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ABSTRACT

|\/|any problems were encountered during the drilling operations in Zubair oilfield. Stuckpipe,

wellbore instability, breakouts and washouts, which increased the critical limits problems, were
observed in many wells in this field, therefore an extra non-productive time added to the total
drilling time, which will lead to an extra cost spent. A 1D Mechanical Earth Model (1D MEM) was
built to suggest many solutions to such types of problems. An overpressured zone is noticed and an
alternative mud weigh window is predicted depending on the results of the 1D MEM. Results of
this study are diagnosed and wellbore instability problems are predicted in an efficient way using
the 1D MEM. Suitable alternative solutions are presented ahead to the drilling process commences
in the future operations.

Keywords: Oilfield, Mechanical Earth Model, Wellbore Instability, NonProductive Time
Reduction, Pore Pressure Prediction.
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1. INTRODUCTION

Zubair Oilfield is located in the southern part of Irag as shown in Fig. 1 and discovered in 1947. It
is one of the most prolific oilfields in Iraq. The geologic column for Zubair oilfield is viewed in
Fig.2. Non-productive time (NPT) is observed almost in most of the wells in Zubair oilfield,
especially in the selected wells which is shown in Fig. 3 and almost 80% of the total NPT was due
to the wellbore instability problems.
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Figure 1. Location Map of Zubair Oilfield and the two selected wells.
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Figure 2. Geologic column of Zubair oilfield, (AlKhafaji, 2003).

The mechanical earth modeling process is presenting the numerical values of the mechanical rock
properties and the stress state for a certain geologic or stratigraphic column in a certain field.
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(Fischer, 2013) studied and evaluated the potential and importance of building a MEM on
predicting the in situ stresses in reservoir scale.

Utilizing the managed pressure drilling (MPD) in narrow mud window and abnormal pore pressure
situations is the best candidate. A study by (Alkamil and Abbood, 2018) on utilizing the MPD in
nearby Iraqi oilfield gave good results. Lack of data is always an issue in the process of mechanical
earth modeling if not compensated by a robust tool; the process will be a waste of time. (Sirat, et
al., 2015) investigated the lack of calibration data on the MEM construction process. They
highlighted the importance of the availability of the complete sets to construct a reliable MEM.
(Goodman and Connolly, 2007) also studied the importance and the value of the data and
calibration values in the process of constructing a MEM.

Rig Failures Waiting
o
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Well Problems /

79,3%

Figure 3. Total NPT breakdown, Zubair oilfield drilling reports.

A mechanical earth model (MEM) was built from an offset wells to determine the safe mud window
in the predrill phase, (Plumb, et al., 2000). A comprehensive study was carried out by building a
1D MEM in vertical well in the Persian Gulf, which showed an interference between the modeled
profiles of the stresses and the breakouts and their effects on wellbore instability, (Kidambi and
Kumar, 2016).

(Amani, et al., 2010) utilized different logging data to construct a 1D MEM to a mature oil field.
They used the constructed MEM to predict the safe mud weight window and possible problems and
suggested an alternative drilling program.

(Gholami, et al., 2014) studied the mud window determination. They came to a conclusion that
picking the pore pressure as the lower limit and the fracture gradient as the upper limit, gave good
results in vertical wells. (Fattahpour, et al., 2012) constructed a 1D MEM for one well in
southwest Iran and applied the model to design the best mud weight program strategy. (Moazzeni,
et al., 2010) made the best utilization of log and drilling data to construct a MEM and their results
showed a significant decrease in the NPT.

Ahead of the drilling process started, mechanical earth modeling should be made since it is one of
the essential elements in reducing the non-productive time because it assesses and evaluates all the
necessary problems and parameters that occurred in nearby wells therefore, it enables us to utilize
those solutions to drill new wells safely.

Non-productive time related to the drilling problems in Zubair QOilfield is estimated to be 79.3%.
This percentage considered high. Therefore, it is necessary to reduce this value by assessing the
root problems that causes time to increase.
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2. PRINCIPLE STRESSES:

The state of stress can be evaluated by determining at least four parameters: overburden stress,
Sv; the maximum horizontal stress (SHmax); minimum horizontal stress (Shmin) and orientation
of one of the stresses such as azimuth of the maximum horizontal stress.

2.1 Overburden Stress:

The overburden stress (Sv) generated by the weight of the overlying layers. Bulk density log is
the source for calculating the overburden stress using Eq. (1). However, in most cases, the upper
interval is not logged, therefore; linear extrapolation is used for calculating the overburden stress
in the upper unlogged interval.

avzfozp(z) * gxdz (€3]

where,
ov is the overburden stress, (Pa), p(z) is the bulk density log at depth z, (kg/m®), g, is the
constant of gravitational acceleration = 9.81 (m/s?), z is the depth at the depth of interest, (m).

2.2 Pore Pressure Prediction:

Analysis of pore pressure workflow performed by utilizing well logging data (Resistivity and
Acoustic logs) and calibrated with measured values obtained by reservoir characterization tool
(RCT). A reasonable match is obtained from modeled profile with the measured values for both
wells.

Due to the successive bedding of sandstone and shale in addition to carbonates in both wells, Eaton
sonic model is used to model the pore pressure profile, Eg. (2). An increase in the profiles noticed
in one of the wells at Tanuma formation, which gave a narrow mud window and difficult drilling
scenario.

Xner)S
Pp=5-|(s - Pyer) (32) | @
where,
Pp is the pore pressure, psi.
S is the overburden stress, psi.
Pncr is the hydrostatic pressure value, psi

XncT, Xobs are the sonic log reading on the normal compaction trend line and on the log curve
respectively, sec/ft.

2.3 Horizontal Stresses:
2.3.1 Magnitude of Minimum Horizontal Stress, Shmin:

Several methods are available to determine the magnitude of the minimum horizontal stress.
Leak-off test and extended leak-off test are the most reliable methods if available. An alternative
to these methods is to model the minimum horizontal stress using well logs by using stress
contrast method which also known as Eaton equation, Eg. (3)

Shmin = (1%) (Sv—Pp)+Pp (3)

where,
9 is the Poisson ratio.
Sv is the overburden stress, psi, Pp is the pore pressure, psi.
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2.3.2 Orientation of the Minimum Horizontal Stress:

Direction of the minimum horizontal stress can be specified from the available XRMI image logs.
In vertical wells, breakouts occur in the same direction or parallel to the minimum horizontal stress
where the maximum compressive shear stress localize.

2.3.3 Maximum Horizontal Stress, (SHmax)
2.3.3.1 Magnitude of Maximum Horizontal Stress:

Three methods are used to estimate the magnitude of the maximum horizontal stress, the effective
stress method, the stress contrast method and the equilibrium ratio method.

The effective stress ratio method requires calibration points, which were taken from a study on a
near field. It calculates the ratio at the depth of calibration points and then interpolates the maximum
horizontal stress profile for the rest of the interval using Eq. (4).

ESRmax = (Szni—;)%) (4)

The stress contrast method calculates the maximum horizontal stress from well logs using Eq. (5)
providing that the tectonic strain is in the maximum horizontal stress direction.

SHmax = (1%) (Sv—Pp)+Pp+ (11:;92) Ee (5)

where, € = 5x10°

The equilibrium ratio method calculates the maximum horizontal stress magnitude based on the
three stress states. According to the geological reports, stress state is in normal faulting mode, (Sv >
SHmax > Shmin) and choosing the default ratio of 0.5 and using Eq. (6) and rearranging to solve
for SHmax.

(SHmax—Shmin) — 05 (6)

Sv—-Shmin

2.4 Rock Mechanical Properties:

Understanding of the mechanical properties of the rocks is of an extreme importance in drilling and
stability issues. Two types of rock mechanical properties, which are; the static and dynamic, are
available. The static properties usually measured in the laboratory tests and they used to compare
their values with the log-derived dynamic properties.

Due to the absence of any laboratory tests, static rock mechanical properties, estimated from
correlations that relates dynamic properties.

Rock mechanical properties include rock strength properties (unconfined compressive strength,
UCS), coefficient of internal friction, and elastic properties (young modulus and Poisson ratio).

2.4.1 Dynamic Properties:
2.4.1.1 Poisson ratio:

Dynamic Poisson ratio is estimated using Eq. (7).
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2_ 2
Bam = yprven )
where,
9 is Poisson ratio.
Vp is the compressional wave velocity, km/s.
Vs is the shear wave velocity, km/s
2.4.1.2 Young Modulus (Edyn):
Young modulus is estimated using Eg. (8).

2 2

Eqyn = pVE Gty ®)
where,
Eayn is the dynamic Young modulus, MPsi.
p is bulk density log reading, gm/cm?.
2.4.2 Static Properties:
2.4.2.1 Poisson ratio:
A correlation is made on a nearby field between lab test and the log-derived (dynamic) Poisson
ratio to model the static Poisson ratio using Eq. (9).

Ustatic = 0.8834 * 19dyn 9)
2.4.2.2 Young Modulus:

The generalized Lacy correlation 1997, Eq. (10) is used to convert from the dynamic to the static
Young modulus.

Estatic = 0.018EZ,, + 0.422E 4, (10)

2.5 Strength Rock Properties:

2.5.1 Unconfined Compressive strength (UCS):

Due to the different lithology types in each well, UCS estimated from four correlations according
to each lithology as listed in Table 1.

Table 1. UCS correlations for different lithology

Lithology UCS Correlation, MPa

Sandstone  |UCS = 185165 e~%037+AT McNally, 1987

Limestone  |UCS = 23018 * ¢~ *79*NPHI Qatif-Nphi, 1992

Dolomite  |UCS = 64 = E%-3% Jizba, 1991
Shale UCS =212 x e® x AT 293 Horsrud, 2007

where,
AT is the compressional slowness log in ps/ft.
NPHI is the neutron porosity log, fraction.
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E is the static Young modulus, MPsi.
2.5.2 Internal Friction coefficient (p):
The generalized Lal-Vp correlation used to calculate the internal friction coefficient in four types
of lithology is given by Eq. (11).
_ i (22
i = tan (arcsin (Up+1)) (12)
3. The Results
3.1 Rock Mechanical Properties:

Dynamic mechanical properties are calculated using the correlations listed above. Due to the
absence of any rock lab experiments, the dynamic properties converted to the static properties using
the available studies on the nearby field’s correlations (Fig. 4a and 4b).

— Dynamic Poisson's Ratia (PP Case) — Dynamic Young's Modulus (PP — Unconfined Compressive Strength
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Figure 4a. Rock Mechanical Properties in well ZB 189.
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Figure 4b. Rock Mechanical Properties in well ZB 204.

3.2 In-Situ Stresses Magnitudes:
3.2.1 Overburden stress:

Density log is available (from 1850.38 to 2440.21 m) in ZB 189 and (from 1882.38 to 2442.21 m)
in ZB 204 therefor, linear extrapolation was needed to accommodate for the missing density curve
in the upper interval part of the well. Then, the overburden stress calculated using Eq. (1) and given
in (Fig. 5a and 5b).

— Overburden Density € ite| = Overburden Stress (PPP Case) — Overburden Density Composite (ZB 204) | —Overburden Stress (Z8 204)
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Figure 5a: Density log and overburden Figure 5b: Density log and overburden
stress in well ZB 189. stress in well ZB 204.

3.2.2 Pore Pressure:

Pore pressure in both wells (Fig. 6a and 6b) predicted from both acoustic and resistivity log sets,
and a very good match in well ZB 204 is obtained from acoustic log with the measured pore pressure
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(red points in both plots) and a good match in ZB 189 from Weatherboards’ RCT (Reservoir
Characterization tool).

Due to the undesired results from the resistivity logs, pore pressure prediction from resistivity log
is ignored, and a reliable pressure profile from sonic log adopted in the consequent calculations.
Due to the limited data of the pressure measurements in ZB 204, the measured pressure points are
used as a calibration points in ZB 189 as well since both wells are in the same geological settings
and completed at the same time.

3.2.3 Horizontal Stresses Magnitude:

Horizontal stress profiles (Fig. 7a and 7b) in both wells modeled using two different methods,

the effective stress method and the stress contract method.

In the effective stress method, calibration points are taken from a previous study (Abbood, 2016)
on a nearby field because no leak-off tests available. This method calculates the effective stress
ratio (ESR) using Eq. (12a) and Eq. (12b)

Shmin-
ESRmin = =2 (12a)
V-Pp
ESRmax = /Py (12b)
Sv-pp
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Figure 6a. Pore pressure profile in well ZB 189.
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Figure 6b. Pore pressure profile in well ZB 204.
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Figure 7a. Minimum and Maximum horizontal stress profiles in well ZB 189.
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Figure 7b. Minimum and Maximum horizontal stress profiles in well ZB 204.

The trend line between these two points is then calculated, which creates a trend line-based log,
which will be used to calculate the complete horizontal stress profile.

The Stress Contrast method provides a means for stress calculations from logs and considering an
isotropic tectonic strain with Biot coefficient equal to 1, Eq. (13a) and Eq. (13b),

Simin = (=) (Sy = Bp) + By + (g ) Ee (13a)
Stmax = (J—v) (S,—P,) +P, + (f_*v”z) Ee (13b)

The difference between Eq. (13a) and Eq. (13b) is in the value of the strain constant (¢) and they
are (1x10 for Shmin and 510 for Spmax). Moreover, the average profile of both curves is used for
the consequent calculations.

3.2.4 Orientation of Horizontal Stresses:

In vertical wells, direction of SHmax is perpendicular to the direction of Shmin. By analyzing the
breakouts on the available resistivity image logs (Fig. 8), the direction of Shmin is at an azimuth of
290° with an orientation to NW-SE giving the direction of SHmax as 200° NE-SW.
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Figure 8. Breakouts (highlighted in green), shown by XRMI Image Log.

3.3 Fracture Pressure Prediction:

Fracture pressure was predicted using Hubbert and Willis formula, Eq. (14), for both wells. The
basis for this formula is that the sum of the formation pore pressure and the effective stress equals
the total overburden pressure. Results are shown in (Fig. 9a and 9b).

Pp = B, +0.5(S, + B,) (14)

where,
Pe is the Fracture Pressure.
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Figure 9a. Fracture Pressure profile in well ZB 189.  Figure 9b. Fracture Pressure profile in well ZB 204.

Displaying all results in a single diagram will help us to get better understanding of what is going
on and how stresses related to each other. It also helps us to spot and diagnose possible problem

and therefore to suggest better decisions and solutions. Therefore, results of both wells are
displayed in Fig. 10.
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Figure 10. 1D MEM Results in both wells.

Due to the lack of core measurements, a sensitivity analysis using quantitative risk assessment
(QRA) and tornado plot are conducted. A tornado plot (Fig. 11) lists the most important parameters
that affect the fracture breakdown pressure which will lead to the unwanted breakouts. The results
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Figure 11. Sensitivity analysis using Tornado plot for Tanuma formation.

Quantitative risk assessment (Fig. 12) also showed the probability of success for the mud window
at Tanuma formation. This analysis clearly shows the probability of success for three cases (P10,
P50 and P90) at the depth of 2168m. The probability of success means the mud window available
at that depth without exposing the formation to any failure.
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Figure 12. Sensitivity analysis using QRA for Tanuma formation.
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Results for each probability are shown in Table 2.

Table 2. Probability of success for allowable mud weight results.

Allowable Mud Weight, ppg
Probability of
SUCCess Lower Upper
P10 115 14.2
P50 11.8 13.6
P90 12.2 13.1

Increasing the probability of success means increasing the risk, thus depending on the experience
of the region and -if available- similar cases from nearby fields is necessary.

In addition, as from the sensitivity analysis results, it is highly important to conduct rock
experiments and leak-off test for Zubair oilfield for calibrating the mechanical earth model and thus
a better results for mud program selection may be obtained, which leads to less wellbore instability
problems thus reduction in the non-productive time.

3.4 Conclusions

In this study, the results of 1D Mechanical Earth Model show an increase in pore pressure
and in both maximum and minimum horizontal stresses in the interval from 2075m ( lower
parts of Sadi formation) to 2225m (upper part of Mishrif formation).

The transition zone of the increase in pore pressure was considered from 2075m to 2125m.
Zone of over pressure was noticed from 2125m to 2200m in Tanuma shaly formation,
which known for its increase in over pressure in the southern part of Iraqi oilfields. Pore
pressure starts back to hydrostatic in a gradual manner from 2200m to 2225m.

Based on the analysis of XRMI image logs, the orientation of minimum horizontal stress
is NW-SE with an azimuth of 290°; this gives the maximum horizontal stress an orientation
in the NE-SW with an azimuth of 200°. Orientation of both horizontal stresses provides a
trajectory plan for drilling directional wells in future development plans.

Wells tornado plot shows that the minimum horizontal stress has the bigger effect on the
results and because the minimum horizontal stress model depends on Poisson ratio in its
calculation, an emphasis should be made again on performing laboratory core tests to
provide the needed calibration data.

Based on the sensitivity analysis results and due to the narrow mud weight window, the
applicability of using the managed pressure drilling (MPD) or Annular Pressure While
Drilling (APWD) techniques should be checked in a situation where narrow mud window
encountered.
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