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ABSTRACT

In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm
that will guide an autonomous mobile robot during continuous path-tracking and navigate over
solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and
track the reference path equation for the autonomous mobile robot in the mining environment to
avoid the obstacles and reach to the target position by using intelligent optimization algorithms.
Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to
finding the solutions of the mobile robot navigation problems in the mine by searching the optimal
paths and finding the reference path equation of the optimal path. As well as, PSO algorithm is
used to find and tune on-line the neural control gains values of the nonlinear neural controller to
obtain the best torques actions of the wheels for the mining autonomous mobile robot. Simulation
results by MATLAB showed that the proposed cognitive system is more accurate in terms of
planning reference path to avoid obstacles and online finding and tuning parameters of the
controller which generated smoothness control action without saturation state for tracking the
reference path equation as well as minimize the mobile robot tracking pose error to zero value.

Keywords: path planning, mobile robot, neural controller, obstacles avoidance, cognitive system.
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1. INTRODUCTION

In general, the term path-planning is a mission of navigating a mobile robot around a space in

which a number of obstacles that have to be avoided. Optimal trajectories could be a trajectory

that minimizes the number of turning, the number of braking or whatever a particular application

needs Mudasir, et al., 2015. So the mobile robot control motion should track and execute the path

planning because there are many applications in various life field such as: science; education;

industry, mining; entertainment; security and military needed the wheeled mobile robot system

therefore, the mobile robot is still active region of research Muhammad , et al., 2015.

In the recent years, different types of evolutionary techniques like: Genetic Algorithm,

Muhammad, et al., 2016, Ant Colony Optimization, Abdallan, and Hamzah, 2013, Particle

Swarm Optimization (PSO), Shahab, et al., 2015 and Artificial Bee Colony (ABC), Qianzhi, and

Xiujuan, 2010, which are widely used for path planning and solved the problems of static and

dynamic obstacles in environment for various tasks. In addition to that, several types of control

algorithms are designed based on the mobile robot mathematical model. It is proposed to solve the

mobile robot motion control in order to track the reference path with high performance of the

controller in terms of generating optimal control action that lead to minimizing tracking pose error

during tracking reference path, such as nonlinear neural PID controller, Dagher, and Al-Araji,

2014, fuzzy logic and PID controllers, Salhi, and, Alimi, 2014, neural networks controllers ,

Jasmin, et al., 2008 , adaptive fuzzy with back-stepping controllers, Swadi, et al., 2016, adaptive

sliding mode controllers, Ghania, et al., 2016, and neural predictive controllers , Al-Araji, et al.,

2011.

The motivation for this research is focusing on generating an optimal path with obstacles

avoidance, on tracking and stabilize the wheeled mobile robot on the reference path and get a

preferable torque control action with no saturation state and no spike action in its.

The main research contribution is described as follow:

e Cognition path planning is generating an optimal path with high computational accuracy based
on PSO and ABC algorithms to avoid the static obstacles with least distance.

e Neural network with PSO algorithm has derived the control law to generate the best torque
action and also to follow the reference path question.

e Using a PSO algorithm to show the fast search ability in the global region to online find and
tune the nonlinear neural controller best parameters.

e Tracking different optimal path equations to support the capability of the proposed cognitive
system in terms of minimizing the wheeled mobile robot tracking pose error.

e To investigate the proposed controller robustness achievements by adding a dynamic
disruption to the controller.

e To verify the adaptation achievements of the suggested controller by changing the initial pose
state of a wheeled mobile robot.

The organization of this paper is as follows: Section two is a description of the dynamic wheeled
mobile robot model. Section three is descript Intelligent Optimization Algorithms. Section four is
deriving the proposed cognitive system. Section five is presented the simulation results of the
cognitive system in the mining environment. In section six, the conclusions are drawn.
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2. MOBILE ROBOT DYNAMIC MODEL

Fig. 1 shows the schematic diagram of the wheeled mobile robot cart that is made up of two DC
motors which are driving the two wheels with one an Omni-Directional Castor Wheel in the front
of the cart that will stabilize the mobile robot platform, Mudasir, et al., 2015.

N

o) > X

Figure 1. Mobile robot Platform model.

The mobile robot motion and orientation depend on two independent DC motors for the left and
right wheels. r is the radius of the two same wheels and L is the distance between these two
wheels and c is the mobile robot center of gravity.

Generally, [o,x,v] is defined as the global coordinate frame while the mobile robot pose vector in
the surface is defined as Eqg. (1):

qa=(x,0)" 1)
(x,y) are the position coordinates at the point ¢ while the orientation angle & is measured with
respect to the X-axis in the global frame therefore the configuration of the mobile robot can be
expressed by these three popularized coordinates.

Inspection the wheeled mobile robot motion and orientation, two situations should be attained; the
first is pure-rolling and the second is without-slipping so that the profiling velocity of the mobile
robots will be equal to zero as Eq. (2) Salhi, and, Alimi, 2014.

—X(®)sinO(t) + y(t)cos O(t) = 0 2)
Then, the kinematic equations of the wheeled mobile robot cart in the global frame are symbolized
as follows, Jasmin, et al., 2008:

X(t) = w) cosA(t) 3)
y(t) = wsin o(t) 4)
i - VRO ~WLe(t) (5)

L
where WRI(t) and WLe(t) are the right angular velocity and left angular velocity respectively.
Based on Euler Lagrange formulation, Ghania, et al., 2016, the mobile robot dynamic model can
be described as follows:
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Where: z is the left wheel torque; z,, is the right wheel torque; Ma is the mobile robot’s mass; In
is the mobile robot’s inertia; A is the constraint forces; 7, is bounded dynamic disturbances.

Ma O 0 x 10059 cos & —siné@ 1 (6)
0 Ma Ofy|== sir|1_¢9 sin@{q}+ cosd |A—|1|d

TR
0 0 In 0 0

3. INTELLIGENT OPTIMIZATION ALGORITHMS
3.1 Particle swarm optimization algorithm (PSO)

Particle swarm optimization algorithm is an evolutionary computation method which was
advanced by James, and Russell, 1995. Simulation the social behavior of bird’s flocks and schools
of fish are the major idea behind proposing PSO algorithm. The algorithm applies to solving
problems in groups. When a fish flock and birds find an optimal path to the source of food, it
directly trans-mate these facts to all swarm and therefore rest of the swarm moves slowly and
gradually towards the food source, Maurice, and James, 2002. Each solution in multi-dimensional
space consists of a group of elements which represents a point. The solution is called “particle”
and the group of particles (population) is called “swarm”. In PSO, the position and velocity of the
swarm are initialized randomly for every particle. Moreover, in the problem or function search
space of, these particles are placed. The cost function of the problem is assessing with these
particles, and the personal best of each particle is stored in Prest and the global best of all swarm
are stored in Gpest James, and Russell, 1995 and Maurice, and James, 2002.

The PSO algorithm evolutionary equations are as follows, Dagher, and Al-Araji, 2013:

V()] 51 = (Y] + ¢y (pbestl’ ) =P y)! )+t (gbesty POy ) (7

P(x, )y = PO, Y +Vh(X, V)5 (8)

where; n: number of iteration. Vh(x, y)/', : is the i particle velocity at n iteration, P(x, Y)ip-isthe

i" particle position at n repetition, c¢1 and c. : are the acceleration coefficients and its equal to 1.25,
rand rz : are two independently random numbers between 0 and 1, ppest : is the best previous

weight of it particle, gbest, - is best particle among all the particle in the population and f: inertia
weight equal to 0.65.

3.2 Artificial bee colony algorithm (ABC)

In 2005, Karaboga proposed the ABC algorithm to mimic the behavior of foraging bee colony, the
rise of concerted intelligence of bee swarms count on the selection of foraging Karaboga, and
Akay, 2009. In the model of ABC algorithm, there are three main components: food sources,
employed foragers and unemployed foragers. The food sources amount are defined by the
“profitability” value. The position of food sources are extracted as the real problem solving, and
the foraging bee’s nectar process can be regarded as the search for the optimal solutions. The
employed foragers are related to an exact food source which are currently “employed”. The
distance and direction information from the location to the hive can carry with them of the
particular source. Unemployed foragers are looking for a good source to exploit continually.
Unemployed foragers have two types: scouts bee and onlooker’s bee. The scout’s bee search
arround the environment of the nest for new good sources, while the onlooker’s bee waits in the
nest and establishes a good source through the information shared by employed foragers Abdul
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Wahid, et al., 2015. This persistent utilization will make them become weary. Then, the exhausted
employed bee will become a scout bee, and their food sources are deserted. In ABC algorithm, the
food source location will serve likely as a solution to the issue, and the nectar quantity of the food
source correlate with the quality (fitness) of the related solution and also the number of employed
bees equals the number of food sources (solutions). The search carried out by the ABC algorithm
can be summarized as follows Abdul Wahid, et al., 2015 and Karaboga, et al., 2012:

3.2.1 Initialization step

In this step, a population NS of food sources, i.e., x; = {x;1,%;2,X;3,....., X;p}, and its
generation for each food source are as follows:

Xij = Xmin,j T rand(ofl)(xmax,j - xmin,j) 9)

Where; NS: number of food source, (is equal to the number of employed or onlooker bees), D:
Dimension of each solution, j=1,2,....,D , 1 =1, 2..... NS, x,,4, ; = upper bound for dimension j,
Xmin,j = lower bound for dimension j and rand(0,1) = random number between 0 and 1.

3.2.2 Employed bees step

Randomly, every employed bee transmits with another employed bee a new location to
search for, i.e., v; = {v; 1,v;2,V;3,.....,V; p}, asshown in Eq. (10) Abdul Wahid, et al., 2015.

Vij = Vit 0p{Xi; — x5} (10)

where the indices j € {1,2,3, .....,D}and k € {1,2,3, ....., NS}, k # i are randomly generated. A
coefficient @; ; is a casual number amid (-1, 1). The employed bees estimate the new food source
v; and match it with their current food source x; by the cost solutions. The equation to determine
the cost is shown in Eq. (11) Abdul Wahid, et al., 2015, wheref (x;) appears as the objective
value of the solution x;.

1 .
fit(Ge) = {00 f 1) 20 11)

1+ abs(f(x;), if f(x;) <O

3.2.3 Onlooker bees step

In this step, onlooker bees get data from the employed bees and resolve on selecting some
food sources for additional search. By using Eq. (12), the probability p; is found by the food
sources fitness. The onlooker bees go to the better food sources with higher probability, Abdul
Wabhid, et al., 2015.
P = (12)

n=1fitn

3.2.4 Scout bees step

Throughout the search, several food sources will be deserted. A limit is a character defined
by the user to rule when a food source abandon. The employed bee of the abandoned food sources
will become scout bee. A scout bee searches a new food source randomly to substitute the
abandoned food source.

4. COGNITIVE SYSTEM DESIGN

In this section, the cognitive system approach based on intelligent optimization algorithm is used
to plan optimal smoothness reference trajectory to avoid the static obstacle by a wheeled mobile
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robot assuming mining environment with the minimum distance to the target, then to track the
reference path equation by using a nonlinear neural controller. The proposed cognitive system is
described by the block diagram shown in Fig. 2. It includes two layers: a) Cognition Path Planning
Layer and b) Nonlinear Neural Controller Layer.

Cognitive System

Cognition Path Planning

x(K)
Intelligent Optimal path y(K)
Algorithms I l xr(K) (k)
o ye(K)
(PSO,ABC) Polynomial Least Squares Or(K) Rotation Mobile Robot
Curve Fits Z Matrix Model
Intelligent ‘
Algorithm I €O (k)
g Reference path Eq. (;?gnrg?sl
(PSO)

MIMO Nonlinear
Neural Controller

Figure 2. The mine mobile robot cognitive system structure.

4.1 Cognition path planning layer

The aim of the cognition path planning layer is to collect all the facts from the mining surroundings
and then prepare the reference trajectory to reach the target in the mine and avoid any static
obstacle by the wheeled mobile robot in the mining with no collision and free navigation. To
achieve the operation of this layer, the model of the mining mobile robot cart and the dimensions
of obstacles need to avoid any collision between the mining mobile robot cart and the obstacle. It
uses the two Intelligent Optimization Algorithms (PSO and ABC) separately to plan the reference
path with the smallest distance to keep away from the obstacles and reach the desired target based
on the reference path equation. The goal of the two Intelligent Optimization Algorithms in
the cognition path planning layer is to find the optimal trajectories and also to keep away from
static obstacles through determining the points (xiyi) (i=1, 2, 3...7 only seven points) of the
equation, and obtain the optimal smoothness trajectories from the starting point to the target point.
These point's (xi,yi) are determined by using the search space for each point of the mining mobile
robot path and also elect the points specified by two-dimensional data. To evaluate the points, two
evaluation functions are used into a fitness function, the first fitness function is collision avoidance
and the second fitness function is the shortest distance. Collision avoidance is very important in
path planning for a mobile robot to travel safely in the mining environment and can be explained
in these two conditions:

The first situation is the point (xi,yi) should not be in the obstacle territory Al- Araji, 2012 and
Dagher, 2017.

i ¢, =0 (13)
CAFM_{O others

The second situation is the section (xi,yi) and (xi+1,yi+1) should not intersect obstacle territory Al-
Araji, 2012 and Dagher, 2017.
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0 (X, Y;)(X;., Y1) Nobstacle (14)
1 others

CAFiIZ ={

The cost function of collision avoidance can be given by Eq. (15) Al- Araji, 2012 and Dagher,
2017.

AFi: = {1 if CAFiIl x CAFnz =1 (15)

0 others

The second cost function is a minimum distance, it makes the mobile robot moves in the mining
environment with minimal time and minimize the travel distance, and it can be shown as follows
Dagher, 2017 and Al-Araji, and Dagher, 2015:

MDg; :i\/(xm_xj)z +(y1+1_y1')2 (16)
The eventual cost function is formulated in Eq. (17) as:

Fit = MD,,, / CA, (17)
When the final cost function reaches the minimal value, the global smoothness optimal path is
found.

The second step is to convert the points (xi,yi) (i=1, 2, 3...7 only seven points) of the optimal path
to third order polynomial equation of the reference path equation as follows:

y(X) =b,x* + b,x* + b x* +1hy (18)
where bs 21,0 are the coefficients of the optimal reference path, and then by using Polynomial Least
Squares Curve Fits to find the third order polynomial equation of the reference path equation.
The mean square error function (MSE), as shown in Eqg. (19) is a benchmark function for
estimating the reference points (x,yi) (i=1, 2, 3...7 only seven points) after substituting x; in the
reference path equation then finding yi.

1
MSE = ;217=1(}’ref(i) - Yi)? (19)

To investigate the reference path equation, the optimal traveling time for the mobile robot, the
mobile robot required linear velocity during tracking the optimal path should not override the Vimax
and can be determined using Eq. (20):

MDg;

VASSLL=RENVARY (20)
T

Imax

T must be determined, and it’s the traveling time of the tracking between the start and goal points,
using Eq. (21) based the sampling time T, as follows:

T=NxT, (21)
where N : is the number of samples.

4.2 Nonlinear neural network controller design

The proposed nonlinear neural network controller for the nonlinear MIMO system for the mobile
robot can be shown in Fig. 3. The feedback control action is very important in the structure of the
cognitive system because it is necessary to keep in steady state the tracking pose error of the mobile
robot when the real position and direction of the mobile robot shift from the reference path in the
mining environment.
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Figure 3. The proposed MIMO nonlinear neural controller structure.
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The capabilities of the neural network control structure is strong flexibility, good dynamic
behavior, and robustness performance. It used a non-linear sigmoid activation function in the
hidden layer and linear activation function in the output layer Al-Araji, 2014, and Al-Araji, and
Yousif, 2017a, and Al-Araji, and Yousif, 2017b, as shown in Fig. 4.

The proposed control law for the MIMO nonlinear neural network controller is as follows:

7r(k) = O/F, +O,F,, + O;F,, +O,F,, (22)
7 (k) =O;F,; + O,F,, + O;F,; + O;F,, (23)
where0,,0,,0,,0,,0;and Ogare the outputs of non-linear sigmoid activation functions of the

neural networks and has non-linear relation as given in the following function Al-Araji, 2014, and
Al-Araji, and Yousif, 2017a, and Al-Araji, and Yousif, 2017b:
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o, = 4 ~1 (24)
l+o 7

Where:, -123456

net, (k) = F[ex(k) —ex(k —1)] + Fex(k) + Fy[ex(k) — ex(k —1) + ex(k — 2)] (25)
net, (k) = F,[ex(k) — ex(k —1)]+ Fuex(k) + Fu[ex(k) —ex(k —1) +ex(k — 2)] (26)
net, (k) = F;[ey(k) —ey(k ~)] + Fiey (k) + Fy[ey(k) —ey(k —1) +ey(k —2)] (27)
net, (k) = Foley(k) —ey(k -]+ F.ey(k) + Fley(k) —ey(k —1)+ey(k —2)] (28)
net, (k) = F.,led(k) —ed(k —1)] + F.,e0(k) + F.le0(k) —eO(k —1) + eO(k —2)] (29)
net, (k) = F,[e0(K) —ed(k —~1)] + F,e0(K) + F[eO(k) —eO(k —1) + ek —2)] (30)

where the input vector is made up ofex(k), ey(k),ed(k).
Twenty four F,...F,, weights control gain parameters are adjusted using PSO algorithm for the

proposed MIMO nonlinear neural controller and initialized all particles randomly and updated the
position and velocity of all particles using Egs. (31 and 32) to find and tune on-line the control
gains of proposed controller Dagher, and Al-Araji, 2013:

ARy = ﬂAEﬁ +r; (pbest? - Fi ) +C,1, (gbest’ —Eﬁ) (31)
Fn' =Fn+AF, (32)
Where; F ¢ :is particles weight h at d iteration; 4 is the inertia weight operator; c1 and c; are the

positive values equal to 1.25; r1 and r2 are random values between 0 and 1.

1

/
1 1

, /
. /

i e ey

18 .«/
E __-./
i ] E] 4 E] v ] [ 5 [] [}

Figure 4. The sigmoid activation function.

The (MSE) mean square error function, as in Eq. (33) is a benchmark value to approximate the
performance index of the pose tracking error.

1 .
MSE = ﬁzgvzlg[(xref - x)2+(yref - Y)Z + (Href - 9)2 (33)
Nit: is the number of iteration.
5. SIMULATION RESULTS

MATLAB package was used to confirm the proposed cognition system of the path tracking for the
mobile robot dynamic model. The Eddie mobile robot platform specifications are picked from
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Internet website, 2017: M=12kg, I=1. 536kg.m?, r=0.075m and L=0.39m. The Matlab simulation
is carried out off-line cognition path planning and on-line intelligent optimization algorithm with
a proposed nonlinear neural controller as shown in Fig. 2 to track a reference path equation and to
avoid the static obstacles and 0.5 sec is the sampling time. In this work, the PSO and ABC
algorithms are used to figure out the optimal paths. The PSO algorithm is used to tune the values
of the nonlinear neural controller that leads to ideal and smoothness torque control action and also
reduce the tracking pose error. Tables 1 and 2 shows the PSO and ABC algorithms parameters
used to achieve the cognition system.

Table 1. The PSO algorithm parameters.

PSO Parameters Path Planning Nonlinear Neural
Controller
Number of Particles 20 10
Particle’s weights 14 24
B 0.65 0.65
ci1and ¢, 1.25 1.25
reand ro Random (0,1) Random (0,1)
Number of Iteration 10 10

Table 2. The ABC algorithm parameters.

ABC Parameters Path Planning
Colony size 30
Limit 5
Food source 14
Rand Random [-1,1]
Number of Iteration 25

5.1 Case study |

The mobile robot has initial pose q(0) =[0,0.1,0]. After applying the first layer from the structure of
the proposed cognition system to generate the optimal path by using PSO and ABC algorithms as
shown in Figs. 5 and 6 respectively, which has five paths to avoid the static obstacles as a first
step, the distances of these five paths between start point to target point are (346, 343.12, 345.25,
340.09, and 333.52) and (335.79, 337.74, 338.72, 346.87, and 358.81) cm respectively depending
on Eq. (16). Path5 is the optimal path form Fig. 5, and Pathl is the optimal path form Fig. 6,
because they have the shortest distance (333.52) and (335.79) cm respectively. The second step in
the same layer is obtaining the reference path equation for the two optimal paths by converting the
point of the optimal path using Polynomial Least Squares Curve Fits third order polynomial
equation of the reference path as follows:

y(x) =2%x107%x3 — 7.2 x 107*x2 + 0.52 X x + 0.93 (34)
y(x) =1.75%x 107 x x3 — 6.75 X 10™* X x? + 0.54 X x — 0.74 (35)
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Figure 5. The optimal paths using PSO algorithm.
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Figure 6. The optimal paths using the ABC algorithm.

PSO algorithm method is better than the ABC algorithm method because it avoids the static
obstacle with smallest distance (333.52) cm to the goal and with minimum error (0.676%). The
second layer in the cognitive system executed the mobile robot path tracking model based on the
reference path Eq. (34) as shown in Fig. 7. It is clearly, the tracking excellent performance with
free-navigation.Fig. 8 shows the mobile robot orientation tracking performance with PSO
algorithm. In this online control algorithm, the Mean Square Error (MSE) plainly refine the
performance of the controller by viewing the pose error concourse for the mobile robot motion at
300 steps, as shown in Fig. 9. Fig. 10 shows the response efficiency of the suggested nonlinear
neural controller through resulting a smoothness torque control action without sharp spikes control
action state to follow the reference path equation in less time. The linear and angular velocities
responses for the platform wheeled mobile robot are smoothness without sharpened spikes, as
shown in Fig. 11.
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Figure 7. The reference path equation and actual path for a mobile robot.

35
f f f
3 —— Actual Orientation ===Desired Orientation

25

15

Orientation (rad)
=

05
0
-0.5
-1
-1.5
0 50 100 150 200 250 300
Samples

Figure 8. The desired and actual orientation for a mobile robot.
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Figure 9. Online performance index.
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Figure 11. Mobile robot linear and angular velocities.

Figs. 12 a, b, ¢ shows the hardiness and adaptability performance of the present cognitive system
expression of preservation the wheeled mobile robot tracking pose error to minimum and settle
down the mobile robot pose when it tries to shift from the right path because of the effect of
bounded dynamic disturbances to the system as the term that had been taken from Al-Araji, et al.,

2013 =[0.01sin(2t) 0.01sin(2t)] -
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Figure 12. Pose error of the mobile robot: a) error in X-axis; b) error in Y-axis; ¢) orientation error.

5.2 Case study Il

The mobile robot has initial pose as q(0)=[01.45,0] and After applying the first layer from the
structure of the proposed cognition system to generate the optimal path by using PSO and ABC
algorithms as shown in Figs. 13 and 14 respectively, which has five paths to avoid the static
obstacles as a first step. The distances of these five paths between start point to target point are
(348.47,354.61, 355.819, 344.54, and 335.84) and (336.66, 339.97, 372.11, 339.84, and 384.74)
cm respectively depending on Eqg. (16). Path5 is the optimal path form Fig 13, and Pathl is the
optimal path form Fig. 14, because they have the shortest distance of Path5 is (335.84), and Pathl
is (336.66) cm respectively. The second step in the same layer is obtaining the reference path
equation for the two optimal paths by converting the point of the optimal path using Polynomial
Least Squares Curve Fits third order polynomial equation of the reference path as follows:

y(x) =2.07x 107 x x3 — 11 x 10™* x x2 — 0.34 X x — 149.82 (35)
y(x) =9 x 107%x3 — 37 x 107*x? — 0.185 X x + 147.92 (36)

PSO algorithm method is better than the ABC algorithm method because it avoids the static
obstacle with minimal distance (335.84) cm to the target and with error (0.243%). The second
layer in the cognitive system executed the mobile robot path tracking model based on the reference
path Eg. (35) as shown in Fig. 15, which shows excellent tracking performance of the reference
path equation with free-navigation for a mobile robot.
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Figure 13. The optimal paths using PSO algorithm.
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Figure 14. The optimal paths using the ABC algorithm.
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Fig. 16 demonstrates the mobile robot orientation tracking performance with the PSO algorithm.
Fig. 17 shows the online control algorithm, the Mean Square Error (MSE) clearly enhances the
controller performance by showing the pose error concourse for the mobile robot motion at 300
steps.
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Figure 16. The desired and actual orientation for a mobile robot.
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Figure 17. Online performance index.

Fig. 18 shows the smoothness torque control action for the right and left wheels while tracking the
reference path equation. The mobile robot linear and angular velocities responses are smoothness
without sharp spikes, as shown in Fig. 19. Figs. 20 a, b, ¢ show the hardiness and adaptability
performance of the present cognitive system in terms of preservation the less tracking pose error
for the wheeled mobile robot. It settles down the pose of the mobile robot when it tries to shift
from the right path because of the bounded dynamic disturbances effect on the system as the term
is taken from Al-Araji, et al., 20137d =[0.01sin(2t) 0.01sin(2t)] .

PSO algorithm method is better than the ABC algorithm method because it avoids the static
obstacle with the smallest distance to the goal and with less error as explained in Table 3.
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Figure 19. Mobile robot linear and angular velocities.
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Figure 20. Pose error of the mobile robot: a) error in X-axis; b) error in Y-axis; ¢) orientation
error.

Table 3. Error difference between PSO and ABC algorithms.

Beast path Beast path
Methods Distance with | pistance with
_ PSO % Error
Case Studies Algorithm ABC
(cm) Algorithm (cm)

335.79 — 333.52

Case Study | 333.52 335.79 — 33579 = 0.676%
336.84 — 335.84

Case Study 111 335.84 336.66 — 33666~ 0-243%

6. CONCLUSIONS

The simulation results of the proposed cognitive system based on cognition path planning and
nonlinear neural controller with PSO and ABC algorithms are presented in this work for the mining
wheeled mobile robot dynamic model which shows the following capabilities of:

1) Accurately generating optimal (minimum distance) reference path equation between start
and goal position for the mobile robot in a working environment with static obstacles.

2) Online finding and tuning the parameters of the nonlinear neural controller using PSO
algorithm.
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3)
4)

5)
6)
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Obtaining a smooth and best torque control action, without spikes as well as no saturation
torque action state.

Tracking the reference path equation with minimum pose error and avoiding the static
obstacles.

High adaptability performance when changing the mobile robot initial pose.

Strong robustness performance when adding the dynamic disturbances to the mobile robot.
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