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ABSTRACT

This paper proposes improving the structure of the neural controller based on the identification
model for nonlinear systems. The goal of this work is to employ the structure of the Modified
Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer
Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as
an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two
learning algorithms are used to adjust the parameters weight of the hybrid neural structure with
its serial-parallel configuration; the first one is supervised learning algorithm based Back
Propagation Algorithm (BPA) and the second one is an intelligent algorithm namely Particle
Swarm Optimization (PSO) algorithm. The numerical simulation results show that the hybrid
NARMA-L2 controller with PSO algorithm is more accurate than BPA in terms of achieving fast
learning and adjusting the parameters model with minimum number of iterations, minimum
number of neurons in the hybrid network and the smooth output one step ahead prediction
controller response for the nonlinear CSTR system without oscillation.

Keywords: NARMA-L2Model, MLP neural Network, Modified ElIman Neural Network,
Back Propagation Algorithm, Particle Swarm Optimization, Nonlinear CSTR System.
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1. INTRODUCTION

Artificial Neural networks (ANN) are a set of neurons that imitate the biologic neural
networks of the encephalon of creatures; especially, the neuronal-synaptic techniques that are
based on only experimental data where they memorize, learn and recover information. Because
of their ability to identify complex functions, they are essentially utilized in machine learning.
ANNSs can execute perfect performance to learn the input-output relations of nonlinear processes;
therefore they are one of the most important fields of artificial intelligence. The output can be
evaluated quicker and with preferable qualifications when the network is learned by inserting a
sufficient dataset of input-output pairs. ANN-based branches are still in use until these days to
cope with different problems in various empirical applications, extending from identification the
nonlinear system to process monitoring, adaptive control, processing images, as well as
renewable and sustainable energy, medical diagnostics, pattern recognition and the applications
that are based on laser Al-Dunainawi, et al., 2017.
Generally, the Nonlinear Autoregressive Moving Average (NARMA) neural network model has
been applied successfully for identifying and controlling different types of the dynamic systems,
George and Basu, 2012, such as: George, 2008, utilized the application of NARMA-L2 for the
speed control of Separately Excited DC Motor using the conventional controllers and compared
the performance of the suggested controller which is a NARMA-L2 neural network with the
traditional one which is sim-power systems based chopper controller DC motor model. Using
MATLAB toolbox, the models are simulated and the system modeling is prepared, and in the
result, the NARMA-L2 controller has eliminated the chopper and its control circuit also was
capable of regulating the speed about the rated value. Also, the authors, Valluru, et al., 2012,
compared the execution of the NRMA-L2 Neuro controller with the conventional PID controller,
for regulating the speed of a DC motor connected in series. The NARMA-L2 controller showed
an excellent speed tracking performance with no overshoot.
Hua-Min, et al., 2011, proposed an off-line trained NARMA-L2 neural network to identify the
forward dynamics of the nonlinear non-minimum phase system of Unmanned Aerial Vehicle
(UAV). The identification is done by redefining and inverting the output to force the real output
to approximately track the desired trajectory. A good tracking performance results were achieved
by using the proposed control scheme. The author, Putrus, 2011, used different control
strategies for jacketed Continuous Stirred Tank Reactor (CSTR) which were conventional
feedback control (Pl and PID) and neural network (NARMA-L2, and NN Predictive) controller
in order to develop the dynamic behavior and the control was done through utilizing two
methods for finding the optimum parameters. The results showed that NARMA-L2 is the best
controller and it is better than the NN Predictive in terms of Mean Square Error (MSE). Also, the
authors Jeyachandran and Rajaram, 2014, showed that in controlling the CSTR process, the
NARMA-L2 neural controller is faster and has good setpoint tracking capability as it is
compared with the predictive neural and Neuro-Fuzzy controllers. Kananai and Chancharoen,
2012, proposed a stiff PD with the NARMA-L2 controller for a nonlinear arm of the robot
mechanical system in order to give a good tracking accuracy. The authors Pedro and Ekoru,
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2013, compared the performance of NARMA-L2 controller with a passive linear controller for
the vehicle suspension system. The results showed that the NARMA-L2-based active vehicle
suspension system performed better than the passive vehicle suspension system. In addition to
that, Fourati and Baklouti, 2015, showed that controlling a bioreactor system by NARMA-L2
neural control strategy compared with a direct inverse neural controller is more fruitful, where
NARMA-L2 was able to take care of nonlinear aspect and remove the output static error as well
as it has a better trajectory tracking ability. Humod, et al., 2016, utilized Direct Torque Control
for three phases Permanent Magnet Synchronous Motor to improve the speed and torque
dynamic responses. They depend on two controllers to make a comparison and select the better,
NARMA-L2 controller and optimal PI controller (PI-PSO), where (NARMA-L2) is trained
based on optimal PI controller (PI-PSO) data. The result shows that the NARMA-L2 controller
improved the performance of DTC and has superiority over the optimal Pl controller for PMSM.
Al-Dunainawia, et al., 2017, proposed a NARMA-L2 controller but this time by utilizing
ANFIS architecture. The new control disposal involves fuzzy inference system FIS type Sugeno
to plot the system's input-output characteristics. They utilized Back-propagation with Least
Square Error as a hybrid method to learn the submodels and PSO to find the optimum
parameters. By doing a comparison with other controllers, such as PID like controller that tunes
fuzzy with GA or with PSO, etc.., the results show that the NARMA-L2 with PSO-ANFIS
attained a lot of features and it's too efficient in all manners. The motivation of this paper is taken
from, Putrus, 2011 and Jeyachandran and Rajaram, 2014, where the modeling and the
controlling for the nonlinear CSTR system are still challenging.

The main contribution of this work is the construction of a new hybrid neural network model
based on NARMA-L2 with Modified ElIman Neural Network structure in order to improve the
performance of modeling and controlling of the nonlinear system.

The new proposed hybrid NARMA-L2 modeling and controller with PSO algorithm is more
accurate compared to hybrid NARMA-L2 with BP learning algorithm in terms of:

e Learning speed.

e Hidden layer node number.

e Hybrid neural network model order.

e | east MSE.

e Oscillation reduction

The paper organization consists of the following sections: Section 2 describes the identification
model based on the NARMA-L2 neural network and the proposed hybrid neural structure. In
section 3, the simulation results are discussed in details. Finally, section 4 contains the
conclusions of the entire work.

2. IDENTIFICATION OF DYNAMICAL SYSTEMS USING NEURAL NETWORK
MODELING

In general, the system identification technique is a very important modeling technique for control
system applications also it is considered as a very essential step for analysis and controller design
of nonlinear processes in many applications. There are five standard steps in the identification
model based on neural network, Nells, 2001, as shown in Fig. 1. This section focuses on
nonlinear system identification based on the NARMA-L2 neural network model structure.

2.1 NARMA-L2 Model:
Nonlinear Auto Regressive Moving Average (NARMA) model is an accurate representation for
nonlinear discrete-time dynamic plants. Also, it is used to get exact input-output behavior for a
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finite-dimensional space in the neighborhood of the equilibrium state. The implementation of
such non-linearity in real-time control systems is very difficult and to overcome the
computational complexity of the NARMA model, NARMA-L1land NARMA-L?2 are introduced,
Sharma, 2014.

Neural
Network
Model
Structure

Learning
Algorith
m and
Model

Input-

Output Dynamic

Patterns s Model
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Model: revise t-ation

Model
Validatio
n

Accept Model

Figure 1. Five standard steps of identification algorithm.

For practical implementation, NARMA-L2 is more convenient by using multilayer neural
networks and it is considered as the most popular neural network control architecture which is
used to transform nonlinear system dynamics into linear dynamics by canceling the
nonlinearities. The obvious advantage of the NARMA-L2 controller is that there is no need for
additional trained sub model. The neuro-controllers, such as Model Reference Adaptive Control
(MRAC) and Model Predictive Controller (MPC) required an additional submodel to be trained,
Al-Dunainawi, et al., 2017. Taylor expansion is the main difference between these two
approximations for NARMA-L1 Taylor expansion is around (y(k), y(k-1), ..., y(k-n+1), u(k)=0,
u(k-1)=0, ..., u(k-n+1)=0) while for NARMA-L2 Taylor expansion is around the scalar u(k)=0.
The approximations are given as follows, Sharma, 2014:

For the NARMA-L1 model is:

Yok +d) = flypaey Yok — D,y (k = n+ D] + T 9: [y (), oo, yp (k = 1), y, (k —

n+ 1)] X u(k —i) 1)

Where,

f=Flypk), o, ypk — 1), ..y, (k =1 + 1)] (2)
aF

9 = 500D ®3)

For the NARMA-L2 model is:
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yp(k +d) = flyp k), o, yp(k =+ D ulk — 1), ..ulk —n+ D] + gy, k), ..., yp(k —

n+1),u(tk—1),.u(k—n+ 1)] x u(k) 4)
Where

f= F[yp(k), e Yplk =1,k —n+1D,uk—=1),..u(k—n+1 )] (5)
9= 5 ©)

The f [-] function in the NARMA-L1 model is the only function of the past values of the output y
[-] while g [-] function is a function of the past values of the output y [-] and the control effort u
[-]. But, the f [-] and g [-] functions in the NARMA-L2 model, are the functions of the past
values of both the output y [-] and control effort u [-] therefore, the NARMA-L2 model is
preferred to act as a universal tracking controller because its realization is simpler compared to
NARMA-L1 model, Sharma, 2014.

So the NARMA-L2 neural network model consists of two neural networks as the nonlinear
functions f[—Jand g[—] as N1 [-] and N2 [-], respectively, and the type of the neural network
structure is Multi-Layer-Perceptron (MLP).

Fig.2 shows the general structure of the NRAMA-L2 model based on MLP with a serial-parallel
configuration to identify the nonlinear system. The network’s output yields the prediction error,
Zurada, 1992.

e(k+1)=yy(k+1) = ym(k+1) ()

¥kt 1)

]
. Plant

mechansm

Training O

=

O
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N2 :
O

- Fm [k+1]
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£ N1
Figure 2.NARMA-L2 identification model with serial-parallel configuration.

The learning algorithm is usually based on the minimization (with respect to the network
weights) of the following objective cost function:

E =50 (e (k+ D) = — 52 yh(k+ 1) = yh(k + 1)? ®)
Where np: is the number of patterns.

el: is the error of each step.

yp: is the actual output of the plant of each step.
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yt.: is the model output of the plant of each step.

From Fig. 2, the training mechanism of the N1[-] and N2[-] is applied as a supervised learning
Back Propagation algorithm in order to reduce the error between the actual output y,(k + 1)and
neural model output y,,, (k + 1)and is equal to zero approximately then the model will complete
the same actual output response.

When identification of the plant is complete, then g [-] can be approximated by g [-] and f [-] by
f[=] and the NARMA-L2 model of the plant can be described in Eq. (9).

ymk+1) = f[yp(k), v Yplk=n+D,utk—1),..u(k—n+1 )] + g[yp(k), o Ypk —
n+1D,utk—1),..utk—n+1 )] x u(k) 9

The Jacobian of the plant can be defined as the g [-] neural network and the sign definite in the

operation region of the plant is used to ensure the uniqueness of the plant inverse at that

operating region, Jeyachandran and Rajaram, 2014, therefore, there is a linear relationship

between the control effort and the output in the NARMA-L2 model So the control effort that

gives the output which is equal to the desired value is taken from the control law as in Eq. (10).
_ Yaes k+ D)= f[yp(K),..., yp(k-n+1)ulk—1),..u(k-n+1)]

uk +1) = 8[ypy- yp(k—n+Du(k—1),..u(k—n+1)] (10)

The structure of the multi-layer perceptron (MLP) neural network is shown in Fig. 3, which
consists of three layers: the input layer, the hidden layer and the output layer, Zurada, 1992 and
Al-Araji, 2009. So the network weights can be defined as follows:

V,,: is the hidden layer weight matrix.
W,,: is the output layer weight matrix.
To illustrate the calculations, ponder the general a" neuron in the hidden layer shown in Fig. 3.

ha
H
. Van Wba
I . H
I
Z,
_»‘ ) Output Layer
Input Layer H

Hidden Layer

Figure 3.The structure of multi-layer perceptron neural networks.

The weight matrix, V , represents the weights between the input and hidden layers. Firstly, the
weighted sum net, is calculated as in Eq. (11), Zurada, 1992 and Al-Araji, 20009.

nh _
net, =YV, xZ, (12)

a=1
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Where, nh: is the hidden nodes number.
Secondly, the neuron output of h, is computed as a continuous sigmoid function of the net, as in
Eq. (12), Zurada, 1992 and Al-Araji, 2009.

2
H(net, )= 1s (12)

o et o

Once, hidden layer outputs are obtained, they will be passed to the output layer where a one
linear neuron is used to calculate the weighted sum (neto) of its inputs as in Eq. (13).

nh _
neto, = » W,, xh, (13)
=1

Where
W,, : is the weight between the hidden neuron h, and the output neuron.

The one linear neuron passes the sum (neto, ) through a linear function of slope 1 as in Eq. (14).
O, = L(netc,) (14)

2.2 The Proposed Hybrid Neural Network Model

The NARMA-L2 model with modified EIman neural network structure is used to propose a new
hybrid neural network model in order to improve the performance of modeling and controlling of
the nonlinear system. Thus, the structure of Modified EIman Neural Network (MENN) is shown
in Fig. 4.

Context layer

Output layer

—> e
U, ! L

—S e Ym(k+ 1)

Figure 4.The structure of modified EIman neural networks.

It consists of four layers as explained below, Medsker and Jain, 2001; Abdulkarim and Garko,
2015.

The input layer which is only a buffer layer “Scale Layer”

The output which represents a linear activation function and it sums the fed signals.

The hidden layer which has a nonlinear activation function such as the sigmoidal function.
The context layer which is used only to memorize the previous activation of the hidden layer.

76



Number 4 Volume 25 April 2019 Journal of Engineering

From Fig. 4, it can be seen that the following equations can be used, Al-Araji, et al., 2011.

h (K)=F[V1U(k),V2h"(k)] (15)
O (k) =Wh (k) (16)
Where,

V 1: input units weight matrix.

V 2: context units weight matrix.
W: weight matrix.

F: is a non-linear vector function.

The output of the context unit in the modified EIman network is given by Eq. (17) as in Fig. 5:
hi(k) = ahj(k — 1) + phj(k — 1) 17)
Where,

h; (k): the j™ context unit output; h;(k): the j"™ hidden unit output; a: Self-connections feedback
gain; [:Weight from the hidden units to the context units at the context layer.

h? (k)

Ui (k)
Figure 5.The connection neuron in the hidden layer of MENN.

The adopted value of the same for all self-connections and is not modified by the training
algorithm. The value of a and Sare selected randomly between (0 and 1). A value of « nearer to
1 enables the context unit to aggregate more pattern outputs.

To explain the calculations in the hidden layer, firstly, it considers the general j neuron in the
hidden layer with weight V1;i where the i is the inputs to this neuron and the j* neuron in the
context layer with weight V2;;. So it is calculating the weighted sum j net of the inputs as in Eq.
(18).

net; = Y V1 X X; + V2 pipq0 X B (18)
Then the output of the neuron h; is calculated as the continuous bipolar sigmoid function of the
net; as in Eq. (19):

2
H(netj) = W -1 (19)
For single output neural network in the output layer, it uses a single linear neuron to calculate the
weighted sum (net,)as in Eq. (20).
netoy = Z;-‘fl W,,j X h; (20)
Where,
nh: is the number of the hidden neurons (nodes).

Then the linear activation function in the single neuron in the output leads to pass the sum
(net,y) as in Eq. (21):

0k = L(netk) (21)
Where L(X) =x.
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The proposed new hybrid NARMA-L2 neural structure based on MENN is as shown in Fig. 6,
where it replaces the MLP neural network by MENN to improve the modeling and controlling of
nonlinear system in terms of fast leaning model with minimum number of epoch and minimum
number of nodes in the hidden layer, increasing the order of the model which leads to reduce the
output oscillation and generate the best control action for one step ahead prediction.

u(

_mped |

(]
e T PO
. @ Ym(k+ 1)
) | . CDJ
e . PO
O_l
Yp(k
Figure 6.The proposed NARMA-L2 based MENN identification model.
The output of the model will be as in Eq. (22).
ym (K + 1)=N1+N2xu (k) (22)

2.3. Learning Algorithm:
In this work, two learning algorithms are used to learn and adjust the weight parameters of the
hybrid neural structure, which are:

2.3.1. Back Propagation Algorithm (BPA):

The back-propagation training algorithm is the most commonly used algorithm in training
artificial neural networks (ANN), Al-Araji, et al., 2011. It performs gradient descent to adjust
the weights of a network such that the overall network error is minimized. Conceptually, an
epoch calculates the output of the network using feedforward pass for each training pattern and
propagates errors signals back from the output layer towards the input layer to determine weight
changes.

The learning rate  which is directly proportional to the size of steps taken in the weight space is
a very important parameter in the training process. A too small n value may lead to a very slow
learning process while a large value may lead to a divergent behavior. A variable learning rate
will do better if there are many local and global optima for the objective function, Abdulkarim
and Garko, 2015. The equations of the back-propagation learning algorithm for the NARMA-L2
mode based MLP neural network are as follows:

e The connection matrix between the hidden and output layers is:

0E
AWk](k + 1) = —nm

(23)
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0E _ OE dnet
Wy  Onet oWy,
0E __ OE 0oy onet
aij - dog onet 6ij

0E 0E dq(k+1) doy onet
oWy  9q(k+1) doy onet AWy
AWk](k + 1) =N X h] X ey
e The connection matrix between input and hidden layers is:
OF
AVyi(k+1) = -1 vy
0E 0E dnet

ani - dnet ani
O0E OE dog 5 onet;

ani dog 6net]- ani
0E _ O0E 0q(k+1) doy onety Oh; onet;
ani - dq(k+1) doy dnety, ah]’ anetj ani

AVii(k + 1) =1 X f(net))’ x U; YK_, e, Wy;

Vii(k + 1) = Vj; (k) + AVj;(k + 1)

Journal of Engineering

(24)
(25)

(26)
(27)

(28)
(29)
(30)
(31)
(32)
(33)

(34)

The equations of the back propagation learning algorithm for the NARMA-L2 mode based

MENN are as follows:

e The connection matrix between the hidden and the output layers is:

AW,k +1) = —n——
kj
0E _ OE onet
aij - onet aWk]'
0E 0E doy onet
— X —X

aij dog onet aij

0E 0E dq(k+1) dog dnet
aij - dq(k+1) doy dnet aij
Aij(k + 1) =nX h] X ey

(35)
(36)
37)
(38)
(39)

(40)

e The connection matrix between context and hidden layers is as follows:

0E

AVC; 1) =-—

VGe(k +1) = —71 570

J0E _ OE dnet

avCjc  dmet  AVCj,

0E _6_E dog dnet.

aVCjc  dox ~ dnet;  AVCjc

0E _ OE dq(k+1) doy donety, Oh; dnet,
aveCj.  9q(k+1) dog onety = On; ~ omet;  OVCjc

AVﬂ(k + 1) =nX f(net])’ X Ui Zlk<=1 ekaj

VCe(k +1) = VCio(k) + AVCe(k + 1)

(41)
(42)
(43)
(44)
(45)

(46)

e The connection matrix between the input layer and the hidden layer is:

0E

AV]l(k + 1) = _nﬁji
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6_E= 0E Xanet (48)

6V]'i dnet aVﬁ
0E _ OE doy _ Onet;

ani - doy 6netj ani (49)
6_E __OE dq(k+1) doy dnety Oh; onet; (50)
6V]'i - aq(k+1) doy dnety ahj anetj ani

AVCi(k+ 1) = n x f(net;)’ x h? Y5, exWy; (51)

2.3.2. Particle Swarm Optimization (PSO):

In general, the particle swarm optimization (PSO) is one of the most modern and powerful
optimization methods that has been empirically shown to execute well on different optimization
problems. It is utilized for finding the global best solution in the complex search space. PSO
algorithm is inspired from the animal's community that doesn’t have leaders in their swarm as
fishes and birds so they find the food randomly by following the position of the nearest member
to the food. The PSO algorithm preserves multiple potential solutions at one time, so during each
iteration, each solution is evaluated by an objective function to determine its fitness, Rini, et al,
2011; Al-Araji, 2014. The PSO notion includes changing the velocity of every particle on the
way to its pbest position which is its previous best value and it is associated only with a specific
particle and the gbest position which represents the best value of the whole particles in the group
at each time step. All the proposed hybrid NARMA-L2 weight parameters which are 158
particles are randomly initialized and their velocities and positions are updated using the
equations below, Al-Araji, 2014:

—k+1 —k —k —k

AX,, = wAX,, + c;r;(pbestk, — X,,) + c,ry(gbestk, — X)) (53)
—k+1  —k —k+1

Xm =Xy, +AX, (54)

Where m = 1, 2, 3....pop; pop is the number of particles; XX is the weight of the particle m at
iteration k; w: is the factor of weight inertia; c1 is cognition parameter and c2 is social parameter
and it represents positive values where ¢l and c2 must be less than 4; rl and r2 are random
values between 0 and 1, Al-Araji and Yousif, 2017.

The procedures of the algorithm based on PSO is summarized as follows:

e The hybrid NARMA-L2 weight parameters or the Particles (n) are generated randomly as the
initial population in the local search.

e Estimating the proposed cost function by using the mean square error in Eq.(8) for each
particle.

e Mark the pbest for every particle in the present searching point. The best-estimated value of
pbest is taken to be gbest and the particle number with the best value is stored.

e If the value of pbest is greater than the present pbest, the pbest value is replaced by the
present value of the particle and gbest is changed with the best value if the greater value of
pbest is greater than the present gbest, and the particle number that had the greater value is
stored.

e By using Egs. (53 and 54) the updating part for each particle is done.

e If the present number of iterations is less than its maximum limit of iterations number, revert
to step two, else exit.
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These steps are repeated for each sample of the on-line optimization algorithm for the hybrid
NARMA-L2 parameters.

3. SIMULATION RESULTS

In this section, the nonlinear Continuous Stirred Tank Reactor (CSTR) process is taken to
execute the identification algorithm in order to construct the model and controller design based
on the hybrid NARMA-L2 neural network by using two learning algorithms that were explained
in section 2. The mathematical model of the CSTR is defined by Egs. (55) and (56) that have
been taken from Al-Araji, 2015, and Dagher and Al-Araji, 2013. The parameters of the CSTR
model can be defined in nominal operating condition as in Table 1.

-E
dc, —E
== 55 (Cap = C(D) — Ko X C,(0) X el (55)
- —hg
aT® _ a (. (CAXKoXCo(®  [m] o  PeXCoe _ heCyoxa®
= o (T,—T®) + - % elRTO| % T x q,(0) [1 — e X
(Ter = T(D) (56)

Where Ca (t): is the product concentration output
; T (t): is the temperature of the reactor; qc (t): is the coolant flow-rate as the control signal.

Table 1. The parameters of the CSTR Operating Condition.

Parameter Description NominalValue
Q Process flow-rate 100 I min*
Car Intel feed concentration 1 mol I*
Ts Feed temperature 350 K
T Inlet coolant temperature 350 K
Vol Reactor volume 100 |
h, Heat transfer coefficient 7% 109 cal mint K*!
ko Reaction rate constant 7.2%x 101 min*
E/R Activation energy 9.95 x 10° K
AH Heat of reaction -2 X 10°cal mol*
PP, Liquid densities 1000 gt It
Cor Cp Specific heats lcal gt K?
Qe Coolant flowrate 103.41 1. min*!
T Reactor temperature 440.2 K
Ca Product concentration 8.36 X 10~ ?mol I
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Fig. 7 shows the schematic diagram of the CSTR process and the objective of the operation is to
control the concentration Ca (t) by changing a coolant flow-rate qc (t) as a control signal then the
temperature of the reactor is changed that leads to the product concentration is controlled
Putrus, 2011, Jeyachandran and Rajaram, 2014, and Al-Araji, 2015.
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Figure 7.The CSTR with a cooling jacket.

The input 200 samples to CSTR model is chosen as PRBS signal with high-frequency low
amplitude change and the mean value is equal to zero in order to excite all nonlinear regions of
the plant. For the open loop, the step changes in the coolant flow-rate response of the CSTR has
a highly nonlinear dynamic behavior as shown in Figs. 8 —a and b respectively.
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Figure 8-a.The PRBS input signal used to excite the plant.
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Figure 8-b. The open loop response of the plant to the PRBS input signal.
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Based on Fig. 8, there is an essential need for adding a scaling function at neural network
terminals this function will perform a conversation between scaled values and actual values and
vice versatile will help to prevail over the numeral problems that are associated with real values.
A continuous time model representation is adopted to be numerically solved using the Runge
Kuta fourth order method 4RK where the time constant is equal to 1min and the simulation step
size for this purpose is equal to 0.1min based on Shanoon theorem.

Based on Eqg. (55) and Eq. (56), the dynamic model of the CSTR plant is described by Eq. (57)
as 3" order system depends on the high nonlinear in the dynamic behavior as shown in Fig. 8.

ym(k + 1) = N1[y, (k), y,(k — 1), 3, (k — 2),u(k — 1), u(k — 2)] + N2[y, (k), », (k —
1), y,(k — 2),u(k — 1), u(k — 2)Ju(k) (57)

Where N1 [-] and N2 [-] are neural networks which approximate f[—]andg[—] of Eq. (9),
respectively.

Since each of N1[-] and N2[-] has five inputs based on Eg. (57) and the nodes in the NARNA-L2
neural network structure based on MENN is [5:11:11:1], where the number of node in the hidden
layer based on 2n+1, the node number in the context layer and the node number in the output
layer, respectively.

During the training phase, many trials were made in order to find the optimal number of the
nodes in the hidden layer for NARMA-L2 based on MENN model which was equal to 6 and the
number of the training cycles was equal to 500 in the case of BPA, while the number of the
training cycles by using PSO was equal to 200, therefore, the number of the nodes in the
NARNA-L2 neural network structure based on MENN is [5:6:6:1].

Fig. 9-a shows the best response of the NARMA-L2 based MENN model with the actual plant
output of pattern's learning after 500 epoch by using BPA andFig. 9-b shows the excellent
response of the NARMA-L2 based MENN model with the actual plant output for learning
patterns after 250 iterations by using PSO. So it can be observed that both model outputs are
following actual plant output and without over learning problem occurred in the training cycle.
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Figure 9-a.The response of the NARMA-L2 based MENN model with the actual plant output
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Figure 9-b. The response of the NARMA-L2 based MENN model with the actual plant output
for learning patterns and PSO.

Figs. 10-a and b show the average of ten times of the MSE for the training phase in order to
investigate the optimal nodes in the hidden layer of NARMA-L2 based MENN model with BPA
and PSO.
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Figure 10-a.The optimal number of nodes to an average of ten times MSE of NARMA-L2 based
MENN with BPA.
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Figure 10-b.The optimal number of nodes to an average of ten times MSE of NARMA-L2 based MENN
with PSO.

The Jacobian of the proposed hybrid model with PSO and BPA are shown in Fig. 11-a and b

where N2[-]: signs definite in the region of interest which means that the models are inevitable

and can be implemented for the controller as the inverse control structure.
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Figure 11-a.The plant Jacobian for learning pattern of NARMA-L2 based on MENN model with

BPA.
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Figure 11-b.The plant Jacobian for learning pattern of NARMA-L2 based on MENN model with PSO.

The Mean Square Error (MSE) calculated for the latest epochs, which is defined by Eq.(8) can
be shown in Fig.12-a of the NARMA-L2 based MENN model with BPA while Fig.12-b of the
NARMA-L2 based MENN model with PSO.

Figure 12-a.

x107*

wn

IS
n
1

I w
R W s

Cost Function Based MENN
n

[

b
n

0

1 | 1 | | 1 | 1 |
50 100 150 200 250 300 350 400 450 500
Number of Epoch

MSE for an optimal number of nodes (6 nodes) for NARMA-L2 based MENN
model with BPA.
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Fig. 13-a shows the reasonable response of the NARMA-L2 based MENN neural network model
with the actual plant output for testing patterns using BPA while Fig. 13-b shows the excellent
response of the NARMA-L2 based MENN model with the actual plant output for the same
testing set using PSO.
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Figure 12-b. MSE for an optimal number of nodes (6 nodes) for NARMA-L2 based MENN model with
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Figure 13-a.The response of the NARMA-L2 based MENN model with the actual plant output
for the tasting patterns by using BPA.
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Figure 13-b. The response of the NARMA-L2 based MENN model with the actual plant output for the
tasting patterns by using PSO.

0.06 : : !

86



Number 4 Volume 25 April 2019 Journal of Engineering

Three different values are used as step change desired output during 300 samples in order to
confirm the proposed hybrid NARMA-L2 based MENN model has the ability to be a controller
for tracking the desired output. Fig. 14 it can be observed that the actual output of the CSTR is
excellent at tracking the desired output and it has small overshoot without oscillation in the
output and more accurate as well as the steady state error equal to zero when it is used NARMA-
L2 based on MENN model with PSO learning algorithm than NARMA-L2 based on MENN
model with BPA.
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Figurel4. The response of the actual plant.

Fig. 15 shows the control action of the hybrid neural controller which has a small spick action of
the coolant flow-rate to track the desired concentration output and to minimize the steady-state
error to the zero value.
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Figure 15. The coolant flow rate control signal based on the PSO algorithm.

4. CONCLUSIONS

The numerical simulation results of a new proposed hybrid NARMA-L2 model based on MENN
with PSO algorithm is presented in this paper for modeling and controlling the nonlinear CSTR
system compared with BP algorithm which shows the following capabilities: (i) Strong
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adaptability performance of the nonlinear model output with no over-learning problem; (ii) Fast
and stable finding the weight parameters of the model with minimum number of iterations;
(iii) Rising the speed of learning model; (iv) reducing the number of nodes in the hidden layer
depending on the context layer; (v) Increasing the order of the hybrid neural network model
depending on the self-connections and (vi) Best and smooth control action generation for one
step ahead prediction which leads to excellent set point tracking without overshoot and no output
oscillation.

REFERENCES

e Abdulkarim, S. A. and Garko, A. B., 2015, Evaluating Feedforward and Elman Recurrent
Neural Network Performances in Time Series Forecasting, Journal of Pure and Applied
Sciences, Vol. 1, No. 1, pp. 145-151.

e Al-Araji, A. S., Abbod, M. F. and Al-Raweshidy, H. S., 2011, Neural Autopilot Predictive
Controller for Nonholonomic Wheeled Mobile Robot based on a Pre-assigned Posture
Identifier in the Presence of Disturbances, The 2nd International Conference on Control,
Instrumentation, and Automation (ICCIA), pp. 326-331.

e Al-Araji, A. S., Abbod, M. F. and Al-Raweshidy, H. S., 2011, Design of an Adaptive
Nonlinear PID Controller for Nonholonomic Mobile Robot based on Posture ldentifier,
Proceedings of the 2011 IEEE International Conference on Control System, Computing and
Engineering (ICCSCE 2011). Penang, Malaysia, pp. 337-342.

e Al-Araji, A. S., 2009, Design of a Neural Networks Linearization for Temperature
Measurement System Based on Different Thermocouples Sensors Types, Engineering and
Technology Journal, Vol. 27, No. 8, pp. 1622-1639.

e Al-Araji, A. S., 2015, Modeling of Continuous Stirred Tank Reactor based on Artificial
Neural Network, Al-Nahrain University, College of Engineering Journal, Vol. 18, No. 2, pp.
202-207.

e Al-Araji, A. S., 2014, Applying Cognitive Methodology in Designing On-Line Auto-Tuning
Robust PID Controller for the Real Heating System, Journal of Engineering. Vol. 20, No. 9,
pp. 43-61.

e Al-Araji, A. S., Yousif, N. Q. , 2017, A Cognitive Nonlinear Trajectory Tracking Controller
Design for Wheeled Mobile Robot based on Hybrid Bees-PSO Algorithm, Engineering and
Technology Journal, Vol. 35, Part A. No. 6, pp. 609-616.

e Al-Dunainawi, Y. Abbod, M. F. and Jizany, A., 2017, A New MIMO ANFIS-PSO based
NARMA-L2 Controller for Nonlinear Dynamic Systems, Engineering Applications of
Artificial Intelligence, Vol. 62, pp. 265-275.

e Astrov, I. and Berezovski, N., 2015, Neural Network Motion Control of VTAV by NARMA-
L2 Controller for Enhanced Situational Awareness, International Journal of Computer and
Information Engineering, Vol. 9, No. 8, pp. 1846-1850.

e Dagher, K. A.and Al-Araji, A. S., 2013, Design of an Adaptive PID Neural Controller for
Continuous Stirred Tank Reactor based on Particle Swarm Optimization, Al-Khwarizmi
Engineering Journal, VVol. 9, No. 4, pp. 46-53.

e Fourati, F. and Baklouti, S., 2015, NARMA-L2 Neural Control of a Bioreactor, Proceedings
of the 4" International Conference on Systems and Control,
DOI: 10.1109/1C0SC.2015.7153307, Sousse, Tunisia.

e George, M. and Basu, K. P., 2012, NARMA-L2 Controlled Variable Frequency Three-Phase
Induction Motor Drive, European Journal of Scientific Research, VVol.70, No.1, pp. 98-111.

88


javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://doi.org/10.1109/ICoSC.2015.7153307

Number 4 Volume 25 April 2019 Journal of Engineering

George, M., 2008, Speed Control of Separately Excited DC Motor, American Journal of
Applied Sciences, Vol. 5, No.3, pp. 227-233.

Humod, A. T., Almukhtar, A. H., Ahmed H, B.,2016, Direct Torque Control for Permanent
Magnet Synchronous Motor Based on NARMA-L2 Controller, Eng. & Tech. Journal,
Vol.34, Part (A), No.3, pp. 464-482.

Hua-Min, Z., Xiao-Liang, D. and Jin-Niuc, T., 2011, Neutral-Network Based Output
Redefinition Control of an Unmanned Aerial VVehicle, Procedia Engineering, Vol. 15, pp. 352
— 357.

Jeyachandran, C. and Rajaram, M., 2014, Neural Network Based Predictive, NARMA-L2
and Neuro-Fuzzy Control for a CSTR Process, Journal of Engineering and Applied Science,
Vol. 5, No. 3, pp. 30-42.

Kananai, J. and Chancharoen, R., 2012, Stiff PD and NARMA-L2 Synergy Control for a
Nonlinear Mechanical System, European Journal of Scientific Research, Vol. 77, No. 3,
pp.344-355.

Medsker, L. R. and Jain, L.C., 2001, Recurrent Neural Networks Design and Applications,
by CRC Press LLC, 1% edition.

Nells, O., 2001,Nonlinear system identification, Springer — Verlag Berlin Heidelberg.

Pedro, J. and Ekoru, J., 2013,NARMA-L2 Control of a Nonlinear Half-Car Servo-Hydraulic
Vehicle Suspension System, Acta Polytechnica Hungarica Journal, Vol. 10, No. 4, pp. 5-26.
Putrus, K. M., 2011, Implementation of Neural Control for Continuous Stirred Tank Reactor
(CSTR), Al-Khwarizmi Engineering Journal, Vol. 7, No. 1, PP 39-55.

Rini D. P., Shamsuddin S. M., and Yuhaniz S. S., 2011, Particle Swarm Optimization:
Technique, System, and Challenges, International Journal of Computer Applications, Vol.
14, No.1, pp 19-27.

Sharma, P., 2014, NARMA-L2 Controller for Five-Area Load Frequency Control,
Indonesian Journal of Electrical Engineering and Informatics, VVol. 2, No. 4, pp. 170-179.
Valluru, S. K., Singh, M. and Kumar, N., 2012, Implementation of NARMA-L2 Neuro
controller for Speed Regulation of Series Connected DC Motor, The IEEE 5th India
International Conference on Power Electronics (IICPE), DOI: 10.1109/1ICPE.2012.6450518,
Delhi, India.

Zurada, J.M., 1992, Introduction to Artificial Neural Systems, Jaico Publishing House, Pws
Pub Co.

89


http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6421217
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6421217
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6421217

