary genetic algorithm, but the main difference is the fact that
variables are shorter denoted bybits of ones and zeros, but in its place by floating-point numbers
over whatsoever range is regard suitable. However, this simple fact adds some nuances to the
implementation method that must be onsidered in carefulness way. In particular, show different
crossover and mutation operators are shown, Mitchell, 1999.

3.1.1 The variables and Cost Function

A cost function generates and output from set of chromosomes (input variables). The cost function
may be an experiment, a game, or a mathematical function. The aim is to adapt the output in some
required style by discovering the suitable values for the input variables. The aim is to solve some
optimization problem where minimum (optimum) solutions are searched for in regard to the
variables of the problem. The term fitness is widely used to filter the output of the objective
function in the genetic algorithm works. Fitness means a maximization problem. Although fitness
has nearer association with biology than the term cost, we have assumed the term cost, later most
of the optimization literature deals with minimization, hence cost. They are equivalent. If the
individual has (Nvar) variables (a N-dimensional optimization problem) given by (bs, b, ......... ,
bnvar), then the individual is written as a matrix with (1xNvar) components so that, Holland, 1975:

chromosome = [by, bz, bs, ........., bavar] (7

In this case, the values of variable are denoted as real numbers. Every individual has cost value
found by calculating the objective function (f) at the variables (b1, b, ......... , bNvar).

cost = f (chromosome) = f (b, by, ......... , bNvar) (8)
Egns. (7) and (8) along with appropriate limitations constitute the problem to be resolved.

3.1.2 Initial Population

The genetic algorithm begins with a set of individuals known as the population. It has been defined
initial population of (Nind) individuals. An array acts the population with every row in the matrix
being a (1xNvar) arrays (individual) of continuous values. Assume an initial population of (Nind)
individuals, the full array of (NindxNvar) arbitrary values is created. All variables are regulated to
have values between (1) and (0), the range of an identical casual number generator. The variable
values "un-normalized™ in the cost function, Holland, 1975.
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3.1.3 Selection

In this operator, two individuals are chosen from the breeding pool of (Nkeep) individuals to
generate two new children (offspring). Combination take place in the breeding population tilled
(Nind — Nkeep) Offspring are born to change the rejected individuals. Combining individuals in a
genetic algorithm can be as different and interesting as coupling in and animal species. Tere are
many selection approaches, like Roulette-Wheel, Rank-Weighted Roulette-Wheel, and Tournament
Selection.

3.1.4 Crossover

As for the binary algorithm, two parents are selected, and then children are some mixture off these
parents. Several altered methods haven been tried for crossing over in continuous genetic
algorithm. The easiest approaches select one point or more in the individual to mark as the
crossover points. Then the variable among these repoints care only changed between then dad and
mam. The blending method is used with RCGA, Holland, 1975.

3.1.5 Mutation

Random mutations changes a certain percentage of the genes in the list of individuals. Sometimes
it can be found way working so well. If care is not taken, the genetic algorithm can converge too
fast into one area of the cost surface. If this region is in the area of the global minima, that is well.
Though, some functions, for instance the one showing, have several local minima. If nothings is
done to resolve this propensity to converge fast, it might end up in a local minima instead of a
global minima. To prevent this problem of very quick convergence (premature convergence), the
routine is forced to discover other regions of the cost surfaceby arbitrarily presenting alterations, or
mutation, in some of the parameters. Points of mutation are arbitrarily chosen from the (Nvar XNind),
over-all number of genes in the matrix of population. Increasing the number of mutations means
increasing of the freedom of algorithm to search out of bounds the current area of parameter space.
For the binary genetic algorithm, this amounted to only altering a bit from a (1) to a (0), and vice
versa. The mutation basic way is not much more complex for the continuous genetic algorithm
The best mutation rate is between 5% to 20% range, Holland, 1975.

4. IMPLEMENTATION AND RESULTS
4.1 '30 Bus-Bars' Typical Test System Results

The IEEE 30-bus standard system contains (30) bus bar, (6) generator buses including the slack bus
and (26) load buses, and (41) transmission lines. This system will be used first to test the continuous
genetic algorithm method to solving OPF problem. If the test is successful, this method will be
applied on Super Iragi National Grid (400 KV). Fig. 3 shows fitness value which is inversely
proportional to the total generation cost for "30 bus-bars™ typical test system to minimize the total
cost of generation and regulate the real and reactive power of generator and the voltage magnitude at
each bus bar. Control variables are generator real power (excluding slack bus), reactive power of
each generator buses, and voltage magnitudes of load buses. Table 1 shows the output of real power
generation, reactive power generation, total production cost, transmission losses and active power,
reactive power for all generators. The executed results are more suitable and best compare with
other papers. Fig. 4 shows the output real power of generators in MW and the minimum and the
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maximum of one. The red column is maximum active power, the blue column is the minimum
active power and the green column is the actual active power.

4.2 Practical System (Super Iragi National Grid, 400 KV)

Finally, the genetic algorithm has been applied to the optimal power flow problem for Super Iraqi
National Grid 400 KV. The Super Iragi National Grid contains (35) buses consisting of (18) buses
generating plant excluding the slack bus and (16) load buses and (52) transmission lines. The real
data of Iraqi network has been taken from Iraq operation and control center. In practical system the
generation power stations used four types of fuels, Crude oil, Natural gas, Heavy oil and Gas oil. So
the cost coefficients will be different according to the type of fuel that used to each generator. Table
2 shows the output of real power generations, total power losses, total output power generation for

each generator and the total production cost. Fig. 5 shows the output real power at each generator in
Super Iragi National Grid, also the maximum and minimum of each generator. The red column is
maximum active power, the blue column is the minimum active power and the green column is the
actual active power.

5. CONCLUSIONS

In this paper a Real-coded Genetic Algorithm (RCGA) based approach to solve the optimal
power flow (OPF) problem. This method has been successfully implemented on the typical 30-bus
IEEE test system and on the practical system (Super Iragi National Grid) system (400 KV).
Genetic algorithm has been modeled to be flexible to any practical power system with giving any
input bus data, transmission lines data and the cost coefficients of the generators of the power
plants. Genetic algorithm has been chosen because it showed the best results (minimum cost)
compared with other methods. The executed results are superior in comparison with IEEE data sheet
of 30-bus IEEE test system and the recent existing papers and literatures to solve OPF problem, also
on the practical system Super Iragi National Grid (400 KV). Genetic Algorithm determined the best
optimal configuration of control variables (all real power of generators buses excluding slack bus
and reactive power of generators) to achieve minimum objective function, which is the production
cost (total generations fuel cost) and minimize the transmission losses. VVoltages magnitudes of all
load buses are enhanced within allowed limitation and maintaining system security. In this thesis
the cost coefficients of Iragi National Power stations have been calculated according to Least Square
Method. Cost coefficients obtained to four types of fuels which used in the generation power
stations, cheapest fuels (Crude oil), cheap fuels (Natural gas), expensive fuels (Heavy oil) and the
most expensive fuels (Gas oil). In construction each power station can operate on all types of fuels
due to the flexibility of genetic algorithm to in force extent range of constrained and ability optimize
cost curve.
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7. LIST OF SYMBOLS
F(Pgi): total generation cost.
Pci: Active power of generator.
ai, Bi, v;: cost coefficients.

f (x, u): the scalar objective.
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g (X, u): nonlinear equality constraints (equations of load flow).
h (x, u): nonlinear inequality constraints of vector arguments X, u.

X: the vector of dependent variables.
Nvar: number of variables.
bl, b2,..., biny: chromosomes.

Journal of Engineering
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Figure 1. Tree Diagram Indicating OPF Methodologies.
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Figure 2. Flow chart of a Continuous Genetic Algorithm.
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Figure 5. Active power generation of 35-bus SING Practical System.

Table 1. Active Power Generation, Active Power Losses and e Production Cost of 30-Bus IEE.

Gen. No. Pc (MW) Qg (MVar)

1 177.8193 -2.4729

2 49.1225 29.4046

5 20.9021 26.1004

8 20.9723 16.5207

11 12.6509 15.1844

13 11.4115 8.4165
Total active power (MW) 292.8786

Active power losses (MW) 9.4786

Production cost ($/h) 801.8674
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Table 2. Active Power Generations, Active Power Losses and the Production Cost of 35-Bus SING
Practical System (400 KV).

Name Nor oy | Qe (Mvan
KUPT 1 2440 -221.80
HMMD 3 320.5 -433
GNENW 4 267.8 54.9
SBJ 5 245.9 -84.27
GBG 6 158.8 -65.21
TAZG 8 189.8 78.1
GKR 9 112.4 -11.362
GQD 14 640.1 107.61
HHD 20 137.8 62.74
MUSP 22 399.4 -47.18
MUSG 23 216.1 -87
GKHER 25 246 -23
DWANG 26 154.2 10.82
SNS 28 393.3 52
AMRG 29 85.2 -15
HRTH 31 126.4 -20
GKA 32 135.3 9
RMUL 33 567.2 105.6
SHBR 35 220.6 -103.8
Total active power (MW) 7056.8
Active power losses(MW) 64.003
Production cost ($/h) 213086.538
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