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ABSTRACT 

In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm 

that will guide an autonomous mobile robot during continuous path-tracking and navigate over 

solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and 

track the reference path equation for the autonomous mobile robot in the mining environment to 

avoid the obstacles and reach to the target position by using intelligent optimization algorithms. 

Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to 

finding the solutions of the mobile robot navigation problems in the mine by searching the optimal 

paths and finding the reference path equation of the optimal path. As well as, PSO algorithm is 

used to find and tune on-line the neural control gains values of the nonlinear neural controller to 

obtain the best torques actions of the wheels for the mining autonomous mobile robot. Simulation 

results by MATLAB showed that the proposed cognitive system is more accurate in terms of 

planning reference path to avoid obstacles and online finding and tuning parameters of the 

controller which generated smoothness control action without saturation state for tracking the 

reference path equation as well as minimize the mobile robot tracking pose error to zero value. 

Keywords: path planning, mobile robot, neural controller, obstacles avoidance, cognitive system.  

 تخطيط المسار ومسيطر عصبي لإنسان آلي متنقلدراسة مقارنة لخوارزميات ذكية متنوعة أساسه 

                           بكر علي إبراهيم                              الأستاذ المساعد الدكتور أحمد صباح الاعرجي                                  

                      قسم هندسة السيطرة والنظم                             قسم هندسة السيطرة والنظم                                                    

                             الجامعة التكنولوجية                                     الجامعة التكنولوجية                                                         

    

 الخلاصة

مسيطر عصبي غير خطي وخوارزمية ذكية والتي من شأنها توجيه الانسان آلي المتنقل  أساسهنظام إدراكي  البحث،في هذا 

الهدف من الهيكل المقترح هو تخطيط وتتبع معادلة  تصادم.وبدون  ةستمر والتنقل عبر العوائق الثابتالذاتي أثناء تتبع المسار الم

المسار المرجعي للانسان آلي المتنقل الذاتي في بيئة المنجم من أجل تجنب العوائق والوصول إلى الهدف باستخدام الخوارزميات 

اد حلول ( قد استخدمت لإيجABC( وخوارزمية مستعمرات النحل الاصطناعي )PSOالذكية. خوارزميات سرب الجسيمات )

لمشكلات توجيه للانسان آلي المتنقل الذاتي في المنجم عن طريق البحث عن المسارات المثالية وإيجاد المعادلة المرجعية للمسار 

في ايجاد وتغنيم عناصر المسيطر العصبي الغير خطي بشكل حي  PSOتم استخدام خوارزمية  ذلك،الأمثل. بالإضافة إلى 

 فضل رد فعل لعزم الدوران لعجلات ألانسان آلي الذاتي المتنقل التعديني. ومتصل من أجل الحصول على أ
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ظهرت نتائج المحاكاة باستخدام الماتلاب أن النظام الادراكي المقترح هو أكثر دقة من حيث تخطيط المسار المرجعي لتجنب 

م ودون حالة تشبع لتتبع معادلة المسار العوائق وإيجاد تغنيم العناصر بشكل حي ومتصل للمسيطر والتي انشئت فعل سيطرة ناع

 المرجعي وكذلك تقليل الخطأ التتابعي للانسان آلي المتنقل.

 نظام أدراكي. العوائق،تجنب  عصبي،مسيطر  متنقل،أنسان آلي  المسار،تخطيط الكلمات الرئيسية: 

 

1. INTRODUCTION 

In general, the term path-planning is a mission of navigating a mobile robot around a space in 

which a number of obstacles that have to be avoided. Optimal trajectories could be a trajectory 

that minimizes the number of turning, the number of braking or whatever a particular application 

needs Mudasir, et al., 2015. So the mobile robot control motion should track and execute the path 

planning because there are many applications in various life field such as: science; education; 

industry, mining; entertainment; security and military needed the wheeled mobile robot system 

therefore, the mobile robot is still active region of research Muhammad , et al., 2015. 

In the recent years, different types of evolutionary techniques like: Genetic Algorithm, 

Muhammad, et al., 2016, Ant Colony Optimization, Abdallan, and Hamzah, 2013, Particle 

Swarm Optimization (PSO), Shahab, et al., 2015 and Artificial Bee Colony (ABC), Qianzhi, and 

Xiujuan, 2010, which are widely used for path planning and solved the problems of static and 

dynamic obstacles in environment for various tasks. In addition to that, several types of control 

algorithms are designed based on the mobile robot mathematical model. It is proposed to solve the 

mobile robot motion control in order to track the reference path with high performance of the 

controller in terms of generating optimal control action that lead to minimizing tracking pose error 

during tracking reference path, such as nonlinear neural PID controller, Dagher, and Al-Araji, 

2014, fuzzy logic and PID controllers, Salhi, and, Alimi, 2014, neural networks controllers , 

Jasmin, et al., 2008 , adaptive fuzzy with back-stepping controllers, Swadi, et al., 2016,  adaptive 

sliding mode controllers, Ghania, et al., 2016, and neural predictive controllers , Al-Araji, et al., 

2011. 

The motivation for this research is focusing on generating an optimal path with obstacles 

avoidance, on tracking and stabilize the wheeled mobile robot on the reference path and get a 

preferable torque control action with no saturation state and no spike action in its. 

The main research contribution is described as follow: 

 Cognition path planning is generating an optimal path with high computational accuracy based 

on PSO and ABC algorithms to avoid the static obstacles with least distance. 

 Neural network with PSO algorithm has derived the control law to generate the best torque 

action and also to follow the reference path question. 

 Using a PSO algorithm to show the fast search ability in the global region to online find and 

tune the nonlinear neural controller best parameters. 

 Tracking different optimal path equations to support the capability of the proposed cognitive 

system in terms of minimizing the wheeled mobile robot tracking pose error. 

 To investigate the proposed controller robustness achievements by adding a dynamic 

disruption to the controller.  

 To verify the adaptation achievements of the suggested controller by changing the initial pose 

state of a wheeled mobile robot. 

 

The organization of this paper is as follows: Section two is a description of the dynamic wheeled 

mobile robot model. Section three is descript Intelligent Optimization Algorithms. Section four is 

deriving the proposed cognitive system. Section five is presented the simulation results of the 

cognitive system in the mining environment. In section six, the conclusions are drawn. 
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2. MOBILE ROBOT DYNAMIC MODEL 

Fig. 1 shows the schematic diagram of the wheeled mobile robot cart that is made up of two DC 

motors which are driving the two wheels with one an Omni-Directional Castor Wheel in the front 

of the cart that will stabilize the mobile robot platform, Mudasir, et al., 2015. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Mobile robot Platform model. 

The mobile robot motion and orientation depend on two independent DC motors for the left and 

right wheels. r  is the radius of the two same wheels and L is the distance between these two 

wheels and c is the mobile robot center of gravity. 

Generally,  YXO ,,  is defined as the global coordinate frame while the mobile robot pose vector in 

the surface is defined as Eq. (1):  
Tyxq ),,(                                                     (1) 

(x,y) are the position coordinates at the point c  while the orientation angle   is measured with 

respect to the X-axis in the global frame therefore the configuration of the mobile robot can be 

expressed by these three popularized coordinates.  

Inspection the wheeled mobile robot motion and orientation, two situations should be attained; the 

first is pure-rolling and the second is without-slipping so that the profiling velocity of the mobile 

robots will be equal to zero as Eq. (2) Salhi, and, Alimi, 2014. 

0)(cos)()(sin)( 


ttyttx                                       (2) 

Then, the kinematic equations of the wheeled mobile robot cart in the global frame are symbolized 

as follows, Jasmin, et al., 2008: 
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where WRi(t) and WLe(t) are the right angular velocity and left angular velocity respectively. 

Based on Euler Lagrange formulation, Ghania, et al., 2016, the mobile robot dynamic model can 

be described as follows: 
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Where:
L is the left wheel torque;

R  is the right wheel torque; Ma is the mobile robot’s mass; In 

is the mobile robot’s inertia; is the constraint forces; d is bounded dynamic disturbances. 

 

3.   INTELLIGENT OPTIMIZATION ALGORITHMS 

3.1 Particle swarm optimization algorithm (PSO) 

Particle swarm optimization algorithm is an evolutionary computation method which was 

advanced by James, and Russell, 1995. Simulation the social behavior of bird’s flocks and schools 

of fish are the major idea behind proposing PSO algorithm. The algorithm applies to solving 

problems in groups. When a fish flock and birds find an optimal path to the source of food, it 

directly trans-mate these facts to all swarm and therefore rest of the swarm moves slowly and 

gradually towards the food source, Maurice, and James, 2002. Each solution in multi-dimensional 

space consists of a group of elements which represents a point. The solution is called “particle” 

and the group of particles (population) is called “swarm”. In PSO, the position and velocity of the 

swarm are initialized randomly for every particle. Moreover, in the problem or function search 

space of, these particles are placed. The cost function of the problem is assessing with these 

particles, and the personal best of each particle is stored in Pbest and the global best of all swarm 

are stored in Gbest James, and Russell, 1995 and Maurice, and James, 2002. 

The PSO algorithm evolutionary equations are as follows, Dagher, and Al-Araji, 2013: 
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where; n: number of iteration. n

DiyxVh ,),( : is the ith particle velocity at n iteration, n

DiyxP ,),( : is the 

ith particle position at n repetition,  c1 and c2 : are the acceleration coefficients and its equal to 1.25,  

r1 and r2 : are two independently random numbers between 0 and 1, 
ipbest : is the best previous 

weight of ith particle, 
dgbest : is best  particle among all the particle in the population and  β: inertia 

weight equal to 0.65.  

3.2 Artificial bee colony algorithm (ABC) 

In 2005, Karaboga proposed the ABC algorithm to mimic the behavior of foraging bee colony, the 

rise of concerted intelligence of bee swarms count on the selection of foraging Karaboga, and 

Akay, 2009.  In the model of ABC algorithm, there are three main components: food sources, 

employed foragers and unemployed foragers. The food sources amount are defined by the 

“profitability” value. The position of food sources are extracted as the real problem solving, and 

the foraging bee’s nectar process can be regarded as the search for the optimal solutions. The 

employed foragers are related to an exact food source which are currently “employed”. The 

distance and direction information from the location to the hive can carry with them of the 

particular source. Unemployed foragers are looking for a good source to exploit continually. 

Unemployed foragers have two types: scouts bee and onlooker’s bee. The scout’s bee search 

arround the environment of the nest for new good sources, while the onlooker’s bee waits in the 

nest and establishes a good source through the information shared by employed foragers Abdul 
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Wahid, et al., 2015. This persistent utilization will make them become weary. Then, the exhausted 

employed bee will become a scout bee, and their food sources are deserted. In ABC algorithm, the 

food source location will serve likely as a solution to the issue, and the nectar quantity of the food 

source correlate with the quality (fitness) of the related solution and also the number of employed 

bees equals the number of food sources (solutions). The search carried out by the ABC algorithm 

can be summarized as follows Abdul Wahid, et al., 2015 and Karaboga, et al., 2012: 

3.2.1 Initialization step 

 In this step, a population NS of food sources, i.e., 𝑥𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3, … . . , 𝑥𝑖,𝐷}, and its 

generation for each food source are as follows: 

𝑥𝑖,𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗)                                                                                (9) 

Where; NS: number of food source, (is equal to the number of employed or onlooker bees), D: 

Dimension of each solution, j= 1,2,….,D , i = 1, 2…..,NS, 𝑥𝑚𝑎𝑥,𝑗 = upper bound for dimension j, 

𝑥𝑚𝑖𝑛,𝑗 = lower bound for dimension j and rand(0,1) = random number between 0 and 1.  

3.2.2 Employed bees step 

 Randomly, every employed bee transmits with another employed bee a new location to 

search for, i.e., 𝑣𝑖 = {𝑣𝑖,1, 𝑣𝑖,2, 𝑣𝑖,3, … . . , 𝑣𝑖,𝐷},  as shown in Eq. (10) Abdul Wahid, et al., 2015. 

𝑣𝑖,𝑗 = 𝑣𝑖,𝑗 + ∅𝑖,𝑗{𝑥𝑖,𝑗 − 𝑥𝑘,𝑗}                                                                                                       (10)                                                                                                    

where the indices j ∈ {1,2,3, … . . , 𝐷} and k ∈ {1,2,3, … . . , 𝑁𝑆} , k ≠ 𝑖 are randomly generated. A 

coefficient ∅𝑖,𝑗 is a casual number amid (-1, 1). The employed bees estimate the new food source 

𝑣𝑖 and match it with their current food source 𝑥𝑖 by the cost solutions. The equation to determine 

the cost is shown in Eq. (11) Abdul Wahid, et al., 2015, where𝑓(𝑥𝑖) appears as the objective 

value of the solution 𝑥𝑖 .  

𝑓𝑖𝑡(𝑥𝑖) = {

1

1+𝑓(𝑥𝑖)
 ,                                   𝑖𝑓 𝑓(𝑥𝑖) ≥ 0

1 + 𝑎𝑏𝑠(𝑓(𝑥𝑖),                     𝑖𝑓 𝑓(𝑥𝑖) < 0
                                                                  (11) 

 

3.2.3 Onlooker bees step 

 In this step, onlooker bees get data from the employed bees and resolve on selecting some 

food sources for additional search. By using Eq. (12), the probability 𝑝𝑖 is found by the food 

sources fitness. The onlooker bees go to the better food sources with higher probability, Abdul 

Wahid, et al., 2015. 

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑁𝑃
𝑛=1

                                                                                                                               (12) 

 

3.2.4 Scout bees step 

 Throughout the search, several food sources will be deserted. A limit is a character defined 

by the user to rule when a food source abandon. The employed bee of the abandoned food sources 

will become scout bee. A scout bee searches a new food source randomly to substitute the 

abandoned food source. 

4. COGNITIVE SYSTEM DESIGN 

In this section, the cognitive system approach based on intelligent optimization algorithm is used 

to plan optimal smoothness reference trajectory to avoid the static obstacle by a wheeled mobile 
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robot assuming mining environment with the minimum distance to the target, then to track the 

reference path equation by using a nonlinear neural controller. The proposed cognitive system is 

described by the block diagram shown in Fig. 2. It includes two layers: a) Cognition Path Planning 

Layer and b) Nonlinear Neural Controller Layer. 

 

 

 

 

 

 

 

 

 

 

Figure 2. The mine mobile robot cognitive system structure. 

4.1 Cognition path planning layer  

The aim of the cognition path planning layer is to collect all the facts from the mining surroundings 

and then prepare the reference trajectory to reach the target in the mine and avoid any static 

obstacle by the wheeled mobile robot in the mining with no collision and free navigation. To 

achieve the operation of this layer, the model of the mining mobile robot cart and the dimensions 

of obstacles need to avoid any collision between the mining mobile robot cart and the obstacle. It 

uses the two Intelligent Optimization Algorithms (PSO and ABC) separately to plan the reference 

path with the smallest distance to keep away from the obstacles and reach the desired target based 

on the reference path equation. The goal of the two Intelligent Optimization Algorithms in 

the cognition path planning layer is to find the optimal trajectories and also to keep away from 

static obstacles through determining the points (xi,yi) (i=1, 2, 3…7 only seven points) of the 

equation, and obtain the optimal smoothness trajectories from the starting point to the target point. 

These point's (xi,yi) are determined by using the search space for each point of the mining mobile 

robot path and also elect the points specified by two-dimensional data. To evaluate the points, two 

evaluation functions are used into a fitness function, the first fitness function is collision avoidance 

and the second fitness function is the shortest distance. Collision avoidance is very important in 

path planning for a mobile robot to travel safely in the mining environment and can be explained 

in these two conditions:  

The first situation is the point (xi,yi) should not be in the obstacle territory Al‐ Araji, 2012 and 

Dagher, 2017.   Should not be in the obstacle region 


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
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1

                                                                                                    (13) 

The second situation is the section (xi,yi) and (xi+1,yi+1) should not intersect obstacle territory Al‐
Araji, 2012 and Dagher, 2017. 
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The cost function of collision avoidance can be given by Eq. (15) Al‐ Araji, 2012 and Dagher, 

2017.function of the collision avoidance can be 
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The second cost function is a minimum distance, it makes the mobile robot moves in the mining 

environment with minimal time and minimize the travel distance, and it can be shown as follows 

Dagher, 2017 and Al-Araji, and Dagher, 2015:  
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The eventual cost function is formulated in Eq. (17) as: 

FitFit CAMDFit /                                                                                             (17) 

When the final cost function reaches the minimal value, the global smoothness optimal path is 

found. When the final cost function reaches 

The second step is to convert the points (xi,yi) (i=1, 2, 3…7 only seven points) of the optimal path 

to third order polynomial equation of the reference path equation as follows:  

0

1

1

2

2

3

3)( bxbxbxbxy 
                                                                                                                 (18)  

where b3,2,1,0 are the coefficients of the optimal reference path, and then by using Polynomial Least 

Squares Curve Fits to find the third order polynomial equation of the reference path equation.
  

The mean square error function (MSE), as shown in Eq. (19) is a benchmark function for 

estimating the reference points (xi,yi) (i=1, 2, 3…7 only seven points) after substituting xi in the 

reference path equation then finding yi.  

𝑀𝑆𝐸 =
1

7
∑ (𝑦𝑟𝑒𝑓(𝑖) − 𝑦(𝑖))27

𝑖=1                                                                                           (19)  

To investigate the reference path equation, the optimal traveling time for the mobile robot, the 

mobile robot required linear velocity during tracking the optimal path should not override the VImax 

and can be determined using Eq. (20): 

axI
Fit

I VV
T

MD
V Im                                                                                                                        (20) 

T must be determined, and it’s the traveling time of the tracking between the start and goal points, 

using Eq. (21) based the sampling time sT as follows: tracking the optimal path 

sTNT                                                                                                                                (21) 

where N : is the number of samples. 

4.2 Nonlinear neural network controller design  

The proposed nonlinear neural network controller for the nonlinear MIMO system for the mobile 

robot can be shown in Fig. 3. The feedback control action is very important in the structure of the 

cognitive system because it is necessary to keep in steady state the tracking pose error of the mobile 

robot when the real position and direction of the mobile robot shift from the reference path in the 

mining environment.  
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Figure 3. The proposed MIMO nonlinear neural controller structure. 

 

The capabilities of the neural network control structure is strong flexibility, good dynamic 

behavior, and robustness performance. It used a non-linear sigmoid activation function in the 

hidden layer and linear activation function in the output layer Al-Araji, 2014, and Al-Araji, and 

Yousif, 2017a, and Al-Araji, and Yousif, 2017b, as shown in Fig. 4.  

The proposed control law for the MIMO nonlinear neural network controller is as follows: 

nonlinear neural controller neural networks outputs 

224213202191)( FOFOFOFOkR                                        
                               (22) 

246235224213)( FOFOFOFOkL                             
                              (23) 

where 1o , 2o , 3o , 4o , 5o and 6o are the outputs of non-linear sigmoid activation functions of the 

neural networks and has non-linear relation as given in the following function Al-Araji, 2014, and 

Al-Araji, and Yousif, 2017a, and Al-Araji, and Yousif, 2017b: nonlinear relation as given 

 

 
H 

 

8F 

7F 

9F 

21F 

3O 

 

 
H 

11F 

10F 

12F 

22F 

4O 

 

 
H 

 

14F 

13F 

15F 

23F 

5O 

 

 
H 

17F 

16F 

18F 

24F 

6O 

ex(k) 

ex(k-1) 

ex(k-2) 

ey(k) 

ey(k-1) 

ey(k-2) 

eθ(k) 

eθ(k-1) 

eθ(k-2) 

 

 
H 

 

2F 

1F 

3F 

19F 

1O 

)(KRτ 

)(KLτ 

 

 
H 

5F 

4F 

6F 

20F 

2O 

 

 

1+ 

1+ 

1+ 

1+ 



Journal  of  Engineering       Volume  25    August  2019   Number  8 
 

 

88 

1
1

2







e
net

O



                                                                                             (24) 

Where: 6,5,4,3,2,1   

 )()]1()([)( 211 kexFkexkexFknet )]2()1()([3  kexkexkexF                                                       (25) 

 )()]1()([)( 542 kexFkexkexFknet )]2()1()([6  kexkexkexF                                             (26) 

 )()]1()([)( 873 keyFkeykeyFknet )]2()1()([9  keykeykeyF                                                       (27) 

 )()]1()([)( 11104 keyFkeykeyFknet )]2()1()([12  keykeykeyF                                                    (28)                                                      

 )()]1()([)( 14135 keFkekeFknet  )]2()1()([15  kekekeF                                                  (29) 

 )()]1()([)( 17166 keFkekeFknet  )]2()1()([18  kekekeF                                                  (30) 

where the input vector is made up of )(kex , )(key , )(ke . Where the input vector made up of 

Twenty four 
241....FF  weights control gain parameters are adjusted using PSO algorithm for the 

proposed MIMO nonlinear neural controller and initialized all particles randomly and updated the 

position and velocity of all particles using Eqs. (31 and 32) to find and tune on-line the control 

gains of proposed controller Dagher, and Al-Araji, 2013: 

)()( 2211

1 d

h
d

d

h
d

h

d

h

d

h FgbestrcFpbestrcFF 


      
                             (31) 

11 


d

h

d

h

d

h FFF                                      (32) 

Where; 
d

mF :is particles weight h at d iteration;  : is the inertia weight operator; c1 and c2 are the 

positive values equal to 1.25;  r1 and r2 are random values between 0 and 1. 
 

 

 

 

 

 

 

 

 

Figure 4. The sigmoid activation function.   

 

The (MSE) mean square error function, as in Eq. (33) is a benchmark value to approximate the 

performance index of the pose tracking error. (MSE) mean square error function benchmark for 

approximate 

𝑀𝑆𝐸 =
1

𝑁𝑖𝑡
∑ [(𝑥𝑟𝑒𝑓 − 𝑥)2+(𝑦𝑟𝑒𝑓 − 𝑦)2 + (𝜃𝑟𝑒𝑓 − 𝜃)2𝑁𝑖𝑡

𝑖=1                                                      (33)  

𝑁𝑖𝑡: is the number of iteration. 

5. SIMULATION RESULTS 

MATLAB package was used to confirm the proposed cognition system of the path tracking for the 

mobile robot dynamic model. The Eddie mobile robot platform specifications are picked from 
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Internet website, 2017: M=12kg, I=1. 536kg.m2, r=0.075m and L=0.39m. The Matlab simulation 

is carried out off-line cognition path planning and on-line intelligent optimization algorithm with 

a proposed nonlinear neural controller as shown in Fig. 2 to track a reference path equation and to 

avoid the static obstacles and 0.5 sec is the sampling time. In this work, the PSO and ABC 

algorithms are used to figure out the optimal paths. The PSO algorithm is used to tune the values 

of the nonlinear neural controller that leads to ideal and smoothness torque control action and also 

reduce the tracking pose error. Tables 1 and 2 shows the PSO and ABC algorithms parameters 

used to achieve the cognition system. 

Table 1. The PSO algorithm parameters. 

PSO Parameters Path Planning 
Nonlinear Neural 

Controller 

Number of Particles 20 10 

Particle’s weights 14 24 

Β 0.65 0.65 

2and c 1c 1.25 1.25 

2and r 1r Random (0,1) Random (0,1) 

Number of Iteration 10 10 
 

Table 2. The ABC algorithm parameters. 

ABC Parameters Path Planning 

Colony size 30 

Limit 5 

Food source 14 

Rand  Random [-1,1] 

Number of Iteration 25 

 

5.1 Case study I 

The mobile robot has initial pose ]0,1.0,0[)0( q . After applying the first layer from the structure of 

the proposed cognition system to generate the optimal path by using PSO and ABC algorithms as 

shown in Figs. 5 and 6 respectively, which has five paths to avoid the static obstacles as a first 

step, the distances of these five paths between start point to target point are (346, 343.12, 345.25, 

340.09, and 333.52) and (335.79, 337.74, 338.72, 346.87, and 358.81) cm respectively depending 

on Eq. (16). Path5 is the optimal path form Fig. 5, and Path1 is the optimal path form Fig. 6, 

because they have the shortest distance (333.52) and (335.79) cm respectively. The second step in 

the same layer is obtaining the reference path equation for the two optimal paths by converting the 

point of the optimal path using Polynomial Least Squares Curve Fits third order polynomial 

equation of the reference path as follows: 

𝑦(𝑥) = 2 × 10−6𝑥3 − 7.2 × 10−4𝑥2 + 0.52 × 𝑥 + 0.93                                                        (34) 

𝑦(𝑥) = 1.75 × 10−6 × 𝑥3 − 6.75 × 10−4 × 𝑥2 + 0.54 × 𝑥 − 0.74                                        (35) 
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Figure 5. The optimal paths using PSO algorithm. 

 

Figure 6. The optimal paths using the ABC algorithm. 

PSO algorithm method is better than the ABC algorithm method because it avoids the static 

obstacle with smallest distance (333.52) cm to the goal and with minimum error (0.676%). The 

second layer in the cognitive system executed the mobile robot path tracking model based on the 

reference path Eq. (34) as shown in Fig. 7. It is clearly, the tracking excellent performance with 

free-navigation.Fig. 8 shows the mobile robot orientation tracking performance with PSO 

algorithm. In this online control algorithm, the Mean Square Error (MSE) plainly refine the 

performance of the controller by viewing the pose error concourse for the mobile robot motion at 

300 steps, as shown in Fig. 9. Fig. 10 shows the response efficiency of the suggested nonlinear 

neural controller through resulting a smoothness torque control action without sharp spikes control 

action state to follow the reference path equation in less time. The linear and angular velocities 

responses for the platform wheeled mobile robot are smoothness without sharpened spikes, as 

shown in Fig. 11.   
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Figure 7. The reference path equation and actual path for a mobile robot. 

 

Figure 8. The desired and actual orientation for a mobile robot. 

 

Figure 9. Online performance index. 
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Figure 10. Torque control action. 

 

Figure 11. Mobile robot linear and angular velocities. 

Figs. 12 a, b, c shows the hardiness and adaptability performance of the present cognitive system 

expression of preservation the wheeled mobile robot tracking pose error to minimum and settle 

down the mobile robot pose when it tries to shift from the right path because of the effect of 

bounded dynamic disturbances to the system as the term that had been taken from Al-Araji, et al., 

2013  Tttd )2sin(01.0)2sin(01.0 . 
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Figure 12. Pose error of the mobile robot: a) error in X-axis; b) error in Y-axis; c) orientation error. 

5.2 Case study II 

The mobile robot has initial pose as ]0,45.1,0[)0( q  and After applying the first layer from the 

structure of the proposed cognition system to generate the optimal path by using PSO and ABC 

algorithms as shown in Figs. 13 and 14 respectively, which has five paths to avoid the static 

obstacles as a first step. The distances of these five paths between start point to target point are 

(348.47,354.61, 355.819, 344.54, and 335.84) and (336.66, 339.97, 372.11, 339.84, and 384.74) 

cm respectively depending on Eq. (16). Path5 is the optimal path form Fig 13, and Path1 is the 

optimal path form Fig. 14, because they have the shortest distance of Path5 is (335.84), and Path1 

is (336.66) cm respectively. The second step in the same layer is obtaining the reference path 

equation for the two optimal paths by converting the point of the optimal path using Polynomial 

Least Squares Curve Fits third order polynomial equation of the reference path as follows: 

𝑦(𝑥) = 2.07 × 10−6 × 𝑥3 − 11 × 10−4 × 𝑥2 − 0.34 × 𝑥 − 149.82                                     (35) 

𝑦(𝑥) = 9 × 10−6𝑥3 − 37 × 10−4𝑥2 − 0.185 × 𝑥 + 147.92                                                 (36) 

PSO algorithm method is better than the ABC algorithm method because it avoids the static 

obstacle with minimal distance (335.84) cm to the target and with error (0.243%). The second 

layer in the cognitive system executed the mobile robot path tracking model based on the reference 

path Eq. (35) as shown in Fig. 15, which shows excellent tracking performance of the reference 

path equation with free-navigation for a mobile robot.  

50 100 150 200 250 300
-10

-8

-6

-4

-2

0

2

Samples

E
r
r
o

r
 i

n
 Y

-a
x

is
 (

c
m

)

50 100 150 200 250 300
-0.1

0

0.1

0.2

0.3

0.4

0.5

Samples

O
r
ie

n
ta

ti
o
n

 E
r
r
o
r
 (

r
a

d
)



Journal  of  Engineering       Volume  25    August  2019   Number  8 
 

 

94 

 

Figure 13. The optimal paths using PSO algorithm. 

 

Figure 14. The optimal paths using the ABC algorithm. 

 

Figure 15. The reference path equation and actual path for a mobile robot. 
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Fig. 16 demonstrates the mobile robot orientation tracking performance with the PSO algorithm. 

Fig. 17 shows the online control algorithm, the Mean Square Error (MSE) clearly enhances the 

controller performance by showing the pose error concourse for the mobile robot motion at 300 

steps.  

 

Figure 16. The desired and actual orientation for a mobile robot. 

 

 

Figure 17. Online performance index.  

Fig. 18 shows the smoothness torque control action for the right and left wheels while tracking the 

reference path equation. The mobile robot linear and angular velocities responses are smoothness 

without sharp spikes, as shown in Fig. 19. Figs. 20 a, b, c show the hardiness and adaptability 

performance of the present cognitive system in terms of preservation the less tracking pose error 

for the wheeled mobile robot. It settles down the pose of the mobile robot when it tries to shift 

from the right path because of the bounded dynamic disturbances effect on the system as the term 

is taken from Al-Araji, et al., 2013  Tttd )2sin(01.0)2sin(01.0 . 

PSO algorithm method is better than the ABC algorithm method because it avoids the static 

obstacle with the smallest distance to the goal and with less error as explained in Table 3. 
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Figure 18. Torque control action. 

 

Figure 19. Mobile robot linear and angular velocities. 
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Figure 20. Pose error of the mobile robot: a) error in X-axis; b) error in Y-axis; c) orientation 

error. 
 

Table 3. Error difference between PSO and ABC algorithms. 

 

6. CONCLUSIONS  

The simulation results of the proposed cognitive system based on cognition path planning and 

nonlinear neural controller with PSO and ABC algorithms are presented in this work for the mining 

wheeled mobile robot dynamic model which shows the following capabilities of:  

1) Accurately generating optimal (minimum distance) reference path equation between start 

and goal position for the mobile robot in a working environment with static obstacles. 

2) Online finding and tuning the parameters of the nonlinear neural controller using PSO 

algorithm. Robot with static obstacles. 
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3) Obtaining a smooth and best torque control action, without spikes as well as no saturation 

torque action state. 

4) Tracking the reference path equation with minimum pose error and avoiding the static 

obstacles. 

5) High adaptability performance when changing the mobile robot initial pose. 

6) Strong robustness performance when adding the dynamic disturbances to the mobile robot. 
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