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ABSTRACT

In this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory
tracking. The mobile platform is an example of a nonholonomic mechanical system. The presence
of holonomic constraints reduces the number of degree of freedom that represents the system model,
while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical
model was derived here for the mobile platform, considering the existence of one holonomic and
two nonholonomic constraints imposed on system dynamics. The partial feedback linearization
method was used to get the input-output relation, where the output is the error functions between the
position of a certain point on the platform and the desired path. The dynamic error model was
considered uncertain and subjected to friction torques on the wheels. The adaptive sliding mode
control was utilized to design a robust controller, that will force the platform to follow the desired
trajectory. The simulation of the proposed controller was done via MATLAB to reveal the ability of
the robust adaptive sliding mode controller applied as a trajectory tracker for various path shapes.
Keywords: Mobile platform, Non-holonomic constraints, Robust adaptive sliding mode controller,
Partial feedback linearization.
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1. INTRODUCTION

All Physical systems can be categorized into two categories: Linear systems and nonlinear systems.
The nonlinear systems are classified into holonomic and nonholonomic systems according to types
of their constraint, as showed by Chung, 2004.

In mechanics, the free rigid body is considered as the main primary system, and this topic was
treated and studied to a great extent. Baillieul, et al., 2003, showed that the mobile platform is one
of the most important applications on the nonholonomic mechanic systems and its tracking control
is a challenging task.

The relation between control theory and the geometric mechanics is done with classical mechanical
Lagrange formulation which describes the dynamic of the system in the presence of its constraints
(holonomic and nonholonomic). The Lagrangian equation equal to the difference between kinetic
energy and potential energy as demonstrated later in this paper. Bloch, 2003, showed that there is a
clear, strong connection between mechanics and nonlinear control theory concerning with theory on
moving mechanical system under constraints.

There are many types of nonlinear control applied to control the trajectory tracking of nonholonomic
mobile platform. For example, backstepping based trajectory tracking control was applied to a four-
wheel mobile robot by Kumar and Sukavanam, 2008; nonlinear controller was designed for
mobile manipulator trajectory by Said, et al., 2014, and sliding mode real time, which was designed
to mobile platform control system in the presence of uncertainty, by Solea, et al., 20009.

The most famous type of nonlinear control system and the oldest one is the discontinues control
system, one of them specifically is the sliding mode control (SMC) system Boiko, 2009. In the study
by Utkin, et al., 2009, it has been proven that the SMC system is efficient for controlling complex
plants that have a high order of nonlinearity dynamics, that are operating with the existence of
disturbance and uncertainty of system parameters. The variables of the sliding mode should be
designed accurately, and this leads to proper closed-loop system performance when the trajectories
of the system lie on the sliding manifold. Shtesse, et al., 2014, showed that the main idea behind the
SMC is to drive the system path to the selected sliding manifold with the aid of control, and keep the
motion on the manifold, which means utilizing the main characteristics of the sliding mode that is its
insensitivity to internal and external perturbations matched by the control, maximum accuracy, and
finite time convergence of the sliding variables to zero. SMC system has an advantage that its
robustness against the matched disturbances, and also ease of implementation. However it has a
disadvantage that the chattering behavior that appears for several reasons like the non-ideal
switching process; as shown by Al-samarraie, 2013. One of the simplest methods is to attenuate the
chattering behavior, as presented by Slotine, 1983, is by replacing the discontinuous signum
function by a continuous function, like the saturation function.

The purpose of the adaptive controller, as shown by Lavretsky and Wise, 2013, is to perform real-
time estimation to the process of uncertainty then will produce a control input to estimate and reduce
the unwanted deviation from the expected closed-loop system performance. The adaptive sliding
mode control (ASMC) system consists of a sliding mode controller and an adaptive controller. With
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the use of a sliding mode control system, the control effort can be reduced by selecting a proper
control gain related to the change of system parameters and uncertainty. An ASMC methodology
that guarantees a real sliding mode only was proposed by Plestan, et al., 2010. The sliding mode
with gain-adaptation has been established without a priori knowing uncertainties/perturbations
bounds while both the adaptive-gain values are not overestimated.

Based on the proposed work by Plestan, et al., 2010, the ASMC methodology is applied, in the
present work, to design a robust controller to the nonholonomic mobile platform. The control design
uses the concept of partial feedback linearization, after considering a certain point at the platform as
the desired outputs; where the system dynamics concerning these outputs is minimum phase. The
dynamical model to a mobile platform is derived here utilizing the Euler-Lagrange equation, where
the nonholonomic constraints are considered through the Lagrange multiplier.

2. MATHEMATICAL MODEL FOR MOBILE PLATFORM

The mobile platform under study is made of a rigid cart driven by two DC motors, which is
described by four degrees of freedom. Fig. 1 shows the mobile platform with two wheels; where r is
the radius of the mobile wheel (in m), 2b is the distance between the two wheels (in m), P, is the
location of the point in between the wheels, P, is a point on the platform, which is d distance (called
look-ahead distance) from P,,.

Figure 1. Mobile platform.

2.1. Kinematic Model of the Mobile Platform

Kinematics means a representation of the platform mathematically (displacement, velocity, and
acceleration) with respect to a reference frame without any forces affecting its motion and velocity,
as shown by Siciliano, et al., 2009. In this paper, the kinematic relations were evaluated with
respect to inertial or reference coordinates. The configuration variables of the system are defined as
[x,v,®,04,0,], were x and y are the platform position in the horizontal plane (midway between the
two wheels), ¢ is the rotation angle of the platform, the chassis, which is measured from the inertial
x-axis, and finally6;and 6, are the rotational angles of the first and the second wheel respectively.
The nonlinear dynamics of chassis is coupled with the dynamics of the wheels. The body of the
chassis is assumed to be symmetric and no slip condition is required. X, and Y, are the inertial
reference frame, the frame X, and Y,,, are attached frame to the middle point between two wheels
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of mobile platform, and d is the distance from the origin of (X,,, Yy, ) t0 (Xpc, Ype) On the X,,-axis
as shown in Fig. 1.

2.1.1 Homogenous Transformation

The homogeneous transformation matrices which were presented by Spong, et al., 2006, was used
in this paper to derive the kinematic equation of the wheels and chassis. The mobile platform is
represented by five configuration variables; which are [x, y, @, 84, 8,], as mentioned above.

2 .2 Holonomic and Non-Holonomic Constraints
In dynamics, constraints on position and velocity of the system are introduced instead of unknown
forces to describe the observed motions, Cushman, et al., 2010.

Holonomic constraints are typically introduced by mechanical interactions among the
different parts of the system. The holonomic constraints are integrable equations, and hence can be
represented as:

hi(q) =0, i=12,...... m<n (@)

where the function h;(q) is assumed to be smooth and independent.The system whose all
constraints are holonomic is called a holonomic system. The effect of the holonomic constraints is to
confine the attainable system configurations to (n — m) dimensional smooth as showed by De Luca
and Oriolo, 1995. In nonholonomic constraints, the system expression involves generalized
coordinates and velocity in the form:

A(q,q) = 0i=1,....k<n )

They are referred to as kinematic constraints. The nonholonomic constraints will limit the
admissible motions of the system by restricting the set of generalized velocity that can be attained at
a given configuration. In mechanics, such constraints are usually encountered in the Pfaffian form
De Luca and Oriolo, 1995:

al(@)g=0,i=1,....,k<n

These equations are nonintegrable, that is the equations cannot be put in the form given by Eqg. (1).
If all the system constraints are nonholonomic, it is called a non-holonomic system.

For the mobile platform, there are two types of constraints; holonomic and nonholonomic, which are
presented in the following items.

2.2.1 Holonomic Constrain Equation for a Mobile Platform
There is only one holonomic constraint for the mobile platform. It is given by:

® =1 — v2)/2b=r1( 91 - 92)/219 3)
By integrating Eq. (3), the holonomic constraint on the mobile platform was obtained as follows:
p=C(6,—6), C=r1/2b (4)

where v, = ré,, and v, = r6, are the linear velocities of the first and second wheels respectively, ¢
and ¢ are the rotational angel and the angular velocity of chassis respectively, finally, r is the radius
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of wheels and 2b is the distance between two wheels. As a result ¢ is expressed in terms of 6, and

6,, and the number of degrees of freedom (DOF), that expresses the mobile platform system,
becomes four.

2.2.2 Nonholonomic Constraints equation
Three nonholonomic constraints are imposed on the motion of the mobile platform. These
constraints are given as follows:

2.2.2.1 The lateral constraint:
For the mobile platform, the velocity is equal to zero in the lateral direction. This represents the
nonholonomic constraint, which was derived here as follows; the velocity of P,is

VX —S(p VX
=yl =5y colls)
From which the tangential and normal velocities with respect to the wheels are obtained as
[v‘x] _ [Ccp —Scp] [ ] [ {)’(coscp +y sing
vyl ~ [Se vy, S(p Co] vy, —xsing + ycos@

As can be observed from Fig. 2, the mobile platform lateral velocityvy is equal to zero. That means
the first nonholonomic constraint is:

—Xsing + ycos@ = 0 (5)

Yo [

lateral velocity constraint Vy=0
T Vi

vy v o4

Figure 2. Lateral constraint.

2.2.2.2. No slip condition constraint

No slip condition was brought to light where the velocity of the wheels of the point touch to
the ground is equal to zero. This instant of zero velocity represents the second and third
nonholonomic constraints. It is derived as follows (Fig. 3); the first wheel velocity vector at
the point touch to the ground is obtained as:

v _ [“’wlx] _ ] _ ] [X + bC([)(p
W1 Vway Scp Co Scp Colly +bSe¢
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The no-slip for the first wheel means v,,;x = 0, hence the second nonholonomic constraint is
obtained as:

X cos@ +ysing + b =0 (6)

In the same manner, the third nonholonomic constraint due to no-slip condition on the second wheel
is obtained as;

X cosp +y sing —bp =0 (7)

No slipping condition constraint

. -0

Figure 3. No slipping condition constraint.

In pfaffian form, the nonholonomic constraint matrix is given by:

X

—sing cosp 0 0 07|y

A(qQ)q =|cosp sing b -—r O] ¢

cosp sing —-b 0 —rlf6,

0

Due to the holonomic constraint (Eq. 4), the Pfaffian form is reduced to:
X
) —sing cos@ 0 0 y

AlQ)q = cosq sing -—r/2 _F/Z][élJ ()

0,

3. DYNAMICS OF PLATFORM

In this section, the dynamical model of the platform is introduced with considering the holonomic
and nonholonomic constraints that were derived in the previous section; where the Euler-Lagrange
equation is utilized here to derive the mobile platform mathematical model.

Lagrangian L is the difference between the system kinetic and potential energy

L(q,4) = T(q,4) — U(q) = 1/2(4"M(q)@) — U(q) 9)
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Where M(q) is the positive definite inertia and a mass matrix of the system, and U(q) is the potential
energy of the platform. For the mobile platform, the equation of motion, after applying the Euler-
Lagrange equation, is given by;

M(q)d + D(q,@)q + G(q) =AT(q) A +E(q)u (10)
where the mass matrix M(q) for the platform is given by, Appendix (A);

mp; My My3 Mgy
M(q) = mp; My Mp3z My
mz; MMz M3z M3y
Myy Myy; My3z Mgy

D(q,9)q, and G(q) is the carioles matrix and the potential energy respectively. Both D(q, q)q, and
G(q) are equal to zero for the platform system model.

As can be noted from Eqg. (8), the nonholonomic constraint matrix A(q) is not of full rank
Vq. So there exists a null space associated to matrix A(q), i.e., Null(A(q)) # @. The null space for
the mobile platform is spanned by the rows of the following matrix;

r/2cosg@ r/2sing 1 0

_NT
r/2cosq r/2sing 0 1 =N (11)

As a result of the columns of matrix N(q), the basis for the null space of A(q), so NT(q)A(q) = 0.

The term AT(q) A, in Eqg. (10), is the vector of constraint forces; which is altered by the
magnitude of the Lagrange multiplier A. This term represents the effect of the nonholonomic
constraint on the system dynamics. To eliminate the unknown Lagrange multiplier term from the
dynamical model, NT(q) is multiplied by Eg. (10), as in the following;

NT(q) (M(q)d + D(q,9)q + G(q) = A"(q) A + E(q)u}
= NT(@)M(@)4 = NT(9)E(q)u

To this end the following change of variable is considered;

q=N(qp (13)

wherep € R? is a new vector state, which lies in the null space of A(g). The total platform system
state, after considering the nonholonomic constraints, are given by; g =[x y 6; 61]Tand p.
Rename the state as; x; = x,x, = y,x3 = 0;,x, = B,and p = [*¥s  X6]7, i.e.,

(12)

[g]z[xl X, X3 X4 X5 Xg]T (14)

which represents the total mobile platform state after considering the holonomic and nonholonomic
constraints. With respect to the new state (Eq. (14)), the velocity vector for the nonholonomic
platform model becomes;
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_xl_
- ﬁz N([xs xe]"
[‘.7]= 31 = s (15)
p X4 i

X 6

[,

Where p is computed by substituting Eq. (13) in Eq. (12)
i = (V@) = {ZN@] o+ N @) 30 = N + N o)
4= W@p) =17N@p Q) 7P =N@p q)p

= NT(@Q)M(@)N(@)p + N"(@)M(@)N(g)p = N"(Q)E(q)u

Thenp is obtained as

p = [INT(@QM(@ON(@QI H{-NT(@M(@N(q)p + NT(QE(q)u} (16)

whereNT ()M (q)N(q) is an invertable 2x2 matrix. Using Eq. (16), the nonholonomic platform
dynamical model is given by;

[q]zl N(@)[*s xe]"
Pl |=INT(@QM(@QN@INT(@M(@N(@p + [NT(@)M(@)N(@)] *NT(Q)E(q)u

— fl (ql ,D)
- [fz (q.p) + 9(q,p)u (17)

Where  fi(q,p) = N(@)[Xs *6]", f,(q,p) = —[NT(Q)M(q)N(@)]*N"(¢)M(q)N(q)p and
9(q,p) = [INT(@)M(@)N()]"*'N"(@)E(q).

4.PARTIAL FEEDBACK LINEARIZATION

Feedback linearization is a method that is used to transform the nonlinear system into an equivalent
linear system. It leads to full-state linearization, where the state equation is completely linearized.
On the other hand, a partial feedback linearization is an input-output linearization, where the input-
output map is linearized, while the state equation may be only partially linearized, Khalil, 2002.
Additionally, Isidori, 2000, showed that the system must be a minimum phase to guarantee the
stability of the control system when designed based on the input-output linearization.

In this work, the mobile platform model is partially linearized considering the position of the point
P. (Fig. 1) with respect to the wheels torques inputs. It was shown by Yun, et al., 1992, that the
mobile platform is input-output linearizable at P.. That also means, the mobile platform is minimum
phase when controlling it via static state feedback through the point P..

The position functions of mobile platform throw P, point is obtained by using the homogeneous
transformation matrices method as demonstrated below.
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cose —sing 0 x|[1 0 0 d [cosq —sing 0 x+dcosg
To =T TP® = sing cose O y[|0 1 0 Of_|[sing cose 0 y+dsing
pe — “PotPe 0 O 1 0|f0 0 10 0 o 1 0
0 0 0 110 0 0 1 0 0 0 1
coso —sing 0 x+dcosq@]|0 x+dcos@
— po0 — sing cosg@ O y+dsing]||0f_|y+dsing
be 0 0 1 0 0 0
0 0 0 1 1 1

where T and Py. are the homogeneous transformation matrix and the position of P, with respect to

the inertial frame 0. From Py, the required outputs (y, and y,) are obtained as;

yi = pgcx =x+d COS((P)} (18)
Y2 = Ppey =Y +dsin( @)
The time derivative of the outputs is evaluated using Egs. (16) and (4);
y1 = [(r/2) cos@ —cdsing (r/2)cos @ + cdsin @] [2]

(19)
y, = [(r/2)sin@ + cdcos@ (r/2)sin @ — cd cos @] [iz]
After that ¥, and ¥, are obtained as
y1 =0+ 81(X)u}
# 20
> = £ + 8, (0u 20)
where

60 = [~ 5m@s 2S@@] [zz] +

[r/2c0s(¢) — cd sin()  1/2c0s() + cd sin(@)]IN" (9)M(q)N(q)] ™ [— NT(9)M(q)N(q) [ﬁj]
B0 = [1/205(@) ¢ 1/2c05(9) p1[, ] - dsin(@)? +

[r/2 sin() + cdcos(@) r/2sin(p) — cdcos(@)][NT(QIM(q)IN(q)]™ [— NT(@)M ()N (q) [ii]]

g1(x) = [r/2cos(¢) — cd sin(¢) r/2cos(¢) + cd sin(¢) ][(N(q)t(M(q)N(qz)_l]
g2(%) = [r/2cos(¢) + cd sin(e) 5 sin(e) — cdcos(@) ] [(N(Dt(M(@N(@) ]
To this end, the outputs dynamics are rewritten in the error function form; that is by defining e; =

y1 — Vigand e, =y, — y,q, Where y;4 and y,q4 are the desired position for y; and y,Respectively.
Accordingly, é; and é, are computed as follows;
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e; = [(r/2)cos@ —cdsing (r/2) cos ¢ + cdsin @] [zi] —V1d

X (21)
¢ i : 5 .
e, = [(r/2)sin@ 4+ cdcos¢ (r/2)sin@ — cd cos @] [X6] - V24
And é; and &, are
=[] =[] * [cao) w = P00 + Goon (22)

where Fy(x) = f1(x) — ¥1q, F2(%) = (%) = J24, G1(¥) = g1(x) and G,(x) = g, (x). Considering
the uncertainty in the system model, the error function dynamics can be put as;

€ =F,(x) + Go(x)u + 8(x,u) (23)

where F,(x) and G,(x) are F(x) and G(x) but with nominal parameters value, while §(x, u) is the
perturbation term due to system model uncertainty. Mathematically, 6(x,u) is the difference
between the right-hand side of Eq. (22) and F,(x) + G, (x)u, i.e.,

d(x,u) =Fx) +Gx)u+ E — (Fo(x) + G, (x)u) = AF(x) + AG(X)U} (24)
= AF(x) + AG(x)u + E,
Here E. is the friction torques, which is given by;
X L
E.=—NTx va * [xi] + F, = sign [XZ” (25)

5.SMC

The SMC is a specific type of variable structure control (VSC) which is characterized by a suite of
feedback control laws and decision rule. It is termed the switching function utilization. This natural
idea began in the soviet union in the late 1950s.

SMC is designed to bring the state to the sliding manifold (s = 0) and then constrain the system
state within the neighborhood of the sliding manifold. There are two main advantages in this
method, the first one is that the dynamic system behavior may be designed by the specific selection
of switching function, and the second one is that the closed loop response become completely
insensitive to a particular class of uncertainty. The later invariance property makes the methodology
a suitable candidate for robust control. On the other hand, the main SMC disadvantage is the system
chattering. This behavior is the result of the discontinuity in SMC formula, and is related to the
controller gain value.

The sliding mode design consists of two parts, one involves the design of switching function, hence
the sliding motion meets the design specification, and the other is related to the selection of the
control low which will make the switching manifold attractive to the system state, Edwards and
Spurgeon, 1998. To improve the SMC performance, the SMC gain will be evaluated via adaptive
law as presented in the next subsection.

The main objective of the present paper is to design a nonlinear controller based on the ASMC
theory to enforce the point P, on the platform to follow the desired trajectory in spite of system
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dynamic model uncertainty (the perturbation term 8(x,u)). As in the conventional SMC, the first
step is the selection of the switching function s = [S1  S2]7. Here s is selected as follows;

_[52] [ ]+A[e2 —e+Ae (26)
where

A0
A= [0 /12], A2, >0 27)

where 44,4, > 0is the required condition that guarantee the control system stability during sliding
motion.

In the second step, the SMC is determined. In this step, the time derivative of s is required, which
based on the derived error function dynamics (Eqg. (23))

. [51] _ [é1 el _ .. :
s=[e] = [a] £ Al e+ ne (28)
=Fx)+G6,()u+6(x,u) + Aeé
In the second step, the control input vector is given by:
u=G61(x)(u, + uy), |G,(x)| = 0 vx (29)

where u, and ug are the nominal and discontinuous control vector respectively. Accordingly, $
becomes;

S=F(x)+u, +us+38(x,u)+Aé (30)
The nominal control u, is selected here as

u, = —F,(x) — Aé (31)
As a result, s in terms of the discontinuous control vector becomes

s=us+6(x,u) (32)
The u, control term will be designed based on the ASMC in the next subsection.

5.1 Adaptive SMC

As mentioned earlier, the ASMC which was designed in the present work is based on the work
proposed by Plestan, et al., 2010. In the present work, the discontinuous control ugwith the adapted
gain K(t) is given in the following form

ug(s,t) = —K() sign(s(x(t), 1)) (33)

With K (t) satisfies
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o (VISG(®), O] * sign(sx(®), D &) ifK > u
kw = {o if K< (34)

Equation (34) is the adaptation law for K(t), while s (x(t),t) is the switching function and
v,€,u > 0 are the adaptation law parameters with a significantly positive small value of u. u is
incorporated so that only positive K values can be achieved. Once there is an establishment of a
sliding motion with respect to s(x(t), t), the suggested gain adaptation law (34) declines the gain K
while |s (x(t),t)| < e&. Similarly, gain K will be maintained at the least level that will allow the
stabilization of a given accuracy of s. This adaptation law allows attaining an adequate gain with
respect to the magnitude of the uncertainties and perturbations, Plestan, et al., 2010.

5.1.2 The discontinuous control law for the mobile platform
The proposed discontinuous control term and the adaptation law for the mobile platform are as
follows;

ug = —k;(t)sign(s;)i=1,2 (35)
fi(6) = yi * |si| = sign([s;| — €;) (36)
where ¢; is a small positive constant. The adapted gain k;(t) is proposed to be evaluated according
to the following rules:

|25 If Kimin < i < Kimax
ki(t) =| Kimin if i < Kimin (37)
Kimax if.ui = Kimax

where y; > 0,¢; > 0,while K;pnin and Kjpq, are the minimum and maximum possible value of
k;(t) respectively.

6. SIMULATION RESULTS AND DISCUSSION

In this work, the simulation results of mobile platform trajectory tracking were obtained using the
Matlab software. Two desired trajectories were utilized as a reference trajectory; these are infinity
shape and circle shape trajectory. Additionally, the system was considered uncertain, due to the
parameters variation, with the existence of the friction torques acting as external disturbances.

The mobile platform nominal parameters are listed in Table 1, while Table 2 presents the maximum
value of chassis mass and the moment of inertia of chassis in z and y directions due to uncertainty.
This information was used in the numerical simulations presented below. Additionally, Table 3
gives control parameters, which have been used to obtain the simulations results for different
reference trajectories.
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Table 1. Mobile platform nominal parameters.

parameter Definition Values Units
R the radius of each driving wheel 0.1 m
B the distance between the driving 0.15 m
wheels and the axis of symmetry
D Distance between point p. and 0.5 m
point p. on the plat form surface
| the moment for inertia of chassis 0 m
in the x-direction
Iyy the moment for inertia of chassis 0.139 Kg.m?
in the y-direction
Lzc moment of inertia of chassis inthe |  6.609 Kg.m?
z-direction
Lw moment of inertia of wheels in the |  0.010 Kg.m?
z-direction
m, chassis mass 94 kg
m,, Wheel mass 5 kg

Table 2. Mobile platform parameter with 100% uncertainty used for (ASMC) simulation.

parameter Definition value unit
me The maximum value of chassis | 188 Kag.
mass
I,zc Maximum moment of inertia | 13.218
of chassis in the z-direction Kg.m?

Maximum moment for inertia 0.278

yy
of chassis in the y-direction Kg.m?

The results of applying the ASMC for the mobile platform where the desired trajectory is the
infinity shape are presented in Figs. 4 to 7. The ASMC system performance is well clarified in Fig.
4, where the actuation torques force the mobile platform to follow the infinity shape. This result is
also clear in Fig. 5, where it is required less than 9 sec. for the mobile platform to follow the infinity
shape. Unlike the traditional SMC, the discontinuous gains k, and k, are adapted to ensure the
existence of sliding motion; also, the adaptation process do not need any information about the
bound of system parameters or disturbances due to friction. The plot of k, and k, is shown in Fig. 6,
while Fig. 7 shows that the sliding variables s; and s, were effectively regulated to the sliding
manifold in less than 1 sec., despite of the uncertainty in system model. Eventually, the results
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proved that unlike traditional SMC, the ASMC was able to adapt each discontinuous gain to direct
its own sliding variable to zero level, irrespective to the existence of coupling between sliding
variables dynamic. The hierarchy control was one of the pioneering method, which proposed by
Utkin, 1992 to solve the coupling problem in sliding variable dynamics; however, the result was a
high gain values, which will induce a severe chattering in system response especially when applied
to mechanical systems. For this reason, the proposed work here can be regarded as the solution for
designing a SMC for multi-input multi-output control systems, where the chattering problem is
eliminated or greatly attenuated, with preserving the main SMC features the following Table 3
contain control parameters.

Table 3. Control adaptation law parameters and control gain values.

parameter Definition Value
Y1 Positive number for first adaptation gain 3
Vo Positive number for second adaptation gain 4
€12 Very small positive number for first and 0.02
second adaptation law
kq Initial value for first control gain 15
k, Initial value for second control gain 20
k1 min Minimum value for first control gain 10
k1 max Maximum value for first control gain 20
ks min Minimum value for second control gain
20
ks max Maximum value for second control gain 25

T T
— = Actual O/P Path
Desired O/P Path|_|

x(m)

Figure 4. Infinity shape trajectory tracking.
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Figure 6. The adapted gains ki, and ko,
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Figure 7. Sliding variables sy, s2.

The proposed ASMC was also applied to direct the mobile platform to follow a circular
trajectory shape. Figures 8, 9, 10 and 11 show the mobile platform trajectory, the error functions,
the adapted gains, and the sliding variable respectively for the circle desired shapes, where the
ability and effectiveness of the ASMC can be observed from these figures.

6

=2

T T T
= = Actual O/P Path
Desired O/P Path

x(m)

Figure 8. Circle trajectory tracking.
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Figure 10. The adapted gains ki, and ko,
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Figure 11. Sliding variables s1, and sz,

7. CONCLUSIONS

In this work, an ASMC was designed to control the nonholonomic mobile platform trajectory
tracking. The mathematical model was successfully derived considering one holonomic and two
nonholonomic constraints. Since the mobile platform at P,, is input-output linearizable, the partial
feedback linearization was utilized to derive the error function model. As a result, the obtained error
function model is 2DOF system; this enabled to design a fully actuated control system to the mobile
platform, since there exist two actuators at the wheels. After that, the ASMC was used to design a
robust adaptive control system, which forced the mobile platform to follow the desired trajectory.
Using numerical simulations to depict the dynamical behavior of the mobile platform with the
presence of parameters uncertainty and friction torques, the results have shown good performance of
the proposed ASMC; where the mobile platform followed different desired paths, like infinity and
circle shapes.
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Appendix A: The mass matrix M(q)

The elements of the mass matrix M(q) was calculated using the Euler- Lagrange equation. As it is
well known, finding the kinetic and potential energies is required for deriving the mass matrix. The
mass matrix is presented as

myp My My3z Myy
M(q) = My1 My Maz Mpyy
Mmgz; Mz Mz3z Mgzy
My My Myz My,

where my; = (M +2my,), My, = Myz3 =My =My =0, My = (M +2m ) My3 =My, =
m31 = m32 = 0, and

M3z = lppec? + + 2myb%c? + Iy + Iye? + 1y

Mgy = _IZZCZ - ZmeZCZ — 21 ZWC2
My = My = 0,m43 = _IZZCZ - zmwbzcz — 21 ZW62
Mgy = Ic* + 2myb*c® + 2I,,c% + 1y
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