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ABSTRACT 

In this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory 

tracking.  The mobile platform is an example of a nonholonomic mechanical system. The presence 

of holonomic constraints reduces the number of degree of freedom that represents the system model, 

while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical 

model was derived here for the mobile platform, considering the existence of one holonomic and 

two nonholonomic constraints imposed on system dynamics. The partial feedback linearization 

method was used to get the input-output relation, where the output is the error functions between the 

position of a certain point on the platform and the desired path. The dynamic error model was 

considered uncertain and subjected to friction torques on the wheels. The adaptive sliding mode 

control was utilized to design a robust controller, that will force the platform to follow the desired 

trajectory. The simulation of the proposed controller was done via MATLAB to reveal the ability of 

the robust adaptive sliding mode controller applied as a trajectory tracker for various path shapes. 

Keywords: Mobile platform, Non-holonomic constraints, Robust adaptive sliding mode controller, 

Partial feedback linearization. 
 

التامة القيود الغيرالمتكيف المتين لمنصة التحرك الذاتي ذات  طر منزلقتصميم مسي  
 

الاستاذ المساعد الدكتور شبلي أحمد 

 السامرائي

 طيف غضبان حمه

 طالبة ماجستير

 قسم هندسة السيطرة والنظم قسم هندسة السيطرة والنظم

 الجامعة التكنولوجية الجامعة التكنولوجية
 

 الخلاصة

 هي منصة ذاتية التحرك. منصة ذاتية التحرك مسار لتتبع باستخدام المسيطر المنزلق تحكم وحدة تصميم تم البحثية، الورقة هذه في

 القيود أن حين في ، النظام نموذج تمثل التي الحرية درجة من يقلل تامة قيود وجود إن. غيرتامة التقييد ميكانيكي نظام على مثال

 الاعتبار قيد تام في الأخذ مع ، منصة ذاتية التحرك هنا الرياضي النموذج اشتقاق تم. المختلفة الحرية درجة من تقلل التامة غير

 علاقة على للحصول التغذية الخلفية الجزئية طريقة استخدام تم. النظام ديناميكية على مفروضين تاميين غير وقيدين واحدة

 واعتبر. المطلوب والمسار المنصة على معينة نقطة موضع بين الخطأ وظائف هو الناتج يكون حيث ، والمخرجات المدخلات
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 لتصميم المكييف منزلقالمسيطر ال استخدام تم. العجلات على إحتكاك الدوران لعزم وتعرض ، مؤكد غير للخطأ الديناميكي النموذج

 MATLAB عبر المقترحة حكمالت وحدة محاكاة إجراء تم. المطلوب المسار اتباع على المنصة ستجبر والتي ، متينة تحكم وحدة

 .المختلفة المسيرات لأشكال مسار كمتتبع المتين المكييفمنزلق المسيطر ال قدرة عن للكشف

فية التغذية الخل ,ر تامة، المسيطر المنزلق المتكيف المتين، القيود التامة، القيود الغيمنصة التحرك الذاتية، الكلمات الرئيسية: 

 الجزئية

1. INTRODUCTION 

All Physical systems can be categorized into two categories: Linear systems and nonlinear systems. 

The nonlinear systems are classified into holonomic and nonholonomic systems according to types 

of their constraint, as showed by Chung, 2004.  

In mechanics, the free rigid body is considered as the main primary system, and this topic was 

treated and studied to a great extent. Baillieul, et al., 2003, showed that the mobile platform is one 

of the most important applications on the nonholonomic mechanic systems and its tracking control 

is a challenging task.  

The relation between control theory and the geometric mechanics is done with classical mechanical 

Lagrange formulation which describes the dynamic of the system in the presence of its constraints 

(holonomic and nonholonomic). The Lagrangian equation equal to the difference between kinetic 

energy and potential energy as demonstrated later in this paper. Bloch, 2003, showed that there is a 

clear, strong connection between mechanics and nonlinear control theory concerning with theory on 

moving mechanical system under constraints. 

There are many types of nonlinear control applied to control the trajectory tracking of nonholonomic 

mobile platform. For example, backstepping based trajectory tracking control was applied to a four-

wheel mobile robot by Kumar and Sukavanam, 2008; nonlinear controller was designed for 

mobile manipulator trajectory by Said, et al., 2014, and sliding mode real time, which was designed 

to mobile platform control system in the presence of uncertainty, by Solea, et al., 2009. 

The most famous type of nonlinear control system and the oldest one is the discontinues control 

system, one of them specifically is the sliding mode control (SMC) system Boiko, 2009. In the study 

by Utkin, et al., 2009, it has been proven that the SMC system is efficient for controlling complex 

plants that have a high order of nonlinearity dynamics, that are operating with the existence of 

disturbance and uncertainty of system parameters. The variables of the sliding mode should be 

designed accurately, and this leads to proper closed-loop system performance when the trajectories 

of the system lie on the sliding manifold. Shtesse, et al., 2014, showed that the main idea behind the 

SMC is to drive the system path to the selected sliding manifold with the aid of control, and keep the 

motion on the manifold, which means utilizing the main characteristics of the sliding mode that is its 

insensitivity to internal and external perturbations matched by the control, maximum accuracy, and 

finite time convergence of the sliding variables to zero. SMC system has an advantage that its 

robustness against the matched disturbances, and also ease of implementation. However it has a 

disadvantage that the chattering behavior that appears for several reasons like the non-ideal 

switching process; as shown by Al-samarraie, 2013. One of the simplest methods is to attenuate the 

chattering behavior, as presented by Slotine, 1983, is by replacing the discontinuous signum 

function by a continuous function, like the saturation function. 

The purpose of the adaptive controller, as shown by Lavretsky and Wise, 2013, is to perform real-

time estimation to the process of uncertainty then will produce a control input to estimate and reduce 

the unwanted deviation from the expected closed-loop system performance. The adaptive sliding 

mode control (ASMC) system consists of a sliding mode controller and an adaptive controller. With 
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the use of a sliding mode control system, the control effort can be reduced by selecting a proper 

control gain related to the change of system parameters and uncertainty. An ASMC methodology 

that guarantees a real sliding mode only was proposed by Plestan, et al., 2010. The sliding mode 

with gain-adaptation has been established without a priori knowing uncertainties/perturbations 

bounds while both the adaptive-gain values are not overestimated. 

Based on the proposed work by Plestan, et al., 2010, the ASMC methodology is applied, in the 

present work, to design a robust controller to the nonholonomic mobile platform. The control design 

uses the concept of partial feedback linearization, after considering a certain point at the platform as 

the desired outputs; where the system dynamics concerning these outputs is minimum phase. The 

dynamical model to a mobile platform is derived here utilizing the Euler-Lagrange equation, where 

the nonholonomic constraints are considered through the Lagrange multiplier.  

2. MATHEMATICAL MODEL FOR MOBILE PLATFORM  

The mobile platform under study is made of a rigid cart driven by two DC motors, which is 

described by four degrees of freedom. Fig. 1 shows the mobile platform with two wheels; where 𝒓 is 

the radius of the mobile wheel (in 𝒎), 𝟐𝒃 is the distance between the two wheels (in 𝒎), 𝑷𝒐 is the 

location of the point in between the wheels, 𝑷𝒄 is a point on the platform, which is 𝒅 distance (called 

look-ahead distance) from 𝑷𝒐. 

 
Figure 1. Mobile platform. 

2.1. Kinematic Model of the Mobile Platform 
Kinematics means a representation of the platform mathematically (displacement, velocity, and 

acceleration) with respect to a reference frame without any forces affecting its motion and velocity, 

as shown by Siciliano, et al., 2009. In this paper, the kinematic relations were evaluated with 

respect to inertial or reference coordinates. The configuration variables of the system are defined as 

[𝑥, 𝑦, 𝜑, 𝜃1, 𝜃2], were 𝑥 and 𝑦 are the platform position in the horizontal plane (midway between the 

two wheels), 𝜑 is the rotation  angle of the platform, the chassis, which is measured from the inertial 

𝑥-axis, and finally𝜃1and 𝜃2 are the rotational angles of the first and the second wheel respectively. 

The nonlinear dynamics of chassis is coupled with the dynamics of the wheels. The body of the 

chassis is assumed to be symmetric and no slip condition is required. 𝑋𝑜 and 𝑌𝑜 are the inertial 

reference frame, the frame 𝑋𝑝𝑜 and 𝑌𝑝𝑜   are attached frame to the middle point between two wheels 



Journal  of  Engineering       Volume  25    August  2019   Number  8 

 

 

22 

 

of mobile platform, and 𝑑 is the distance from the origin of (𝑋𝑝𝑜, 𝑌𝑝𝑜) to (𝑋𝑝𝑐, 𝑌𝑝𝑐) on the  𝑋𝑝𝑜-axis 

as shown in Fig. 1. 

2.1.1 Homogenous Transformation 

The homogeneous transformation matrices which were presented by Spong, et al., 2006, was used 

in this paper to derive the kinematic equation of the wheels and chassis. The mobile platform is 

represented by five configuration variables; which are [𝒙, 𝒚, 𝝋, 𝜽𝟏, 𝜽𝟐], as mentioned above. 

2 .2 Holonomic and Non-Holonomic Constraints 

In dynamics, constraints on position and velocity of the system are introduced instead of unknown 

forces to describe the observed motions, Cushman, et al., 2010. 

 Holonomic constraints are typically introduced by mechanical interactions among the 

different parts of the system. The holonomic constraints are integrable equations, and hence can be 

represented as: 

ℎ𝑖(𝑞) = 0, 𝑖 = 1,2, ……… ,𝑚 < 𝑛                                                                                                    (1) 

where the function ℎ𝑖(𝑞) is assumed to be smooth and independent.The system whose all  

constraints are holonomic is called a holonomic system. The effect of the holonomic constraints is to 

confine the attainable system configurations to (𝑛 − 𝑚) dimensional smooth as showed by De Luca 

and Oriolo, 1995. In nonholonomic constraints, the system expression involves generalized 

coordinates and velocity in the form:  

𝐴𝑖(𝑞, �̇�)  =  0, 𝑖 =  1, . . . , 𝑘 < 𝑛                                                                                                         (2) 

They are referred to as kinematic constraints. The nonholonomic constraints will limit the 

admissible motions of the system by restricting the set of generalized velocity that can be attained at 

a given configuration. In mechanics, such constraints are usually encountered in the Pfaffian form 

De Luca and Oriolo, 1995: 

𝑎𝑖
𝑇(�̇�)𝑞 =  0, 𝑖 = 1, . . . , 𝑘 < 𝑛 

These equations are nonintegrable, that is the equations cannot be put in the form given by Eq. (1).  

If all the system constraints are nonholonomic, it is called a non-holonomic system. 

For the mobile platform, there are two types of constraints; holonomic and nonholonomic, which are 

presented in the following items. 

2.2.1 Holonomic Constrain Equation for a Mobile Platform 

There is only one holonomic constraint for the mobile platform. It is given by: 

�̇� = (𝑣1 − 𝑣2)/2𝑏 = 𝑟( �̇�1 − �̇�2)/2𝑏                                                                                               (3) 

By integrating Eq. (3), the holonomic constraint on the mobile platform was obtained as follows: 

𝜑 = 𝐶(𝜃1 − 𝜃2), 𝐶 = 𝑟/2𝑏                                                                                                              (4) 

where 𝑣1 = 𝑟�̇�1, and 𝑣2 = 𝑟�̇�2 are the linear velocities of the first and second wheels respectively, 𝜑 

and �̇� are the rotational angel and the angular velocity of chassis respectively, finally, 𝑟 is the radius 
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of wheels and 2𝑏 is the distance between two wheels. As a result 𝜑 is expressed in terms of 𝜃1 and 

𝜃2, and the number of degrees of freedom (DOF), that expresses the mobile platform system, 

becomes four. 

2.2.2 Nonholonomic Constraints equation 

Three nonholonomic constraints are imposed on the motion of the mobile platform. These 

constraints are given as follows: 

2.2.2.1 The lateral constraint: 

For the mobile platform, the velocity is equal to zero in the lateral direction. This represents the 

nonholonomic constraint, which was derived here as follows; the velocity of 𝑷𝒐is 

vp˳ = [
vx˳
vy˳] = [

Cφ −Sφ
Sφ Cφ

] [
vx̀
vỳ

] 

From which the tangential and normal velocities with respect to the wheels are obtained as 

[
vx̀
vỳ

] = [
Cφ −Sφ
Sφ Cφ

]
−1

[
vx˳
vy˳] = [

Cφ Sφ
−Sφ Cφ

] [
vx˳
vy˳] = {

ẋcosφ + y ̇ sinφ
−ẋsinφ + ẏcosφ

 

As can be observed from Fig. 2, the mobile platform lateral velocityvỳ is equal to zero. That means 

the first nonholonomic constraint is: 

−ẋsinφ + ẏcosφ = 0                                                                                                                         (5) 

Figure 2. Lateral constraint. 

2.2.2.2. No slip condition constraint 

No slip condition was brought to light where the velocity of the wheels of the point touch to 

the ground is equal to zero. This instant of zero velocity represents the second and third 

nonholonomic constraints. It is derived as follows (Fig. 3); the first wheel velocity vector at 

the point touch to the ground is obtained as: 

v̀w1 = [
v̀w1x

v̀w1y
]  = [

Cφ Sφ
−Sφ Cφ

] [
vw1

°

vw1
° ]  = [

Cφ Sφ
−Sφ Cφ

] [
ẋ + bCφφ̇
ẏ + bSφφ̇

] 



Journal  of  Engineering       Volume  25    August  2019   Number  8 

 

 

24 

 

The no-slip for the first wheel means v̀w1x = 0, hence the second nonholonomic constraint is 

obtained as: 

ẋ  cosφ + ẏ sinφ +  bφ̇ = 0                                                                                                             (6) 

In the same manner, the third nonholonomic constraint due to no-slip condition on the second wheel 

is obtained as; 

ẋ cosφ + ẏ  sinφ − bφ̇ = 0                                                                                                               (7) 

Figure 3. No slipping condition constraint. 

In pfaffian form, the nonholonomic constraint matrix is given by: 

A(q)q ̇ = [

−sinφ cosφ 0 0 0
cosφ sinφ b −r 0
cosφ sinφ −b 0 −r

]

[
 
 
 
 
ẋ
ẏ
φ̇

θ̇1

θ̇2]
 
 
 
 

 

Due to the holonomic constraint (Eq. 4), the Pfaffian form is reduced to:  

A(q)q̇ =      [
−sinφ cosφ 0 0
cosφ sinφ −r/2 −r/2

]

[
 
 
 
ẋ
ẏ

θ̇1

θ̇2]
 
 
 

                                                                             (8) 

3. DYNAMICS OF PLATFORM 

In this section, the dynamical model of the platform is introduced with considering the holonomic 

and nonholonomic constraints that were derived in the previous section; where the Euler-Lagrange 

equation is utilized here to derive the mobile platform mathematical model. 

 Lagrangian L is the difference between the system kinetic and potential energy 

L(q, q̇) = T(q, q̇) − U(q) = 1/2(q̇TM(q)q̇) − U(q)                                                                        (9) 
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Where M(q) is the positive definite inertia and a mass matrix of the system, and U(q) is the potential 

energy of the platform. For the mobile platform, the equation of motion, after applying the Euler- 

Lagrange equation, is given by; 

M(q)q̈  +  D(q, q̇)q̇ +  G(q) = AT(q) λ + E(q)u                                                                             (10) 

where the mass matrix M(q) for the platform is given by, Appendix (A);  

M(q)  =  [

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

] 

D(q, q̇)q̇, and G(q) is the carioles matrix and the potential energy respectively. Both D(q, q̇)q̇, and 

G(q) are equal to zero for the platform system model. 

 As can be noted from Eq. (8), the nonholonomic constraint matrix A(q) is not of full rank 

∀𝑞. So there exists a null space associated to matrix A(q), i.e., 𝑁𝑢𝑙𝑙(A(q)) ≠ ∅. The null space for 

the mobile platform is spanned by the rows of the following matrix; 

[
r/2 cosφ r/2 sinφ 1 0
r/2 cosφ r/2 sinφ 0 1

] = NT(q)                                                                                         (11) 

As a result of the columns of matrix N(q), the basis for the null space of A(q), so NT(q)A(q) = 0. 

 The term AT(q) λ, in Eq. (10), is the vector of constraint forces; which is altered by the 

magnitude of the Lagrange multiplier λ. This term represents the effect of the nonholonomic 

constraint on the system dynamics. To eliminate the unknown Lagrange multiplier term from the 

dynamical model, NT(q) is multiplied by Eq. (10), as in the following; 

NT(q) {M(q)q̈ + D(q, q̇)q̇ + G(q) = AT(q) λ + E(q)u}

⟹ NT(q)M(q)q̈ = NT(q)E(q)u                                         
                                                                 (12) 

To this end the following change of variable is considered; 

�̇� = 𝑁(𝑞)𝜌                                                                                                                                        (13) 

whereρ ∈ 𝑅2 is a new vector state, which lies in the null space of A(q). The total platform system 

state, after considering the nonholonomic constraints, are given by; 𝑞 = [𝑥 𝑦 𝜃1 𝜃1]𝑇and ρ. 

Rename the state as; 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝜃1, 𝑥4 = 𝜃2and 𝜌 = [𝑥5 𝑥6]𝑇, i.e., 

[
𝑞
𝜌] = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6]𝑇                                                                                                (14) 

which represents the total mobile platform state after considering the holonomic and nonholonomic 

constraints. With respect to the new state (Eq. (14)), the velocity vector for the nonholonomic 

platform model becomes; 
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[
�̇�
ρ̇
] =

[
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6]
 
 
 
 
 

= [
𝑁(𝑞)[𝑥5 𝑥6]𝑇

�̇�5

�̇�6

]                                                                                                       (15) 

Where �̇� is computed by substituting Eq. (13) in Eq. (12) 

�̈� =
𝑑

𝑑𝑡
(𝑁(𝑞)𝜌) = {

𝑑

𝑑𝑡
𝑁(𝑞)} 𝜌 + 𝑁(𝑞)

𝑑

𝑑𝑡
𝜌 = �̇�(𝑞)𝜌 + 𝑁(𝑞)�̇� 

⟹ 𝑁𝑇(𝑞)𝑀(𝑞)�̇�(𝑞)𝜌 + 𝑁𝑇(𝑞)𝑀(𝑞)𝑁(𝑞)�̇� = 𝑁𝑇(𝑞)𝐸(𝑞)𝑢 

Then�̇� is obtained as 

�̇� = [𝑁𝑇(𝑞)𝑀(𝑞)𝑁(𝑞)]−1{−𝑁𝑇(𝑞)𝑀(𝑞)�̇�(𝑞)𝜌 + 𝑁𝑇(𝑞)𝐸(𝑞)𝑢}                                                 (16) 

where𝑁𝑇(𝑞)𝑀(𝑞)𝑁(𝑞) is an invertable 2𝑥2 matrix. Using Eq. (16), the nonholonomic platform 

dynamical model is given by; 

[
�̇�
ρ̇
] = [

𝑁(𝑞)[𝑥5 𝑥6]𝑇

−[𝑁𝑇(𝑞)𝑀(𝑞)𝑁(𝑞)]−1𝑁𝑇(𝑞)𝑀(𝑞)�̇�(𝑞)𝜌 + [𝑁𝑇(𝑞)𝑀(𝑞)𝑁(𝑞)]−1𝑁𝑇(𝑞)𝐸(𝑞)𝑢
]  

       = [
𝑓1(𝑞, 𝜌)

𝑓2(𝑞, 𝜌) + 𝑔(𝑞, 𝜌)𝑢
]                                                                                                             (17) 

Where 𝑓1(𝑞, 𝜌) = 𝑁(𝑞)[𝑥5 𝑥6]𝑇 , 𝑓2(𝑞, 𝜌) = −[𝑁𝑇(𝑞)𝑀(𝑞)𝑁(𝑞)]−1𝑁𝑇(𝑞)𝑀(𝑞)�̇�(𝑞)𝜌 and 

𝑔(𝑞, 𝜌) = [𝑁𝑇(𝑞)𝑀(𝑞)𝑁(𝑞)]−1𝑁𝑇(𝑞)𝐸(𝑞). 

4.PARTIAL FEEDBACK LINEARIZATION 

Feedback linearization is a method that is used to transform the nonlinear system into an equivalent 

linear system. It leads to full-state linearization, where the state equation is completely linearized. 

On the other hand, a partial feedback linearization is an input-output linearization, where the input-

output map is linearized, while the state equation may be only partially linearized, Khalil, 2002. 

Additionally, Isidori, 2000, showed that the system must be a minimum phase to guarantee the 

stability of the control system when designed based on the input-output linearization. 

In this work, the mobile platform model is partially linearized considering the position of the point 

𝑃𝑐 (Fig. 1) with respect to the wheels torques inputs. It was shown by Yun, et al., 1992, that the 

mobile platform is input-output linearizable at 𝑃𝑐. That also means, the mobile platform is minimum 

phase when controlling it via static state feedback through the point 𝑃𝑐. 
The position functions of mobile platform throw 𝑷𝒄 point is obtained by using the homogeneous 

transformation matrices method as demonstrated below. 
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Tpc
˳ = TPo

˳ TPc
po

= [

cosφ − sinφ 0 x
sinφ cosφ 0 y

0 O 1 0
0 0 0 1

] [

1 0 0 d
0 1 0 0
0 O 1 0
0 0 0 1

] = [

cosφ − sinφ 0 x + d cosφ
sinφ cosφ 0 y + d sinφ

0 O 1 0
0 0 0 1

] 

⟹ Ppc
0 = [

cosφ −sinφ 0 x + d cosφ
sinφ cosφ 0 y + d sinφ

0 O 1 0
0 0 0 1

] |

0
0
0
1

| = [

x + d cosφ
y + d sinφ

0
1

] 

where Tpc
˳

 and Ppc
0  are the homogeneous transformation matrix and the position of 𝑷𝒄 with respect to 

the inertial frame 0. From Ppc
0 , the required outputs (y1 and y2) are obtained as; 

y1 = ppcx
0 = x + d cos(φ)

y2 = ppcy
0 = y + d sin(φ)

}                                                                                                             (18) 

The time derivative of the outputs is evaluated using Eqs. (16) and (4); 

ẏ1 = [(r/2) cosφ − cd sinφ (r/2) cosφ + cd sinφ] [
x5

x6
]

ẏ2 = [(r/2) sinφ + cd cosφ (r/2) sinφ − cd cosφ] [
x5

x6
]
}                                                       (19) 

After that ÿ1 and ÿ2 are obtained as 

ÿ1 = f1(x) + g1(x)𝑢

ÿ2 = f2(x) + g2(x)𝑢
}                                                                                                                       (20) 

where

f1(x) = [−
r

2sin(φ)φ̇
–

r

2
sin(φ)φ̇] [

x5

x6
] +                                                                                                              

[r/2cos(φ) − cd sin (φ) r/2cos(φ) + cd sin(φ)][𝑁𝑇(𝑞)𝑀(𝑞)𝑁(𝑞)]−1 [− 𝑁𝑇(𝑞)𝑀(𝑞)�̇�(𝑞) [
x5

x6
]]

 

f2(x) = [ r/2cos(φ) φ̇ r/2cos(φ) φ̇] [
x5

x6
] − dsin(φ)φ̇2 +                                                                              

[r/2 sin(φ) +  cd cos(φ)  r/2 sin(φ) −  cd cos(φ)][𝑁𝑇(𝑞)𝑀(𝑞)𝑁(𝑞)]−1 [− 𝑁𝑇(𝑞)𝑀(𝑞)�̇�(𝑞) [
x5

x6
]]

 

g1(x) = [r/2cos (φ) − cd sin (φ)     r/2cos (φ) + cd sin(φ) ][(N(q)t(M(q)N(q))
−1

]  

g2(x) = [r/2cos(φ) + cd sin(φ)
r

2
sin(φ) −  cd cos(φ) ] [(N(q)t(M(q)N(q))

−1
]  

To this end, the outputs dynamics are rewritten in the error function form; that is by defining e1 =
y1 − y1dand  e2 = y2 − y2d, where y1d and y2d are the desired position for y1 and y2Respectively. 

Accordingly,  ė1  and ė2 are computed as follows; 



Journal  of  Engineering       Volume  25    August  2019   Number  8 

 

 

28 

 

ė1 = [(r/2) cosφ − cd sinφ (r/2) cosφ + cd sinφ] [
x5

x6
] − ẏ1d

ė2 = [(r/2) sinφ + cd cosφ (r/2) sinφ − cd cosφ] [
x5

x6
] − ẏ2d

}                                             (21) 

And ë1 and ë2 are 

ë = [
ë1

ë2
] = [

F1(x)

F2(x)
] + [

G1(x)

G2(x)
] u = F(x) + G(x)u                                                                           (22) 

where F1(x) = f1(x) − ÿ1d,   F2(x) = f2(x) − ÿ2d, G1(x) = g1(x) and G2(x) = g2(x). Considering 

the uncertainty in the system model, the error function dynamics can be put as; 

ë = Fo(x) + Go(x)u + δ(x, u)                                                                                                          (23) 

where Fo(x) and Go(x) are F(x) and G(x) but with nominal parameters value, while δ(x, u) is the 

perturbation term due to system model uncertainty. Mathematically, δ(x, u) is the difference 

between the right-hand side of Eq. (22) and Fo(x) + Go(x)u, i.e., 

δ(x, u) = F(x) + G(x)u + 𝐹𝑟 − (Fo(x) + Go(x)u) = ∆F(x) + ∆G(x)u

= ∆𝐹(𝑥) + ∆𝐺(𝑥)𝑢 + 𝐹𝑟                                                      
}                                       (24) 

Here 𝐹𝑟 is the friction torques, which is given by; 

𝐹𝑟 = −𝑁𝑇 ∗ [𝐹𝑣 ∗ [
𝑥5

𝑥6
] + 𝐹𝑠 ∗ 𝑠𝑖𝑔𝑛 [

𝑥5

𝑥6
]]                                                                                          (25) 

5. SMC 

The SMC is a specific type of variable structure control (VSC) which is characterized by a suite of 

feedback control laws and decision rule. It is termed the switching function utilization. This natural 

idea began in the soviet union in the late 1950s. 

SMC is designed to bring the state to the sliding manifold (𝑠 = 0) and then constrain the system 

state within the neighborhood of the sliding manifold. There are two main advantages in this 

method, the first one is that the dynamic system behavior may be designed by the specific selection 

of switching function, and the second one is that the closed loop response become completely   

insensitive to a particular class of uncertainty. The later invariance property makes the methodology 

a suitable candidate for robust control. On the other hand, the main SMC disadvantage is the system 

chattering. This behavior is the result of the discontinuity in SMC formula, and is related to the 

controller gain value.  

The sliding mode design consists of two parts, one involves the design of switching function, hence 

the sliding motion meets the design specification, and the other is related to the selection of the 

control low which will make the switching manifold attractive to the system state, Edwards and 

Spurgeon, 1998. To improve the SMC performance, the SMC gain will be evaluated via adaptive 

law as presented in the next subsection.  

The main objective of the present paper is to design a nonlinear controller based on the ASMC 

theory to enforce the point 𝑷𝒄 on the platform to follow the desired trajectory in spite of system 
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dynamic model uncertainty (the perturbation term δ(x, u)). As in the conventional SMC, the first 

step is the selection of the switching function 𝑠 = [𝑠1 𝑠2]𝑇. Here 𝑠 is selected as follows; 

𝑠 = [
𝑠1

𝑠2
] = [

�̇�1

�̇�2
] + Λ [

𝑒1

𝑒2
] = �̇� + Λ𝑒                                                                                                 (26) 

where 

Λ = [
𝜆1 0
0 𝜆2

] , 𝜆1, 𝜆2 > 0                                                                                                               (27) 

where 𝜆1, 𝜆2 > 0is the required condition that guarantee the control system stability during sliding 

motion.  

In the second step, the SMC is determined. In this step, the time derivative of 𝑠 is required, which 

based on the derived error function dynamics (Eq. (23)) 

�̇� = [
�̇�1

�̇�2
] = [

�̈�1

�̈�2
] + Λ [

�̇�1

�̇�2
] = �̈� + Λ�̇�

      = 𝐹𝑜(𝑥) + 𝐺𝑜(𝑥)𝑢 + 𝛿(𝑥, 𝑢) + Λ�̇�
                                                                                             (28) 

In the second step, the control input vector is given by: 

𝑢 = 𝐺𝑜
−1(𝑥)(𝑢𝑜 + 𝑢𝑠), |𝐺𝑜(𝑥)| ≠ 0 ∀𝑥                                                                                         (29) 

where  uo and  us are the nominal and discontinuous control vector respectively. Accordingly, �̇� 

becomes; 

�̇� = 𝐹𝑜(𝑥) + 𝑢𝑜 + 𝑢𝑠 + 𝛿(𝑥, 𝑢) + Λ�̇�                                                                                              (30) 

The nominal control 𝑢𝑜 is selected here as  

𝑢𝑜 = −𝐹𝑜(𝑥) − Λ�̇�                                                                                                                           (31) 

As a result, �̇� in terms of the discontinuous control vector becomes 

�̇� = 𝑢𝑠 + 𝛿(𝑥, 𝑢)                                                                                                                               (32) 

The 𝑢𝑠 control term will be designed based on the ASMC in the next subsection. 

5.1 Adaptive SMC 

As mentioned earlier, the ASMC which was designed in the present work is based on the work 

proposed by Plestan, et al., 2010. In the present work, the discontinuous control 𝒖𝒔with the adapted 

gain 𝑲(𝒕) is given in the following form 

𝒖𝒔(𝒔 , 𝒕)  =  −𝑲(𝒕) 𝒔𝒊𝒈𝒏(𝒔(𝒙(𝒕) , 𝒕))                                                                                           (33) 

With 𝐾(𝑡) satisfies  
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�̇�(𝑡) = {
𝛾|𝑠(𝑥(𝑡), 𝑡)| ∗ 𝑠𝑖𝑔𝑛(|𝑠(𝑥(𝑡), 𝑡)| − 𝜀)           𝑖𝑓𝐾 > 𝜇
0                                                                          𝑖𝑓 𝐾 ≤ 𝜇

                                                           (34) 

Equation (34) is the adaptation law for 𝐾(𝑡),  while 𝑠 (𝑥(𝑡), 𝑡) is the switching function and 

𝛾, ε , 𝜇 > 0 are the adaptation law parameters with a significantly positive small value of 𝜇. 𝜇 is 

incorporated so that only positive 𝐾 values can be achieved. Once there is an establishment of a 

sliding motion with respect to 𝑠(𝑥(𝑡), 𝑡), the suggested gain adaptation law (34) declines the gain K 

while |𝑠 (𝑥(𝑡) , 𝑡)|  < 𝜀. Similarly, gain K will be maintained at the least level that will allow the 

stabilization of a given accuracy of 𝑠. This adaptation law allows attaining an adequate gain with 

respect to the magnitude of the uncertainties and perturbations, Plestan, et al., 2010. 

5.1.2 The discontinuous control law for the mobile platform 

The proposed discontinuous control term and the adaptation law for the mobile platform are as 

follows; 
 

𝑢𝑠𝑖 = −𝑘𝑖(𝑡)𝑠𝑖𝑔𝑛(𝑠𝑖) 𝑖 = 1,2                                                                                                         (35) 

�̇�𝑖(𝑡) = 𝛾𝑖 ∗ |𝑠𝑖| ∗ 𝑠𝑖𝑔𝑛(|𝑠𝑖| − 𝜖𝑖)                                                                                                    (36) 
 

where 𝜖𝑖 is a small positive constant. The adapted gain 𝑘𝑖(𝑡) is proposed to be evaluated according 

to the following rules: 
 

𝑘𝑖(𝑡) = (

𝜇𝑖 𝑖𝑓𝐾𝑖𝑚𝑖𝑛 < 𝜇𝑖 < 𝐾𝑖𝑚𝑎𝑥

𝐾𝑖𝑚𝑖𝑛 𝑖𝑓𝜇𝑖 ≤ 𝐾𝑖𝑚𝑖𝑛

𝐾𝑖𝑚𝑎𝑥 𝑖𝑓𝜇𝑖 ≥ 𝐾𝑖𝑚𝑎𝑥

)                                                                                     (37) 

where 𝛾𝑖 > 0 , 𝜖𝑖 >  0 , while 𝐾𝑖𝑚𝑖𝑛 and 𝐾𝑖𝑚𝑎𝑥 are the minimum and maximum possible value of 

𝑘𝑖(𝑡) respectively. 

 

6. SIMULATION RESULTS AND DISCUSSION  

In this work, the simulation results of mobile platform trajectory tracking were obtained using the 

Matlab software. Two desired trajectories were utilized as a reference trajectory; these are infinity 

shape and circle shape trajectory. Additionally, the system was considered uncertain, due to the 

parameters variation, with the existence of the friction torques acting as external disturbances. 

The mobile platform nominal parameters are listed in Table 1, while Table 2 presents the maximum 

value of chassis mass and the moment of inertia of chassis in z and y directions due to uncertainty. 

This information was used in the numerical simulations presented below. Additionally, Table 3 

gives control parameters, which have been used to obtain the simulations results for different 

reference trajectories. 
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Table 1. Mobile platform nominal parameters. 

parameter Definition Values Units 

R the radius of each driving wheel 0.1 m 

B the distance between the driving 

wheels and the axis of symmetry 

0.15 m 

D Distance between point 𝒑ᵒ and 

point 𝒑𝒄 on the plat form surface  

0.5 m 

𝐈𝐱𝐱 the moment for inertia of chassis 

in the x-direction 

0 m 

𝐈𝐲𝐲 the moment for inertia of chassis 

in the y-direction 

0.139 Kg.𝐦𝟐 

𝐈𝐳𝐳𝐜 moment of inertia of chassis in the 

z-direction 

6.609 Kg.𝐦𝟐 

𝐈𝐳𝐳𝐰 moment of inertia of wheels in the 

z-direction 

0.010 Kg.𝐦𝟐 

𝐦𝐜 chassis mass 94 kg 

𝐦𝐰 Wheel mass 5 kg 

 

Table 2. Mobile platform parameter with 100% uncertainty used for (ASMC) simulation. 

parameter Definition value unit 

mc The maximum value of chassis 

mass 

188    Kg. 

Izzc Maximum moment of inertia 

of chassis in the z-direction 

13.218     

Kg.m2 

Iyy Maximum moment for inertia 

of chassis in the y-direction 

0.278     

Kg.m2 

 

The results of applying the ASMC for the mobile platform where the desired trajectory is the 

infinity shape are presented in Figs. 4 to 7. The ASMC system performance is well clarified in Fig. 

4, where the actuation torques force the mobile platform to follow the infinity shape. This result is 

also clear in Fig. 5, where it is required less than 9 𝑠𝑒𝑐. for the mobile platform to follow the infinity 

shape. Unlike the traditional SMC, the discontinuous gains 𝑘1 and 𝑘2 are adapted to ensure the 

existence of sliding motion; also, the adaptation process do not need any information about the 

bound of system parameters or disturbances due to friction. The plot of 𝑘1 and 𝑘2 is shown in Fig. 6, 

while Fig. 7 shows that the sliding variables 𝑠1 and 𝑠2 were effectively regulated to the sliding 

manifold in less than 1 𝑠𝑒𝑐., despite of the uncertainty in system model. Eventually, the results 
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proved that unlike traditional SMC, the ASMC was able to adapt each discontinuous gain to direct 

its own sliding variable to zero level, irrespective to the existence of coupling between sliding 

variables dynamic. The hierarchy control was one of the pioneering method, which proposed by 

Utkin, 1992 to solve the coupling problem in sliding variable dynamics; however, the result was a 

high gain values, which will induce a severe chattering in system response especially when applied 

to mechanical systems.  For this reason, the proposed work here can be regarded as the solution for 

designing a SMC for multi-input multi-output control systems, where the chattering problem is 

eliminated or greatly attenuated, with preserving the main SMC features the following Table 3 

contain control parameters. 

Table 3. Control adaptation law parameters and control gain values. 

parameter Definition Value 

𝛾1 Positive number for first adaptation  gain 3 

𝛾2 Positive number for second adaptation gain 4 

𝜀1,2 Very small positive number for first and 

second adaptation law 

0.02 

𝑘1 Initial value for first control gain 15 

𝑘2 Initial value for second control gain 20 

𝑘1 𝑚𝑖𝑛 Minimum value for first control gain 10 

𝑘1 𝑚𝑎𝑥 Maximum value for first control gain 20 

𝑘2 𝑚𝑖𝑛 Minimum value for second control gain  

20 

𝑘2 𝑚𝑎𝑥 Maximum value for second control gain 25 

 

 

Figure 4. Infinity shape trajectory tracking. 
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Figure 5. Study state error e1, e2. 

 

Figure 6. The adapted gains k1, and k2. 
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Figure 7. Sliding variables s1, s2. 

 The proposed ASMC was also applied to direct the mobile platform to follow a circular 

trajectory shape. Figures 8, 9, 10 and 11 show the mobile platform trajectory, the error functions, 

the adapted gains, and the sliding variable respectively for the circle desired shapes, where the 

ability and effectiveness of the ASMC can be observed from these figures. 

 

Figure 8. Circle trajectory tracking. 
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Figure 9. Study state errors e1, and e2. 

 

Figure 10. The adapted gains k1, and k2. 



Journal  of  Engineering       Volume  25    August  2019   Number  8 

 

 

36 

 

 

Figure 11. Sliding variables s1, and s2. 

7. CONCLUSIONS 
In this work, an ASMC was designed to control the nonholonomic mobile platform trajectory 

tracking. The mathematical model was successfully derived considering one holonomic and two 

nonholonomic constraints. Since the mobile platform at 𝑷𝒄, is input-output linearizable, the partial 

feedback linearization was utilized to derive the error function model. As a result, the obtained error 

function model is 2DOF system; this enabled to design a fully actuated control system to the mobile 

platform, since there exist two actuators at the wheels. After that, the ASMC was used to design a 

robust adaptive control system, which forced the mobile platform to follow the desired trajectory. 

Using numerical simulations to depict the dynamical behavior of the mobile platform with the 

presence of parameters uncertainty and friction torques, the results have shown good performance of 

the proposed ASMC; where the mobile platform followed different desired paths, like infinity and 

circle shapes.  
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Appendix A: The mass matrix M(q) 

The elements of the mass matrix M(q) was calculated using the Euler- Lagrange equation. As it is 

well known, finding the kinetic and potential energies is required for deriving the mass matrix. The 

mass matrix is presented as 

𝑀(𝑞) =  [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22 𝑚23 𝑚24

𝑚31 𝑚32 𝑚33 𝑚34

𝑚41 𝑚42 𝑚43 𝑚44

] 

where 𝑚11 = ( 𝑚𝑐 + 2𝑚𝑤), 𝑚12 = 𝑚13 = 𝑚14 = 𝑚21 = 0, 𝑚22 = ( 𝑚𝑐 + 2𝑚 𝑤 )  𝑚23 = 𝑚24 =

𝑚31 = 𝑚32 =  0, and  

𝑚33 = Izzc𝑐
2 +  + 2mw𝑏2𝑐2 + Izzw𝑐2 + Izw𝑐2 + I´yy 

𝑚34  =  −𝐼𝑧𝑧𝑐
2  −  2𝑚𝑊𝑏2𝑐2 − 2𝐼 𝑍𝑊𝑐2 

𝑚41 = 𝑚42 =  0,𝑚43  =  −𝐼𝑧𝑧𝑐
2  −  2𝑚𝑊𝑏2𝑐2 − 2𝐼 𝑍𝑊𝑐2 

𝑚44   =   𝐼𝑧𝑧𝑐
2 +  2𝑚𝑤𝑏2𝑐2 +  2𝐼𝑧𝑤𝑐2 + Iyy 


