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ABSTRACT

This paper aims to evaluate the reliability analysis for steel beam which represented by the

probability of Failure and reliability index. Monte Carlo Simulation Method (MCSM) and First
Order Reliability Method (FORM) will be used to achieve this issue. These methods need two
samples for each behavior that want to study; the first sample for resistance (carrying capacity R),
and second for load effect (Q) which are parameters for a limit state function. Monte Carlo method
has been adopted to generate these samples dependent on the randomness and uncertainties in
variables. The variables that consider are beam cross-section dimensions, material property, beam
length, yield stress, and applied loads. Matlab software has been adopted to generate these pseudo-
random variables dependent on its statistical characteristics such as coefficient of variance and
probability density function that gathered from a review of literatures.

Keywords: Reliability analysis, Monte Carlo Method, Matlab.
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1. INTRODUCTION

The design of engineering structures is usually associated with a significant level of uncertainties
due to limited information in the process of estimating the structural parameters. The impact of
uncertainties needs to be quantified and propagated to obtain the reliability of a structural system
(Morio & Balesdent, 2016). In practice, most engineering design of structures are based on
deterministic parameters and often do not consider the variations in the material properties and the
geometry of the structure. (Ebenuwa & Tee, 2019) stated that the determination of structural
performance based on the deterministic model is undoubtedly a simplification because physical
measurement always shows variability and randomness.

In many circumstances, it is impossible to describe the response of structural systems
mathematically because of these uncertainties. Even after finding a mathematical model to predict
the behavior of the system, there is no closed form solution for solving the equation. In such cases,
simulation is one of the most applicable techniques to acquire the required information. Simulation
is a special technique to approximate the quantities that are difficult to obtain analytically. Amongst
many of simulation methods, the Monte Carlo simulation method is one of the well-known and
common procedures in solving complex engineering problems (Melchers & Beck, 2017).

Theory and methods for structural reliability have been developed substantially in the last few
years and they are actually a useful tool for evaluating rationally the safety of complex structures
or structures with unusual designs (Gordini, et al., 2018). Recent evolution allows anticipating
that their application will gradually increase, even in the case of common structures (Cardoso, et
al., 2008).

The behavior of steel beam is generally assessed based on their strength and their elastic
deformations In addition to the deterministic aspects that discussed in mechanics of material, the
strength and deformation of steel beams have random parts due to the scatter in the dimensions,
material properties, and the applied load. These random aspects can be simulated in terms of the
probability density functions that either obtained from real experimental data on the member scale
level or from the simulation that based on data of sectional level (Ghali, et al., 2009).

This paper starts with data gathering from literature for the variation in cross-section dimensions
of frame elements, the variation in the elastic modulus and yield stress of the material, and the
scatter in the applied loads. Based on these data, it has been found that the variation in the sectional
dimensions, elastic modulus, yield stress, and dead loads are normally distributed while the
lognormal and extreme type | (Gumbel) can be adopted for the variation in the length and live
loads respectively.

Monte Carlo simulation has been used to generate a sample for the parameters that effected on the
beam behavior. Two samples have been generated first one is the demand sample while the second
one is the capacity samples. These samples had been presented and summarized in the form of
histograms. The generated sample has been statistically tested with the y? test. Base on limit state
function, these samples have been used to estimate the probability of failure for a steel beam. This
study innovatively concerns with the randomness in structural parameters and how these
randomness effects on structure reliability by determining the probability of failure and reliability
index.
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2. UNCERTAINTY IN ENGINEERING SYSTEM

Every structure may contain some failed elements which lead to the whole system failure. The
probability of failure for the system can be predicated established on the failure of its elements.
Hence, it is significant in reliability analysis to determine the probability of system elements
failure. First and second-order of reliability method and Monte Carlo methods can be used to
analyze the reliability of elements (Mohammad Masoud & Medi Moudi, 2012). For the statically
determinate simply supported beam of this paper, the element failure is equivalent to the system
failure.

The uncertainties included in the building engineering can be categorized according to their source
into natural hazards and man-made hazards. Natural hazards may be resulted by wind, seismic,
temperature differentials, snow load, or ice accretion. The natural variations of structural
properties such as strength, stiffness and loads can be classified within the natural hazards. On the
other hand from the structural point of view, the man-made hazards can be subclassified into two
classes: from within the building process and from outside the building process. The second one
includes uncertainties due to fires, gas explosions, collisions, and similar causes, while the first
one includes uncertainties due to acceptable practice and those caused by departures from
acceptable practice (Nowak & Collins, 2000). This paper concerns with the natural hazard aspects
due to change in stiffness, strength, and the applied loads of simply supported beam.

3. PROPOSED STRUCTURAL SECTIONS

In steel beam floor system, the members that are oriented parallel to the span of the slab system
are usually referred to as beams, and the members that support the beams and are oriented
perpendicular to the span of the slab system are usually called girders (Al-Zaidee & Al-Hasany,
2018).

This paper considers the reliability analysis of the interior girder for the floor system shown in Fig.
1. The floor system consists of a concrete slab with a corrugated metal deck that supported by
four-floor beams that in turn are supported by three girders. The proposed sections for different
members indicated in Fig. 1 below has been preliminarily selected based on traditional design
requirements (AISC 360, 2010). Uniformly distributed pressures of 2kPa and 2.87 kPa have been
adopted for the superimposed and live loads respectively. According to the traditional one-way
analysis, these loads are transformed into line loads supported by the floor beams. The reactions
from the floor beams are applied as point loads on the supporting girders. For the interior girder,
this analysis process leads to concentered forces of 118.76 kN and 59.4 kN for dead and live load
reactions respectively. In subsequent simulation analysis, the live load reaction has been used as
the mean value while the dead load reaction has been slightly modified to be considered as a mean
value.

Concrete Slab
Floor Beam
Steel Girder

= \ | g |
a- Three-dimensional view. b- Section view for the interior girder.

Figure 1. Floor system 3D views.
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4. LIMIT STATE FUNCTIONS (PERFORMANCE FUNCTIONS)

In this paper, the serviceability limit state deflection function and ultimate moment limit state
function have been studied for the beam. Traditionally, when a beam is progressively loaded, the
deflection linearly increased at an elastic stage (Jabir, et al., 2017) and the ultimate limit states
can be used to determine the safety margin. Consider the moment carrying the strength of the beam
to indicate the capacity, R, and the applied moment at the most critical mid-span section to indicate
the demand, Q, the performance function can be written as follows:

gR.Q)=R-Q 1)

The beam is classified safe when g > 0 while it is unsafe when g < 0. Mathematically, the
failure probability Pf is equal to the probability of g < 0:

P, =P(g <0)=P(R—Q <0) @)

r
"""" Strength

Load effect
= == = Performance

Density value

Failure probability
|\ J/

L |
Origin 0

.
-y 1

Random value

Figure 2. PDFs of load, resistance, and safety margin (Ayyub & McCuen, 2011).

If R and Q have probability density functions (PDF) indicated in Fig. 2, the quantity R-Q would
be a random variable also with its own PDF. As shown in Fig. 2, the probability of failure would
correspond to the shaded area.

In general, the performance function, g, may be a function of many variables including loads,
influence factors, strength parameters, material properties, dimensions, analysis factors, and so on.
A direct determinate of P, from Eq. (2) is relatively difficult. Therefore, it would be more
appropriate to express structural safety in the expression of a reliability index, £, which can be
described as the shortest distance from the origin to the failure limit. When R and Q are
uncorrelated the reliability index, B, would be the inverse of the coefficient of variation of the Eq.
(1) (Nowak & Collins, 2000):

B=—¢7" (Pr) or Pr = o(=p) @)

Theory and methods for structural reliability that have been originally developed as a useful
facility for determining rationally the safety of complicated and unusual structures or structures
with unusual designs (Cardoso, et al., 2008).
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From a statistical point of view, the PDF of g(R, Q) and 8 can be determined either analytical or
based on a simulation process. Monte Carlo technique has been used for a simulation to determine
the reliability index g numerically see Section 6. The analytical determination of £ has been
presented in Section 7.

In this study, the reliability analysis for beam has been studied with two scenarios, first by
considering only the applied load as constant by using their mean values and other parameters as
variables due to randomness, the second scenario by considering loads as variables and other
parameters as constant using their mean values.

5. RANDOM VARIABLES WITH THEIR STATISTICAL PARAMETERS

5.1 Geometric Characteristics of Hot-Rolled Profiles

In their work (Zdenek Kala, et al., 2009) gathered 369 valid observations for the variables
h, by, by, t1, t,1, t,5, indicated in Fig. 3 from a manufacturer and analyzed the data statistically to
evaluate the suitability of the normal distribution as a governing distribution for these dimensions.
As indicated in Table 1, they presented the relative (non-dimensional) geometrical characteristic
as ratios of the real measured to the corresponding nominal dimension.

a- Geometric characteristics h, b, tq, ty1, to3. b- Geometric characteristics by, b,.
Figure 3: Tolerances on geometrical shape and dimensions.

As indicated in Table 1. (Zdenek Kala, et al., 2009) have noted that for a symmetrical cross-
section the statistical characteristics of quantities t,, and t,, are approximately identical and that
there is a small difference between statistical characteristics of the quantities b, and b,. Therefore,
they adopted a single random variable of t, for each of t,, and t,, and a random variable of b for
b, and b, in the reliability analysis.

Table 1. Statistical analysis of geometric characteristics.

Thickness Mean value Standard deviation

Section depth h 1.0009 0.0044233
Section width b, 1.0124 0.010103
Section width b, 1.0154 0.0093995
Section width b 1.0139 0.009868

Web thick. t, 1.0540 0.039053
Flange thick. t,; 0.9878 0.043528
Flange thick. ¢t,, 0.9977 0.047625
Flange thick. t, 0.9927 0.045859

Depending on the nominal dimensions of wide flange steel sections and the non-dimensional
variations indicated Table 1 above, randomness for the moment of inertia have been simulated in
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this paper using a Matlab code and suitable random number generators. The four-moment
statistical characteristics of the mean, the variance, the coefficient of skewness, and the coefficient
of kurtosis have been determined and a normal distribution probability density function, pdf, with
parameters indicated in Table 2 has been assumed for the generated data for the moment of inertia.
Adequacy of the proposed pdf has been checked using the y? goodness of fit test.

Table 2. Statistical characteristic for the moment of inertia.

Property | Mean/nominal | Cov | Distribution type
I 1.0 0.035 Normal

5.2 Applied Loads

In addition to its own weight, W), the interior girder is subjected to two concentrated loads Fp,
and F, transformed from the supported floor beams. According. (S.G.Buonopane &
B.W.Schafer, 2006), the dead load has a normally distributed pdf while the live load follows an
extreme type | (Gumbel) distribution with statistical characteristics illustrated in Table 3.

5.3 Yield Stress and Residual Stresses

Due to the effects of the residual stresses, the yield stresses will vary through the section of hot
rolled steel beams. According to (J. Kala & Z. Kala, 2005), this variation can be described based
on parameters and statistical distributions indicated in Table 4. Based on these data, a Matlab
random number generator has been used in this paper to generate a sample of yield stresses values
that have been used in subsequent calculations of the nominal flexural strength, M,,, of the interior
girder.

Table 3. Statistical characteristic for loads.

Rapdom Nominal Mean cov Star)dgrd Distribution References
variables load deviation type
W, kN/m | 2.827 | 103W,=2.912 | 008 | 0.233 Normal (M'S'Q:I D;‘(ST;‘)W""”' et
1.03F, (M.Sigit Darmawan, et
Fp kN 118.76 199 323 0.08 9.786 Normal al., 2013)
(S.G.Buonopane &
F, kN 59.4 59.4 0.1 5.94 Gumbel B.W.Schafer, 2006)

Table 4. Statistical characteristics of the yield stress of steel (J. Kala & Z. Kala, 2005)

No | Quantity Name of a _random 'Ty_pe o_f Dimensions Mean Standgrd
guantity distribution value deviation
1 E, Flange yield strength | Normal (Gauss) MPa 297.30 16.80
2 E, Web yield strength | Normal (Gauss) MPa 307.30 16.80

5.4  Modulus of Elasticity and Length of the Element

Based on (S.Zhang & W.Zhou, 2012), and (Mohammad Masoud & Medi Moudi, 2012)
parameters and statistical distributions indicated in Table 5 has been used in this paper to simulate
a sample data for the elastic modulus and beam length. Matlab random generators with the
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corresponding distributions have been used to generate sample data for subsequent deflection and
strength analysis.
Table 5.Statistical features of random variables.

Random variables Mean/ Nominal cov Distribution type
Modulus of Elasticity E MPa 0.993 0.034 Normal
Length m 1 0.07 Lognormal

6. MONTE CARLO METHOD TO GENERATE SAMPLES

In this paper, all simulation processes for strength, serviceability, and reliability analyses have
been achieved through the Monte Carlo method that has used digital computers to generate pseudo-
random sampling for variables of dimensions, loads, elastic modulus, yield stress, and the girder
span. Each variable has been generated based on preselected statistical parameters and distribution
as discussed in Section 5. This section presents the application of the method for the simulation of
strength and serviceability. The reliability aspects have been discussed in Section 7.

The method is based on running the model many times as in random sampling. For each sample,
random variates are generated on each input variable; computations are run through the model
yielding random outcomes on each output variable. Since each input is random, the outcomes are
random (Geng & Dean, 2017). The method may be described as a means of solving problems
numerically in mathematics, physics, and other sciences through sampling experiments (Morio &
Balesdent, 2016).

In each simulation experiment, the possible values of the input random variables x =
(%1 .x5.....x,) are generated based on predefined distribution and parameters. Then the values
of the response variable, y, are determined through the performance function y = g(x) at the
samples of input random variables. In this manner, a set of samples for the response variable y
would be available for the subsequent statistical analyses to estimate the characteristics of the
response variable y (Thomopoulos, 2013).

The problem to be simulated may have a probabilistic or deterministic form. In the probabilistic
form, the actual random variable or function appearing in the problem is simulated, whereas in the
deterministic form an artificial random variable or function is first constructed and then simulated
(Elishakoff, 2017). The interior girder of this paper can be classified as a deterministic form
problem where the stiffness, strength, and stability response functions have been determined from
the strength of the material and the design of steel structures.

For subsequent reliability analysis, the Monte Carlo method is used to generate samples for the
resistance and the demand of the interior girder.

6.1 Analysis of Demand

As it is a statically determinate structure, the traditional equations Eq. (4) and Eq. (5), are used to
calculate the deflection and moment at the mid-span of the girder as indicators on the demand
aspects of serviceability limit state.
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S5WL* Fa?b?
Be= > (@
384E1 4 ' 3EIL
1=
W2
M = T + F(L+D) a (5)

Matlab codes have been used to generate pseudo-random numbers based on the following

functions (Ang & Tang, 2007):

e normrnd: to generate normal random variables for the moment of inertia, the modulus of
elasticity, the yield stress, and the dead load.

e Jognrnd: to generate lognormal random variables for the beam span.

e evrnd. to generate extreme type | random variables for the live load.

As mention earlier, there are two scenarios to generate the demand sample. The first scenario

considers the uncertainties in dimension, length, and modulus of elasticity as indicated in Matlab

codes illustrated in Table A-1 for deflection and Table A-2 in Appendix A for the moment. The
second scenario considered the uncertainties in loads and their position using Matlab codes
presented in Table A-3 and Table A-4 for deflection and moment respectively. A samples size,

N, of 10000 has been adopted in all Matlab codes.

The statistical properties for the obtained samples from the simulation process have been presented

and discussed below:

e For the first scenario, the coefficient of variance, standard deviation/mean, for deflection
and moment was equal to 0.071 and 0.007 respectively and each of them has a lognormal
probability density function as illustrated in Fig.4 and Fig.5. These results indicate that the
deflection is more sensitive than the moment for the randomness in dimensions and material
properties.

3500 T T T T T T T T M

25.7673
3000

2500
4.4876

2000

Frequency

1500 Z2.1185

1000

0.3625
500

0

22 24 26 28 30 32 34 36 38 40 3.2195
Deflection for the steel beam (mm)
a- Histogram for deflection of the girder. b- Moment characteristics.

Figure 4. Histogram and the statistical characteristics for the mid-span deflection due to
randomness in dimensions, length, and material property.
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3500 T T T T T T T M mom =

574.7891

v_mom =

l6.8202

P
=
=
=}

S5 mom =

Frequency
-
o
3
f=]

4.1014

1000

Bl mom =

500 0.4071

BZ mom =

560 565 570 575 580 585 590 595 600
Moment for the steel beam (kN.m) 3.3148

a- Histogram for the moment of the girder. b- Moment characteristics

Figure 5. Histogram and the statistical characteristics for the mid-span moment due to
randomness in dimensions, length, and material property.

e For the second scenario, the coefficients of variance were equal to 0.145 and 0.09 for the
deflection and the moment respectively with lognormal distributions type as shown in Fig. 6
and Fig. 7. The deflection and the moment seem more sensitive to the randomness in load than
the randomness in the dimensions and material properties of the first scenario. In the two
scenarios, the deflection is more sensitive to the randomness of the input variables.

M =

4000
3500 29.7352
3000 v =
18.7060
- 2500
2
S 2000 s =
3
'-t 1500 4.3253
1000 Bl =
500 0.4653
0 B2 =
15 20 25 30 35 40 45 50 55 60
Deflection for the steel beam (mm) 3.4641
a- Histogram for deflection of the girder. b- Moment characteristics.

Figure 6. Histogram and moment characteristics for deflection data due to randomness in self-
weight, applied load, and their position.

129



Number 1 Volume 26 January 2020 Journal of Engineering

M mom =

575.6777

v_mom =

2.68%4e+(

S5 _mom =

Frequency

)
o
(=1
=

51.8617

Bl mom =

0.3127

B2_mom =
400 450 500 550 600 650 700 750 800 850 900
Moment for the steel beam (kN.m) 3.2048

a- Histogram for deflection of the girder. b- Moment characteristics.

Figure 7. Histogram and moment characteristics for moment data due to randomness in self-
weight, applied load, and their position.

6.2  Analysis of Resistance

The sample data for the deflection capacity and moment resistance have been simulated using
Matlab functions similar to those mentioned in Section 6.1. For deflection, the capacity is
represented by the maximum allowable deflection, while for the moment, the capacity is
represented by elastic moment based on the assumption that the girder has no sufficient lateral
support. The statistical characteristics for the resistance samples are presented and discussed
below:

e For maximum allowable deflection:
The random sample for the limit state deflection has been generated based on different random
values for the girder span, £, and the traditional ratio of £/240 for the permissible deflection
due to dead and live. A mean to £/240 has been adopted in this simulation process.
Random sample for the girder span has been generated, plotted in a histogram form, and
statistically analyzed using the Matlab code indicated in Table A-5. The histogram and the
statistical characteristics values presented in Fig.8 show that the generated sample has a
lognormal distribution with a coefficient of variance equal to 0.069.

e For Moment capacity:
The nominal moment capacity, M,,, can be estimated based on the elastic capacity, elasto-plastic
capacity, or the full plastic capacity depends on the lateral support conditions and the
compactness of the section. In this paper, the elastic moment indicated in Eq.(6) has been
adopted based on insufficient lateral support.

M, = M, = F, XS, 6)

A Matlab code indicated in Table A-6 has been prepared to generate a random sample for M,
based on the randomness of the yield stress, F,, and the elastic section modulus, S,. Histogram

and the statistical characteristics for the obtained data have been presented in Fig.9. The generated
random sample has a coefficient of variance of 0.053 with lognormal probability density function.
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3000 My =
37.5029
2500
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c
3 1500 sy =
3
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500 0.2500
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25 30 35 40 45 50
Max. allowable deflection for the steel beam (mm) 3.1512
a- Histogram for Max. Allowable deflection. b- Moment characteristics.

Figure 8. Histogram and moment characteristics for maximum allowable deflection for the case

of live and dead load.

3000 M My =
1.3032e+03
2500
V_My =
Al 4_8070e+03
oy
[
L 1500 s My =
2 _
@
= 69.3359
1000
Bl _My =
500 0.0881
0 BZ My =
1000 1100 1200 1300 1400 1500 1600
Elastic Moment (kN.m) 2.9527
a- Histogram for resistance elastic moment. b- Moment characteristics.

Figure 9. Histogram and moment characteristics for the resistance of elastic behavior sample.

7. RELIABILITY ANALYSIS FOR BEAM

In this paper, the reliability analysis for the interior girder has been achieved using the Monte Carlo
simulation method and the first order reliability method, FORM. These two methods have been
discussed briefly in subsections below while their results and conclusions have been presented in

Section 8.
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7.1 Using Monte Carlo Simulation Method

In addition, to use Monte Carlo to generate random samples for demand and capacity, it provides
a powerful approach for an approximation but an adequate simulation of the failure probability for
N randomly generated samples based on the following relation (Nowak & Collins, 2000):

_ Number of trials for g(x) <0

) = . (7)

Accuracy of the estimated the probability increases as the total number of simulations, N, increases
(Far & Wang, 2016).

7.2 First Order Second Moment Reliability Index

The first order reliability method, FORM, is another method to do reliability analysis for structure
dependent on the statistical properties of resistance and demand samples for the limit state that
want to study. It calculates the reliability index £ then from Eq. (3) the P can be determined.
There are two cases to determine £ dependent on limit state function if it is linear or nonlinear.
For linear LSF when g expressed by:

n
g(Xl,Xz, ""’XTL ) = ao + a1 X1 + az XZ + -+ an Xn = aO + Z(ai Xi ) (8)
i=1
where the a; terms (i = 0,1,2,...,n) are constants and the X; terms are uncorrelated random
variables. When R and Q are independent normally distributed random variables, (AISC 360,
2010), the reliability index computed as below:

R-20Q
N e ©
og t+0o;

where R and Q are mean values of R and Q respectively, g and ¢ are their variance values

(Ghali, et al., 2009). If the independent random variables R and Q have lognormal random variable,
B given as:

uLn (%) _ Lnpg — Lnpg

/VR2+VQ2 /VR2+VQ2

where ug and u, are mean values, V2 and VQ2 are coefficients of variation of R and Q (Popov,
1990).

Observe that the reliability index depends only on the means and standard deviations of the random
variables. Therefore, this g is called a second-moment measure of structural safety because only
the first two moments (mean and variance) are required to calculate  (Ghali, et al., 2009).

For nonlinear LSF, an approximate answer can be obtained by linearizing the nonlinear function
using two terms of a Taylor series expansion. The result is:

B = (10)
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- a
9K Xy X ) 2 G+ ) ((XL- - %) 67‘9) (1)

where g is a value of g calculated with chosen values of the variables. One choice is the mean
values of the random variables, giving an approximate mean value of g:

g=9((x Xz, Xy ) = g({X}) (12)

The first term in Eq. (11) is a constant; the remaining terms are linear combinations of the variables
(X; — x,), with x; constant, the approximate reliability index (Ghali, et al., 2009).

g a
B =~ g T witha; = % (13)
Xiti(a; X;)?)2 ilat @

The reliability index defined in Eq. (13) is called a first-order second-moment mean value
reliability index. It is a long name, but the underlying meaning of each part of the name is very
important: First order because of the use of first-order terms in the Taylor series expansion. Second
moment because only means and variances are needed. Mean value because the Taylor series
expansion is about the mean values (Nowak & Collins, 2000).

In this paper the LSF for each of deflection and moment are linear and all of resistance and demand
samples have lognormal probability density function as illustrated in Section 6 therefor use Eq.
(10) to calculate 3.

8. RESULTS AND CONCLUSIONS

Based on statistical features of random variables mention earlier, failure probabilities for the beam

are summarized as follows. When using the Monte Carlo simulation method the P for deflection

due to randomness in dimensions and the material property is equal to 0.0114 and due to

randomness in loads is equal to 0.0688. While for the strength limit state there are no trials for

g(x) < 0 when variation due to dimension, material property, and due to applied loads, therefore,

Py for moment limit state function is negligible for these two scenarios.

By using the FORM and calculate g is equal to:

e [ For deflection due to randomness in dimensions and material is equal to 2.333 and the
corresponding Py equal to 0.0098.

e [ For deflection due to randomness in loads is equal to 1.445 and the corresponding Pr equal
to 0.074.

e [ For moment limit state function due to randomness in dimensions and material is equal to
15.312 and the corresponding Py equal to 3.179x107°3,

e [ For moment limit state function due to randomness in loads is equal to 7.823 and the
corresponding Py equal to 2.579x10715.

It can notice that the results from two methods are very close and the P for the modes deal with

variation in loads is greater than modes deal with variation in dimensions and material property.

The deflection and the moment limit state functions seem more sensitive to the randomness in load

than the randomness in the dimensions and material properties, and the deflection is more critical
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to the randomness of the input variables. As a conclusion when failure probability is low, one can
use element critical failure probability.

NOMENCLATURE

a, b = distance from beam supports to concentrated load, m.
B1 = coefficient of skewness.

B1 = coefficient of kurtosis.

E = modulus of elasticity, MPa.

Fp= concentrated superimposed load, kKN.
F, = concentrated live load, kN.

F,=yield stress, MPa.

M= sample mean.

N = sample size.

Q = load effect (demand).

R = resistance (capacity).

Q =mean of Q

R = mean of R

S = standard deviation.

S,.= elastic section modulus.

V = variance.

Wp= uniform beam weight.

B = reliability index.

£ = span girder.

o= variance R.

o= variance Q.

V2 = coefficient of variance for R.

V2 = coefficient of variance for Q.

¢ and ¢~ 1= standard normal cumulative distribution function and its invers.
FORM = first-order reliability method.
LSF = limit state function

MCSM = Monte Carlo simulation method.
Py = probability failure.

PDF = probability density function.
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Appendix A Matlab Codes

Table A-1. Matlab code to generate a random sample, plot histogram, and determine the statistical
properties for the mid-span deflection due to the first scenario.

i|= clc

2 % Plot the Histogram for the Deflection of Steel Girder and Determine the
3 % Four Moments for the Data Obtianed Due to Variance in Dimension and Material Property
4 % Uniform Self Weight = WD

5 % Concentrated Live Load = FL

€ % Concentrated superimposed Load = FD

7 % Modulus of Elastisity = E

8 % Moment of Inertia = I

9 % Length of the Beam = L

10 % Distance from the support to the first point lecad at left = al

11 % Distance from the support to the first point leoad at right = bl

1z % Distance from the support to the second point load at left = a2

13 % Distance from the support to the second point load at right = b2

14 - N=10000 % Sample size in Monte Carlc experiment for deflection results.
15 — y=zeros(1,N) % Initialize a wvector to store deflection of the beam “y*
16 - for i=1:N

17 % Normal model to simulate random variance in moment of inertia = I
18 - I=normrnd(7.867%10"(-4),2.753%*10" (-5} )

19 % Normal model to simulate random variance in modulus of Elastisity = E
20 — E=normrnd (1886*10" (5),6752400)

21 % Log normal model to simulate random variance in the length of beam = L
22 — m = 9 % mean of beam length random values in m

2| = v = 0.3%6% % wvariance of beam length random wvalues

24 — mu = log({(m*2)/sgrt(vim*2))% mean for the log normal distributicn

25 |= sigma = sagrt(leog(v/(m*2)+1)) % standard deiviation for the log normal distribution
26 — [M,V]= lognstat (mu,sigma)

27 - L= lognrnd (mu, sigma)

28 % Distance from supports to applied loads in m

29 - =

30 -

il |=

& |=

33 % Mean of uniform self weight WD in kN/m

34 - | WD=2.912

35 % Mean of concentrated superimposed load FD in kN

36 - | FD=122.323

37 % Mean of concenterated live load FL in kN

38 - FL=59.4

338 % deflection due to uniform load = yl

40 - v1=( (5% (WD) * (L"4))/ (3B4*E*I))

41 % deflection due to first point load = y2

42 - v2=( ((FD+FL) * (al”2) * (b172)) / (3*E*I*L})

43 % deflecticn dus to second point load = y3

44 - y3= ( ((FD+FL) * (a272) * (b2"2) ) / (3*E*I*L})
45 % the total deflection = y
46 — y(1l,i)=((yl+y2+y3)*1000)
47 - end
48 — xlswrite ('y_dim.xlsx',y)
45 — figure (1)
50 - hist(y)
51 — xlabel ('Deflection for the steel beam (mm) ', 'fontsize',12)
52 - ylabel ('Frequency', 'fontsize',12)
53 — title('Histogram for Deflection of Steel Girder.')
54 — grid
55 — Max y=max(y)

56 — Min y=min (y)

57 — M=mean (y)

58 % Variance of y = v

59 — v=var(y,1)

&0 % standard deviation walue of y = 8

61 — 8=std(y)

62 % Coefficient of Skewness of y = Bl

63 - Bl=skewness(y)

G4 % coefficient of Kutosis of y = BZ

65 — B2=kurtosis(y)
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Table A-2. Matlab code to generate a random sample, plot histogram, and determine the statistical

properties for the applied moment of the girder due to the first scenario.

clc

Plot the Histogram for the Moment of Steel Girder and Determine the
Four Moments for the Data Obtianed Due to Variance in Dimension and Material Property
Uniform Self Weight = WD

Concentrated Live Load = FL

Concentrated superimposed Load = FD

Modulus of Elastisity = E

Moment of Inertia = I

Length of the Beam = L

Distance from the support to the first point load at left = al
Distance from the support to the first point load at right = bl
Distance from the support to the second point load at left = a2

% Distance from the support tec the second pcint load at right = b2
n=10000 % Sample size in Monte Carlec experiment for moment results.
mom=zeros(1l,n) % Initialize a vector to store moment of the beam “mom”
for i=l:n

o of o of of of of of of of of

% Log normal model to simulate random variance in the length of beam = L
m = 9 % mean of beam length randem values in m
v = 0.3969 % variance of beam length random values
mu = log{(m~2)/sqrt(v+m~2))% mean for the log normal distribution

sigma = sgrt(log(v/(m"2)+1)) % standard deiviation for the log normal distribution
[M,V]= lognstat (mu,sigma)

L= lognrnd {(mu, sigma)

$ Distance from supports to applied loads in m

al=3

bl
a2
b2=6

% Mean of uniform self weight WD in kN/m

WD=2.912

% Mean of concentrated superimposed load FD in kN
FD=122.323

% Mean of concenterated live load FL in kN

FL=55.4

% Moment in the middle of the girder due to uniform and concenterated load
mom(1,i)=(((WD*L"2)/8)+ ((FL+FD) *al))

end

xlswrite ('mom dim.xlsx',mom)

figure (1)

hist (mom)

xlabel ('Moment for the steel beam (kN.m)','fontsize',12)
ylabel {'Frequency', "fontsize',12)
title('Histogram for Moment of Steel Girder.')
grid

Max mom=max (mom)

Min mom=min (mom)

M _mom=mean (mom}

% Variance of mom = v_mom

v_mom=var (mom, 1)

% standard deviation walue of mom = S mom
5_mom=std (mom}

% Coefficient of Skewness of mom = Bl_mom

Bl mom=skewness (mom)

% Coefficient of EKutosis of mom = B2_mom
BZ2_mom=kurtosis (mom)
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Table A-3. Matlab code to generate a random sample, plot histogram, and determine the statistical

properties for the mid-span deflection due to the second scenario.

clc

% Plot the Histogram for the Deflection of Steel Girder and Determine the
% Four Moments for the Data Obtianed Due to Variance in Applied Load and their position
% Uniform Self Weight = WD

% Concentrated Live Load = FL

% Concentrated superimposed Load = FD

% Modulus of Elastisity = E

% Moment of Inertia = I

% Length of the Beam = L

% Distance from the support to the first point load at left = al

% Distance from the support to the first point load at right = bl

% Distance from the support to the second point load at left = a2

% Distance from the support to the second point load at right = b2
N=10000 % Sample size in Monte Carlo experiment for deflection results.

=zeros(1,N) % Initialize a vector to store deflection of the beam ™y~
H for i=1:N
% The mean of moment of inertia = I
I=7.867%10"(-4)
% The mean of modulus of Elastisity = E
E=1986*10"(5)
% The mean length of beam = L

<

L=29
$ Log normal model to simulate random variance in the al,bl,aZ, b2
$ for the first point load

m_al = 3 % mean of al
v_al = 0.0441 % variance of al
mu_al = log((m_al~2)/sgrt(v_al+m al"2))% mean for the log normal distribution

sigma_al = sqgrt(log(v_al/{m al"2}+1))%standard deiviation for the log normal distribution
[M,V]= lognstat (mu_al,siq'ma_al)

al=lognrnd(mu_al, sigma_al)

SEEEE35%

m bl = 6 % mean of bl

v_bl 0.1764 % variance of bl

mu_bl = log((m bi"2)/sqrt(v_bl+m bl~2))% mean for the log normal distribution

sigma bl = sgrt(log(v_bl/(m bl"2)+1)) % standard deiviation for the log normal distribution
[M,V]= lognstat(mu bl,sigma bl)

bl= lognrnd(mu_bl,sigma_bl)

% for the second point leoad

m a2 = 6 % mean of a2
v_a2z = 0.1764 % variance of a2
mu_z2 = log((m_a2"2)/sgrt(v_aZ+m a2"2))% mean for the log normal distribution

sigma_a2 = sgrt(log(v_a2/(m a2"2)+1))%standard deiviation for the log normal distribution
[M,V]= lognstat (mu_ a2, sigma_ aZ)
az= lognrnd(mu bl,sigma bl)
TE553%%%
m b2 = 3 % mean of b2
v_b2 = 0.0441 % variance of b2
mu b2 = log{(m b2°2)/sqrt(v_b2+m b2"2))%mean for the log normal distribution
sigma_b2 = sgrt(log(v_b2/(m b272)+1))%standard deiviation for the log normal distributicn
[M,V]= lognstat(mu b2,sigma b2)
b2=lognrnd (mu_b2, sigma_b2)
% Normal model to simulate random variance in uniform dead load WD
WD=normrnd(2.912,0.233)
% Normal medel to simulate random variance in concentrated dead load FD
FD=normrnd(122.323,9.786)
% Gumbel model to simulate random variance in uniform live load WL
mu_FL=56.727 % mu_FL = location parameter for Gumbel distribution
sigma FL=4.634 % sigma FL= scale parameter
FL=-evrnd(-mu_FL,sigma_FL)
% deflection due to uniform load = yl1
y1=( (5% (WD) * (L™4)) / (384*E*I))
% deflection due to first point load = y2
y2=( ((FD+FL) * (al”2) * (b172) ) / (3*E*I*L))
% deflection due to second point lead = y3
y3=(((FD+FL) * (a2”2) * (b272) ) / (3*E*I*L))
% the total deflection = y
L yv(1,1)=((yl+y2+y3)*1000)
end
xlswrite ('load wvary def.xlsx',y)
figure (1)
hist (y)
xlabel ('Deflection for the steel beam (mm)','fontsize',12)
ylabel ('Freguency', 'fontsize',12)
title('Histogram for Deflection of Steel Girder.')
grid
Max_ y=max (y)
Min_y=min(y)
M=mean (y)

% Variance of v = v

v=var(y,1)

% standard deviation walue of y = 8§
S=std(y)

% Coefficient of Skewness of y = Bl
Bl=skewness (y)

% Coefficient of Rutosis of y = B2
B2=kurtosis (y)
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Table A-4. Matlab code to generate a random sample, plot histogram, and determine the statistical

properties for the applied moment of the girder due to the second scenario.

cle

Plot the Histogram for the Moment of Steel Girder and Determine the
Four Moments for the Data Obtiansed Due to Variance in Applied Load and their positicn
Uniform Self weight = WD

Concentrated Live Load = FL

Concentrated superimposed Load = FD

Modulus of Elastisity = E

Moment of Inertia = I

Length of the Beam = L

Distance from the support to the first point load at left = al
Distance from the support to the first point load at right = bl
Distance from the support to the second point load at left = a2

% Distance from the support toc the second point load at right = b2
n=10000 % Sample size in Monte Carlo experiment for moment results.
mom=zeros(l,n) % Initialize 2 vector to store moment of the beam “mom”
for i=l:n

of o o P ol dF P o AP P o

% The mean length of beam = L
L=29

% Distance from supports to applied loads in m

% for the first point load

m al = 3 % mean of al
v_al = 0.0441 % variance of al
mu_al = log((m_al"2)/sgrt(v_al+m_al"2))% mean for the log normzl distributicon
sigma_al = sgrt(log(v_al/(m_al”2)+1))%standard deiviation for the log normal distribution
[M,V]= lognstat(mu al,sigma_al)
alfloannd(mu_al,sigma_al)

% Normal model to simulate random variance in uniform dead load WD
WD=normrnd(2.512,0.233)

% Normal model to simulate random variance in concentrated dead load FD
FD=normrnd (122.323,9.786)

% Gumbel model to simulate random variance in uniform live load WL
mu_FL=56.727 % mu_FL = location parameter for Gumbel distribution
sigma_FL=4.634 % sigma_FL= scale parameter
FL=-evrnd(-mu_FL, sigma_FL)
% Moment in the middle of the girder due to uniform and concenterated leoad
mom(1,i)=(((WD*L"2) /8)+ ((FL+FD) *al))
end
xlswrite ('load vary.xlsx',mom)
figure (1)
hist (mom)
xlabel ('Moment for the steel beam (kN.m)','fontsize',12)
ylabel ('Freguency', 'fontsize',12)
title ('Histogram for Moment of Steel Girder.')
grid
Max_mom=max (mom)
Min_mom=min (mom)
M _mom=mean (mom)

% Variance of mom = v_mom

v_mom=var (mcm, 1)

% standard deviation wvalue of mom = 5_mom
5_mom=std (mom)

% Coefficient of Skewness of mom = Bl_mom

Bl_mom=skewness (mom)
% Coefficient of Rutosis of mom = B2_mom
B2 mom=kurtosis (mom)
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Table A-5. Matlab code to generate a random number, plot histogram, and determine the statistical

properties for maximum allowable deflection.

clc
$%%%%% Plot the Histogram for the Max Rllowable Deflection of Steel Girder and Determine the
% Four Statistical Moments for the Data Obtianed
% Max allowable deflection= y
n=10000 % Sample size in Monte Carlo experiment for deflection results
y=zeros (1,n)
for i=l:n
% Generate random numbers for beam length

m =9 % mean of beam length random values in m
v = 0.3%6% % variance of beam length random values
mu = log((m"2)/sqrt (v+m*2))% mean for the log normal distribution

sigma = sgrt(log(v/(m~2)+1)) % standard deiviation for the log normal distribution
[M,7]= lognstat (mu, sigma)

L= lognrnd (mu,sigma)

v(1l,i)=L*1000/240

end

xlswrite('Max.all.def.xlsx', ¥y}

figure (1)

hist(y)

xlabel ("Max. allowable deflection for the steel beam (mm)','fontsize',12)
ylabel ('Frequency', 'fontsize',12)

title('Histogram for Max. Allowable Deflection of Steel Girder.')
grid

Max_y=max(y)

Min_y=min (y)

M_y=mean(y)

% Variance of v = v_y

v_y=var(y,1)

$ standard deviation value of y = S y

S_y=std(y)

% Coefficient of Skewness of vy = Bl_vy

Bl_y=skewness(y)

% Coefficient of Kutosis of y = B2 y

BZ_y=kurtosis(y)

Table A-6. Matlab code to generate a random number, plot histogram, and determine the statistical

e - T T FE R
1

I T T T T T e S ey S ey
[ - R B A B L TE R =
[ R [

properties for M,,.

cle
$33%%% Plot the Histogram for the Elastic Moment My as the Resistance of Steel Girder
% and Determine the
% Four Moments for the Data Obtianed
% Depth of beam =d
% Moment of inertia = I
% Elastic modulus section = §
% vield strength for web MPa = FyW
% Yield strength for flange MPa = FyF
% Total yield strength for beam = Fy
% Elastic moment My = Fy * §
N=10000 % Sample size in Monte Carlo experiment for moment results
My=zeros(1,N)
for 1=1:N
% Generate Random Variables for S in mm"3
$ Normal model to simulate random variance for I in mm*4
I=normrnd(7867*10" (5),2753*10" (4))
d=normrnd (363, 1.61)
c=d/2
s=1/c
% Generate Random Variables for yield stress in N/mm"2

140



22
23
24
25
26
27
28
23
30
31
32
33
34
35
36
37
38
825
40
41
42
43
44

Number 1 Volume 26 January

FyF=normrnd (297.3,16.8)

FyW=normrnd (307.3,16.8)

Fy=(FyF+EFyW) /2

My (1,1i)=Fy*S*10" (-€)
end
x1lswrite('Elastic moment.xlsx',My)
figure (1)
hist (My)
xlabel ('Elastic Moment (kN.m)','fontsize',12)
ylabel (' freguency', 'fontsize',12)
title('Histogram of Data My.')
grid
Max My=max (My)
Min My=min (My)
M My=mean (My)
% Variance of My = v_My
v_My=var (My, 1)
% standard deviation value of My = S_My
5_My=std (My)
% Coefficient of Skewness of My = Bl My
Bl My=skewness (My)
% Coefficient of Kutosis of My = BZ2_My
B2_My=kurtosis (My)
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