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ABSTRACT

In the present work a theoretical analysis depending on the new higher order
element in shear deformation theory for simply supported cross-ply laminated plate is
developed. The new displacement field of the middle surface expanded as a
combination of exponential and trigonometric function of thickness coordinate with
the transverse displacement taken to be constant through the thickness. The governing
equations are derived using Hamilton’s principle and solved using Navier solution
method to obtain the deflection and stresses under uniform sinusoidal load. The effect
of many design parameters such as number of laminates, aspect ratio and thickness
ratio on static behavior of the laminated composite plate has been studied. The modal
of the present work has been verified by comparing the results of shape functions with
that were obtained by other workers. Result shows the good agreement with 3D
elasticity solution and that published by other researchers.
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1. INTRODUCTION:

Composite materials are so necessary in many engineering applications, as
vehicles parts, aero structures and medical devices industries. With the wide use of
composite plate in the modern industry, static and dynamic analysis of plate structure
under different types of loads and different boundary conditions become a main part
in design procedure. In the few past years, many researchers resorted to the
development of many theories to clearly predict the response of laminated plate
composite material. Many researchers had studied static and dynamic analysis of
composite plate by using higher order shear deformation theory, and other researchers
have studied the static deflection and stresses of composite plates subjected to
different uniform loads.

Fan and Lin, 1998, used an analytical solution of rectangular laminated plates by
higher order theory. On the basis of the Reddy's higher-order theory of composites,
this paper introduces a displacement function and transforms its three differential
equations for symmetric cross-ply composites into only one order differential
equation generated by the displacement-function. Which property is chosen, both
solutions are obtained, namely, Navier-type solution of simply supported rectangular
laminated plates and the Levy-type solution with the boundary condition, where two
opposite edges are simply supported and remains are arbitrary. The numerical
examples show that the results coincide well with the existing results in the
references, thus validating that the method is reliable. The higher Order theory of
Reddy is simpler in calculation but has higher precision than the first order shear
deformation theory because the former has fewer unknowns than the latter and
requires no shear coefficients. Pervez, Al-Zebdeh and Farooq, 2010, studied the
effects of bboundary conditions in laminated composite plates using higher order
shear deformation theory. The applicability of a modified higher order shear
deformation theory to accurately determine the in-plane and transverse shear stress
distributions in an orthotropic laminated composite plate subjected to different
boundary conditions has been extended. A simpler, two-dimensional, shear
deformable, plate theory accompanied with an appropriate set of through-thickness
variations, is used to accurately predict transverse shear stresses. Finite element code
was developed based on a higher order shear deformation theory to study the effects
of boundary conditions on the behavior of thin-to-thick anisotropic laminated
composite plates. The code was verified against three dimensional elasticity results.
The study also compared the stresses and deformation results of higher order theory
with those obtained using commercial software such as LUSAS, ANSYS and
ALGOR. Mantari, 2012, used a new higher order shear deformation theory for
sandwich and composite laminated plates. The proposed displacement field, which is
“m’ parameter dependent, is assessed by performing several computations of the
plate governing equations. Therefore, it has been found that the results obtained are
accurate and relatively close to 3D elasticity bending solutions. Plate governing
equations and boundary conditions are derived by employing the principle of virtual
work. The Navier-type exact solutions for static bending analysis are presented for
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sinusoidal and uniformly distributed loads. Mantari and Soares, 2012, studied
bending analysis of thick exponentially graded plates using a new trigonometric
higher order shear deformation theory. An analytical solution of the static governing
equations of exponentially graded plates obtained by using a recently developed
higher order shear deformation theory (HSDT) is presented. The mechanical
properties of the plates are assumed to vary exponentially in the thickness direction.
The governing equations of exponentially graded plates and boundary conditions are
derived by employing the principle of virtual work. A Navier-type analytical solution
is obtained for such plates subjected to transverse bi-sinusoidal loads for simply
supported boundary conditions. Results are provided for thick to thin plates and for
different values of the parameter n, which dictates the material variation profile
through the plate thickness. The accuracy of the present code is verified by comparing
it with 3D elasticity solution and with other well-known trigonometric shear
deformation theory. Lan and Feng, 2012, presented an analysis of deflections and
stresses for laminated composite plates based on a new higher-order shear
deformation theory. Based on the new simple third-order shear deformation theory,
the deflections and stresses of the simply supported symmetrical laminated composite
plates are obtained by using the principle of virtual work .The solutions are compared
with the solutions of three-dimensional elasticity theory, the first-order shear
deformation theory and the Reddy’s higher order shear deformation theory. Results
show that the presented new theory is more reliable, accurate, and cost-effective in
computation than the first-order shear deformation theories and other simple higher-
order shear deformation theories.

Taher. etal. 2012, presented a theoretical formulation; Navier’s solutions of
rectangular plates based on a new higher order shear deformation model for the static
response of functionally graded plates. The mechanical properties of the plate are
assumed to vary continuously in the thickness direction by a simple power-law
distribution in terms of the volume fractions of the constituents. Parametric studies are
performed for varying ceramic volume fraction, volume fractions profiles, aspect
ratios, and length to thickness ratios. It has been concluded that the proposed theory is
accurate and simple in solving the static bending behavior of functionally graded
plates. Huu and Seung, 2013, developed a simple higher-order shear deformation
theory for bending and free vibration analysis of functionally graded plates. This
theory has only four unknowns, but it accounts for a parabolic variation of transverse
shear strains through the thickness of the plate. Equations of motion are derived from
Hamilton’s principle. Analytical solutions for the bending and free vibration analysis
are obtained for simply supported plates. The obtained results are compared with 3D
and quasi-3D solutions and those predicted by other plate theories. Results show that
the results obtained are the same accuracy of the existing higher-order shear
deformation theories which have more number of unknowns, but its accuracy is not
comparable with those of 3D and quasi-3D models which include the thickness
stretching effect.
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Mantari, et al. 2014 developed a new tangential-exponential higher order shear
deformation theory for advanced composite plates. This paper presents the static
response of advanced composite plates by using a new non-polynomial higher order
shear deformation theory (HSDT). The accounts for non-linear in plane displacement
and constant transverse displacement through the plate thickness, complies with plate
surface boundary conditions, and in this manner a shear correction factor is not
required. Navier closed-form solution is obtained for functionally grade plates (FGPS)
subjected to transverse loads for simply supported boundary conditions. The
optimization of the shear strain function and bi-sinusoidal load is adopted in this
publication. The accuracy of the HSDT is discussed by comparing the results with an
existing quasi-3D exact solution and several HSDTs results. It is concluded that the
present non-polynomial HSDT, is more effective than the well-known trigonometric
HSDT for well-known example problems available in literature.

In the present work, a new higher order displacement field in which the displacement
of the middle surface expanded as a combination of exponential and trigonometric
functions of the thickness coordinate and the transverse displacement taken to be
constant through the thickness, is proposed. Necessary equilibrium equations and
boundary conditions are derived by employing the principle of virtual work. The
theory accounts for adequate distribution of the transverse shear strains through the
plate thickness and the tangential stress-free boundary conditions on the plate
boundary surface, therefore a shear correction factor is not required. Exact solutions
for deflections and stresses of simply supported plates are presented.

2. THEORETICAL ANALYSIS:
2.1. Displacement Field:

In the present work, a new higher order displacement field in which the
displacement of the middle surface expanded as a combination of exponential
trigonometric function of the thickness coordinate with the transverse displacement
taken to be constant through the thickness was developed. The displacement field of
the new higher order theory of laminated composite plate is: Mantari, 2012

ow
u(x,y,z) =ulx,y) — z Gt f@8:(x.y)

d
v(x,y,2) = v(x,y) — z (%) + F(2)0,(x,y)

w(x,y,z) =w(x,y) (1a-c)
Where:

u(x,y),vix,y),w(x,vy),0:(x,y),0,(x,y) are the five unknown functions of middle
surface of the plate as shown in the Figl. While f(z) represents shape functions
determining the distribution of the transverse shear strains and stresses along the
thickness.
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The shape function derived by different researchers are given in Table (1),
actually the present modeling is a combination of exponential functions and
polynomial as shown in Fig2.

With the same Reddy and Liu and generalized procedure developed by
Sadatos and free boundary conditions at the top and bottom surfaces of the plate. The
new displacement field in this paper is:

mm ow . Mz mnz
u(x,y,z) =ulx,y) + z (791 —a) + sin—-en 0,
mm ow .z muz
v(x,y,z) =v(x,y)+ z (THZ —E) + sin—-en 0,
w(x,y,2) = wo (2a-c)
where the new function used in present work is:
f(z) = sin¥e$ +yz 3)
y = % ,m = constant
For small strains, the strain-displacement relations take the form:
du
Exx = &
av
&yy = ay
ow
€7 = E =0
1 (E)u N 6V> 1
fy =3 dy  ox) 2 Ve
1 (6u N 6w> 1
fz =5 \5z " ox) T 21

1 <6v N 6W) 1
E = —| — _ ) = —
Y2 2\0z ady/ 2 Vyz
(4a-f)
The strain associated with the displacement field by substituting Eq (2a-c) into Eqg.
(4a-e) to give:
Exx = €  ZEh + sinr e h €%
Eyy =y + ZEyy + sin% e n gy
mmnz
Yay = €y +Z€ %y + SiN % e n gy

mmnz
. nz mz,\ T —
Yxz = e, + (m * sin —+COS 7) ~en &2,

mnz

. Tz nz, w ——
Yyz = soyz +(m * sin —+Cos 7) ~en 83yz (5a-e)
Where:
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2.2. Hamilton’s principles:
The equation of motion of the new higher order theory will be derived using
the dynamic version of the principle of virtual displacements: Reddy, 2003.

0= [ 8U+8V—8K (7)
The virtual strain energy oU is:

h
SU=[[2{ [y 0x8 €5 + 0y, 8K, + 01, 86X, + 0,86, + 0,,8¢K,] 0xdy}dz] = 0
g

(8)
8U = [(N18 €9 + M1 8exy + P82, + NpSe), + My8ey, + Po5es, + Nebeg, +
M¢Sex,tPsSegy, + Q20¢), + ko8, + Q18¢€2, + ky6e3,—)0xdy = 0 9)
where:
(N;,M;,P;,Qi and Kj) are the result of the following integration:

(N, M, P) =30, [%, 0 F(1,zsimen )dz (i =126)
(Q1, K1)= Zk lfk 105 (1 (m * Sln—+ COS—)emf?Z) dz

mmnz

(Q2, K2)=XN- 1fk L 04 (1 (m * sm—+cos—)e n )dz
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The virtual strains are known in terms of virtual displacement in Eq.(5) and then
substituting the virtual strain into Eq.(9) and in integrating by parts to relative the

virtual displacement (du , 6v , dw) in range of any differentiation, then we get:

0= — 122 su+2 20 5o, — L M1y + 2280, + 5 26v+ 0250, —

66“226 +(”PZ<SE)2 +Zedu +6N66 + 50 T 50, + T 2050, + 2a —obw +
apP 6P

6_}76861 + 6_X6662 - TQ1861 - TQZ - K1891 - Kzsez] aXay = 0 (10)
The virtual work done by applied forces 6v is:

v = — [ qéw dxdy (11)

2.3. Equation of motion:
The Euler-Lagrange is obtained by substituting Eq.(8 — 11) into Eq.(7) and
then setting the coefficient of (6u , ov, dw , 801, 80, ) over Qp of Eq.(7) to zero

separately, this give five equations of motion as follows:

LNy L ONs _
ou: ~ T oy 0
ON ON
dvi—=+—2=0
dy
L 0%M, 0’M,
OwW: = T 62+2 +p—0
mTt 6M1 mTt 6M6 6P1 0Pg
001 o h ody ox ady
. mT 6M2 mn Mg ~ 0P, = 0Pg
882. h ay + h  ox + ay + Ix Q2 Kz — O (12& e)

The result forces are given by:

Ny Zk+1 01
N
k=1 fzk O2¢dz
Os

6M6

—ﬂm—m:o

Ne

k+1

k) _ n_
{kz} = { } f(2)0z (13a-€)
The plane stress reduced stiffness Q;; is:
Eq 12E2
Qi1 = T—v1igVzy » Q2 = a2 » Qg =

Qe6 = G12 » Qaa = Gz3, Q55 = Gy3 (14)

2P

1-vi2V2y

1-vi2V2y

From the constitutive relation of the lamina, the transformed stress-strain relation of
an orthotropic lamina in a plane state of stress is:

Oxx Q11Q12Q167 (Exx
{ny} = [Q12Q22Q26] {SYYI
Oxy Q16Q26Qe6d Yxy
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Oyz) _ [Q44 Q45] Yyz
{GXZ} ~ 1Qas  Qss {sz} (15)
The force results are related to the strains by the relations:

Ny A11A12A46] £ B11B12B16 &1 E11E12Eq67 (€1
IN2t = |A12A22A26 |4 €0 ¢ + |B12B22B2s | { €3 ¢ + |E12E22E26 | < €3
N¢ Ar6hz26A661 (£0)  LB16B2eBesl (g} E16Ez6E66] | €2
M; B11B12B16] €9 [D11D12D46 &1 F11F12F16] ef
IMyt = |B12B22Bos |4 €3 ¢ + [D12D22D26 |4 €2 ¢ + |F12F22F 26| < €3
Ms B16B26Bes eg (D16D26D66! | 1 F16F26F66] | &2
Pi) [E11E12E16 F11F12F16] (€1)  [HiaHizHie] (€
Py = E12E22E26 2 + |F12F22F 26 8% + |Hi2H32Hze S%
Ps E16E26E66 &2 Fi6F26F 66 £t Hi6Hz6Hee g2
Q1} Aus A45 3 n Jaa ]45] Y33zz
Q2 Ays A55 vS, Jas  Jssl(y3,
K _ [Jaa ]45 Ygz L44 L45 Y}3/z
(16a-e)
ko) Uas ]55 Yo, T Las L55 Y3,
Where:
h

= fi Ql] dz i= (1,2,4‘,5,6)

(Bly Dl]r El]! Fl]! Hl]) =
2MmTZ

Q”(z 72 sm(—)e b sm(—)e 3 z sin ( )e h i=(1,26)
2 h mmz
Jij = thu e h (m*sm—+cos—)dz
Ly = : Qi (E)z e (m % sin= + cos 7T—Z)Z dz i=(45) (17a-d)
J _Th U \h h h ’

2.4. Navier's Solution

In Navier's method the generalized displacements are expanded in a double
trigonometric series in terms of unknown parameters. The choice of the function in
the series is restricted to those which satisfy the boundary conditions of the problem
as shown in Fig 3. Substitution of the displacement expansion into the governing
equations should give a set of algebraic equation among the parameter of the
expansion.

Simply supported boundary conditions are satisfied by assuming the following
form of displacements: Reddy, 2003
u(x,y) = Xm=12n=1 Umn cos(ax) sin(By)
V(%) = Xm=12n=1 Vmn sin(ax) cos(By)
W(X,y) = Xm=12ne1 Wmn sin(ax) sin(By)
0:(%y) = Xm=12n=1 01mn cos(ax) sin(By)
0,(%y) = Xm=1 2Zne1 92mn sin(ax) cos(By) (18)
Where:
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=== == ( mn Vimn Winn, 01, 92,,,,) are arbitrary constants .

The Nawer solution exists if the following stiffnesses are zero, A1 = Big =
Di6 = E16 = F16 = Hig = Az = Byg = D¢ = Ez¢ = F6 = Hpp = Ays = Jus =
Lys =0

The equation of motion in Eq. (12) can be expressed in terms of displacements
by substituting the force and moment resultants from Egs.(16 and 17) and substituting
Eq. (18a-e) into Eq. (12a-e), the following equations are obtained:

{dij} = {Umn: an: Wmn» elmn: ezmn} (20)
{Fl]} = {0,0, an: 0,0} (21)

Where Q,,, are the coefficients in the double Fourier expansion of the transverse
load.

q(%,y) = Xm=12n=1 Qmn sin(ax) sin(By) (22)

Where the stiffness element of k;; are:
Cip = Apq0® — Aesﬁz
Ciz = A0 B — Aggar

C13 = B110L3 + BlzaBz + 2B66QBZ
mmn mm 2
Cig = —By1— h o? — E110¢ —Bes h — Eg6P

mn mn
Cis = —Bi3 T o — Eqza B_B66T o B — Egea B
Cz1 = Apa B — Agga B
Caz = —Azzﬁz - Aseaz
Co3 = By,aB + ByyB? 4 2Bgea®P

mTt mTt

Cz4 = —By; T o —EjaB—Bgg—— h o B —Egea B
2 mm , 2

Czs = —Ez,B _BseTa - Esea _BZZTB

C31 = B110(3 + BlZO(BZ + 2366O(BZ

C3y = By,a?B + ByyB> + 2Bgea®P
C33 = —]3110(4 - 2]3120(2[32 - D2234 - 4D660‘232

mTt mTt )
C34 -_ D11 h O( +D12—O(B + FlZO(B + F110( +2D66 h O(B + 2F66(XB
mTt
C35 =Dy — ¢ 2B + Fppa? B+D22TB + Fp, B3 +2D66T0( B? 4 Fee*B
mTt )
Cyr = _BllTa - E110( _BeeTB — Eg6B
mTt mTt
C42 = =By, T af —Epa B—BsaT o B —Egea B

mTt 3 mTtt 2 2 3 mTtt 2 2
C43 = DllTa +D12T(XB + F120(B + Flla +2D66T(XB + 2F66a8
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22 , mm m22
C44 = —D11 o —ZFllT(X — D66 h2 B 2F66 h B - H11O(
" " m?m? mm
— B66B° — Fg6B” — Ass Tz~ 2ss g Lss
22 m?22
Cys = —Diz—7 aB = ZFlzT o — Dgg—7— ap— ZFesT af—Hyaf
— Hee a B
mT mm
C51 = _B12 h (0.4 B ElZaB Bﬁﬁ h a B E66a B
mT 2
Csp = _EZZB _BseTa — Eg60? Bzz_B
Cs3 —D12 I 0‘ 2B + Fppa? B+D22TB + Fy,° +2D66 h 0‘ B2 + Fee®
m?m? m?*7? mn
C54:_D12TO‘B_2F12TO‘B_ 66 h2 O(B 2F66 h O(B HlZaB
— Hgea
2.2 m2 2

2 mn 2 2 mn 2 2 2
Css = =Dy, 12 B _ZFZZTB — De¢s 12 « _ZFeeTa — H3,B° — Heet

m?n? mn

_A44T_]44T_]44_L44

The main computer program has been built to carry out the analysis required for
solving the equations of motion and determine the deflection and stresses of
composite laminated simply supported plate using new higher order shear
deformation plate theory. A computer code written in (Matlab 13). The flow chart of
computer programming shown in Fig 4.

3-RESULT AND CONCULATION
3-1-Result

The stresses and deflection of composite laminated plate under uniform
sinsundiol load with different design parameters for simply supported boundary
condition, are analyzed and solved using Matlab 13 programming. To examine the
validly of the derived equation and performance of computer programming for
bending and stress analysis of composite laminated simply supported plate, a
comparison[ 3D elasticity &J.Raddy & J.L.Mantari ] for square plate [h=1 and a=b]
for two, three and four layers cross ply laminated simply supported on all edge, while
the mechanical properties of each layers are (E;=175 Gpa, E,=E3=7Gpa,
V12=V13=0.25, V3=0, 6122613:3.56[3&, 623:1.5Gpa).

Table 2 shows the non-dimensional maximum deflections and stresses for
symmetric and unsymmetric laminated plate in four layers (0/90/90/0) (a=b). The
results of the present theory and other theaories such as (Reddy and Mantari) are
compared with the three dimentional elasticity results (3D) for simply supported
symmetric cross ply laminated plate which shows that the present results are in good
agreement with 3D elasticity solution in deflection and normal stresses, However
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there is a considerable difference with 3D elasticity solution for (yy,) srtress for both
thick and thin plate.
To examine the comparion between symmetric and unsymmetric four layer laminated
square plate, Fig 5 showes the non dimensional central deflection versus side-to-
thickness (a/h) for (0/90/90/0) and (0/90/0/90) for the same mechanical properties
under sinsoidal load.

Table 3 shows the non-dimensional maximum deflections and stresses in three
layers (0/90/0) for the same square plate and mechanical properties .The performance
of the present theory is evaluated by calculating the error compared 3D exact solution.
The results of the present method give better results for shear stresses than in normal
stresses for thick plate (a/h=4). Additionally, for a/h>=10, the proposed theory
performs best in terms normal and shear stresses and the error decreases with increase
of (a/h) ratio.

Table 4 shows the maximum central deflection and stresses in three layers
(0/90/0) for the same mechanical properties of rectangular simply supported
composite laminated plates (b=3a) under sinusoidal load similar conclusion compared
with the square plate can be inferred.

Fig 6. Shows the non dimentional deflection versus side-to-thickness ratio
(ash) for cross —ply (0/90) laminated plate compared with Mantari 2012 and Reddy
2003. And Fig 7 shows the nondimentional deflection versus modules ratio (E;/E>,)
for cross —ply (0/90) compared with, the present work shows closed results with that
published with the above theories.

3.2. Conclusions

A new higher order shear deformation theory of simply supported composite
laminated plate is developed. The displacement of the middle surface is expanded as
combination of exponential and trigonometric functions of the thickness coordinate
and the transverse displacement taken to be constant through the thickness, the theory
accounts for adequate distribution of the transverse shear strains though the plate
thickness and tangential stress-free boundary conditions on the plate boundary
surface, therefore a shear correction factor is not required.

The results obtained from present theory give an accurate results for thick, and
moderately thick and thin plate when comparing it with that published from other
research.

Nomenclature

Symbol Discretion Units
A Plate dimension in x-direction m
Aij, Bij, Dyj , Ejj Extension, bending extension coupling, -
Fij  Hyj bending and additional stiffness
B Plate dimension in y-direction m
E,, E, E; Elastic modulus components GPa
Gi,, Gyz,Gy3 Shear modulus components GPa
H Plate thickness m

51



Number 2 Volume 23 February 2017 Journal of Engineering
K, K, Transverse shear force result(HSDT) N
M, M,, M, Moment result per unit length N.m/m
Ny, N,, Ng In-plane force result N/m
N Total number of plate layers -
Py, P,,Ps Result force per unit length N/m
Q., Q, Transverse shear force result N
X,Y,Z Cartesian coordinate system M
Zk » Zit1 Upper and lower lamia surface coordinates M
along z-direction
Exx » Eyy » Exy Strain components m/m
Yz Vyz Transverse shear strain m/m
Vi Poisson’s ratio components -
Oxx » Oyy » Oxy » Oyz Stress components GPa
Oxz
0 Fiber orientation angle degree
Umn » Vi s W, 9 Arbitrary constant -
¢2mn
u(x,y) Flexural displacement -
v(X,y) Flexural displacement -
w(x,y) Flexural displacement -
A mm -
h
B nrm -
- h -
Cij Stiffness matrix -
12,3 Principal material coordinate system -
W Deflection M
Z Distance from neutral axis M
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(x,y.z) - Laminate reference axes

Figure 1. Laminate geometry with positive set of lamina/laminate reference axes,
displacement components and fiber orientation.
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Figure 2. Shape strain functions of different shear deformation theories.
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Figure 3. Boundary condition for simply supported plate.
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Calculate transformed stiffness Q

Y

Calculate stiffness Ay, By, Dy, Eyg, Fy. Hy

A4

Calculate stiffhess matrix

|

Calculate deflection, stresses and
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Figure 4. The flow chart of computer programming.

56



Number 2 Volume 23 February 2017 Journal of Engineering

1.4 -

1.2 4

0.8 - —o—w/(0/90/90/0)

o | —m—w(0/90/0/90)

0.4

a/h

Figure 5. Nondimentionalized deflection versus side-to-thickness ratio (a/h) for
symmetrical cross-ply (0/90/90/0) and unsymmetrical cross-ply (0/90/0/90) laminate
under sinusoidal load
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Figure 6. Nondimentionalized deflection versus side-to-thickness ratio (a/h) for cross
—ply (0/90) for different modals
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Table 1. Different shear shape strain functions.

Modal f(z)function
i TZ
Touratier 1991 f(z) = — sin =
m h
Karma 2003 f(z) = ze~2@/W*
i mmz mmz
Mantari 2012 f(z) = sin : e h +yz
TZ mnz
Present f(z) =sin—en +yz

58



Number 2

Volume 23 February 2017

Journal of Engineering

Table 2. Non-dimensional deflections and stresses in four layers (0/90/90/0) square

102w, *(%E)*Ez *h3

ab h

oxx (35—
_ XXT\2'2 2

o

plate (a=b) under sinusoidal load, = prvon , Oxx = P , Oyy =
oy _oxyr(Gg-3)n? _ oyer(30.0)h _ oxr(030)+h
a?xqq Oxy = a?xqq » Oyz = axqo 1 Oxz = axqo
Method ah | W Diff | ox Diff | oy Diff | oy Diff | oy Diff | oy, Diff
% % % % % %
3D elasticity 1.954 | - 0.720 | - 0.663 | - 0.047 | - 0.219 | - 0.291 | -
Reddy 2003 |4 1.893 | 3.12 | 0.665 | 7.63 |0.632 |4.67 |0.044 |6.38 | 0.206 |5.93 |0.239 | 17.8
Mantari2012 1.921 11.68 |0.740 | 2.77 | 0.635 |4.22 |0.048 | 2.12 | 0.254 | 15.9 | 0.269 | 7.56
Present 1.909 | 2.30 | 0.682 |5.27 |0.635 [4.22 |0.045 | 4.25 | 0.216 | 1.36 |0.246 | 15.4
3D elasticity 0.743 | - 0.559 | - 0.401 | - 0.027 | - 0.301 |- 0.196 | -
Reddy 2003 |10 |0.715 |3.76 | 0.546 |2.32 |0.389 |2.99 |0.026 | 3.70 | 0.264 |12.2 |0.153 |21.9
Mantari2012 0.730 | 1.74 |0.561 | 0.35 | 0.395 | 1.49 |[0.028 |3.70 | 0.335 | 11.2 | 0.177 |9.69
Present 0.720 | 3.09 |0.549 [1.78 | 0.391 | 249 |0.027 |0 0.279 | 7.30 | 0.158 | 19.3
3D elasticity 0.517 | - 0.543 | - 0.308 | - 0.023 | - 0.328 | - 0.156 | -
Reddy2003 20 |0.506 |2.12 | 0539 |0.73 [ 0.304 [1.29 |0.023 |0 0.283 |[13.7 |0.123 | 21.1
Mantari2012 0511 | 1.16 {0543 |0 0.306 | 0.64 |0.023 |0 0.362 | 10.3 | 0.142 | 8.97
Present 0.507 | 1.93 [0.540 | 0.55 [ 0.305 | 0.97 |0.023 |0 0.299 [ 8.84 |0.127 | 185
3D elasticity 0.438 | - 0.539 | - 0.276 | - 0.021 | - 0.337 | - 0.141 | -
Reddy2003 100 | 0.434 | 0.91 | 0539 |0 0.273 | 0.79 |0.021 |0 0.290 |13.9 |0.112 | 20.5
Mantari2012 0.435 | 0.68 |0.539 |0 0.271 | 1.81 |0.021 |0 0.372 [ 10.3 |0.128 | 9.21
Present 0.434 1091 0539 |0 0.271 | 1.81 |0.021 |0 0.307 | 8.90 |0.115 | 18.4
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Table 3. Non-dimensional maximum deflections and stresses in three layers (0/90/0)

a_h

_ s _ oyyr(55¢)h?
square plate (a=b) under sinusoidal load, oy, = —5*—— .

a?xqq
Method ah | W Oxx Diff | oy, | Diff Oyxy Diff Oxz Diff Oyz Diff
% % % % %

3D elasticity - 0.755 | - 0.556 | - 0.0505 | - 0.282 | - 0.217 |-
Mantar2012 |4 1943 |1 0.823 |9.00 |0.497 | 13.8 | 0.0536 | 6.13 | 0.245 | 13.1 | 0.201 | 7.37
Karama2003 1944 |1 0.775 |2.64 |0.502 |9.71 |0.0516 | 2.17 | 0.220 | 219 | 0.191 |11.9
Present 1930 | 0.754 |0.13 | 0.503 | 9.53 |[0.0507 | 0.39 | 0.211 | 25.1 | 0.188 | 13.3
3D elasticity - 0.590 |- 0.288 | - 0.028 | - 0.357 | - 0.123 | -
Mantar2012 |10 [0.734 | 0.588 |0.33 |0.276 |4.16 | 0.028 |0 0.314 | 12.0 | 0.115 | 6.50
Karama2003 0.723 | 0.576 |2.37 |0.272 | 555 [0.028 |0 0.272 | 23.0 | 0.108 |12.1
Present 0.718 | 0.572 |3.05 |0.271 {590 [0.028 |0 0.258 | 27.7 | 0.106 | 13.8
3D elasticity - 0.552 |- 0.210 | - 0.023 |- 0.385 | - 0.094 | -
Mantari2012 |20 [0.511 | 0551 |0.18 |0.206 | 1.90 | 0.023 |0 0.331 | 14.0 | 0.090 |4.25
Karama2003 0.508 | 0.540 |2.17 |0.205|2.38 [0.023 |0 0.285 | 25.9 | 0.086 |8.51
Present 0.506 | 0.547 |0.90 |0.205|2.38 [0.023 |0 0.270 | 29.8 | 0.084 | 10.6
3D elasticity - 0541 |- 0.185 | - 0.0216 | - 0.393 | - 0.084 | -
Mantari2012 |50 [0.445|0541 |0 0.184 | 0.54 | 0.0217 | 0.46 |0.336 | 145 | 0.082 | 2.38
Karama2003 0.444 | 0.540 |0.18 |0.183 | 1.08 | 0.0216 |0 0.289 | 26.4 | 0.079 |5.95
Present 0.443 | 0.540 |0.18 |0.184 | 0.54 |0.0216 |0 0.273 | 30.5 | 0.077 |8.33
3D elasticity - 0539 |- 0.181 | - 0.0213 | - 0.395 | - 0.083 | -
Mantari2012 | 100 | 0.435 | 0.539 |0 0.181 |0 0.0214 | 0.46 | 0.337 | 14.6 | 0.081 | 2.40
Karama2003 0.434 | 0.538 |0.27 |0.180 | 0.55 | 0.0213 |0 0.289 | 26.8 | 0.078 | 6.02
Present 0.434 10539 |0 0.181 |0 0.0213 | 0 0.274 | 30.7 | 0.077 |7.22
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Table 4. Non-dimensional maximum deflections and stresses in three layers (0/90/0)

IOZWO*(%,g)*EZ*hS

square plate (a=b) under sinusoidal load (b=3a),w = pr Oxx =
oxt(§5-3)*h? e G e o oys+(30.0)+h
a?xqo » Oyy = aZxqg Oxy = azxqg »Oyz = axqq ' Oxz =
cxz*(O,g,O)*h
axqo
Method alh | W Diff |ox | Diff | oy | DIff | oy Diff | ox Diff | oy, Diff
% % % % % %

3D elasticity 2.820 |- 1.100 | - 0.119 | - 0.028 |- 0.387 |- 0.033 | -
Mantari2012 | 4 2.963 |5.07 |1.165|59 |0.103|134 [0.028 |0 0.333 | 13.95 | 0.037 | 12..0
Karama2003 2.683 |4.85 |{1.097|0.27 {0.104 | 12.6 |0.027 |3.57 |0.298 |22.9 |0.036 | 6.06
Present 2,664 | 553 |1.070|272 |{0.104|126 |0.027 |3.57 |0.285 | 26.35 | 0.035
3D elasticity 0.919 |- 0.725 | - 0.044 | - 0.012 |- 0.420 |- 0.015 | -
Mantari2012 |10 |0.892 | 2.93 | 0.719 | 0.82 | 0.041 | 6.81 | 0.012 |0 0.369 |12.14 | 0.018 | 20
Karama2003 0.876 |4.67 |0.704|2.89 | 0.040|9.09 [0.011 |8.33 |0.319 |24.04 | 0.018 | 20
Present 0.868 | 5.54 | 0.699|3.58 | 0.040|9.09 [0.012 |0 0.302 | 28 0.017 | 133
3D elasticity 0.610 |- 0.650 | - 0.030 | - 0.0093 | - 0434 |- 0.012 | -
Mantari2012 |20 | 0.603 | 1.14 | 0.648 | 0.30 | 0.029 | 3.33 | 0.0092 | 1.07 | 0.375 | 13.59 | 0.015 | 25
Karama2003 0.597 | 2.13 | 0.644|0.92 | 0.029 | 3.33 | 0.0092 | 1.07 | 0.323 | 25.57 | 0.014 | 16.6
Present 0.595 | 2.45 | 0.642|1.23 | 0.029|3.33 |0.0091 | 2.15 | 0.304 | 29.9 |0.014 | 16.6
3D elasticity 0.520 |- 0.628 | - 0.026 | - 0.0084 | - 0.439 |- 0.011 |-
Mantari2012 | 50 |0.520 |0 0.627 | 0.15 | 0.030 | 15.3 | 0.0085 | 1.19 | 0.376 | 14.35 | 0.014 | 27.2
Karama2003 0.519 [ 0.19 | 0.626 | 0.31 | 0.026 | 0 0.0084 | 0 0.323 | 26.42 | 0.013 | 18.1
Present 0.517 | 0.57 | 0.626 | 0.31 | 0.026 | O 0.0084 | 0 0.305 | 30.52 | 0.013 | 18.1
3D elasticity 0.508 | - 0.624 | - 0.025 | - 0.0083 | - 0.439 |- 0.011 |-
Mantari2012 | 100 | 0.508 |0 0.624 | 0 0.025|0 0.0083 | 0 0.376 | 14.35 | 0.014 | 27.2
Karama2003 0.508 |0 0.620 | 0.64 | 0.025| 0 0.0083 | 0 0.323 | 26.42 | 0.013 | 18.1
Present 0.506 [0.39 | 0.624 |0 0.025|0 0.0083 | 0 0.306 |30.29 | 0.013 | 18.1
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