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ABSTRACT

Buckling analysis of a laminated composite thin plate with different boundary conditions subjected
to in-plane uniform load are studied depending on classical laminated plate theory; analytically
using (Rayleigh-Ritz method). Equation of motion of the plates was derived using the principle of
virtual work and solved using modified Fourier displacement function that satisfies general edge
conditions. The eigenvalue problem generated by using Ritz method, the set of linear algebraic
equations can be solved using MATLAB for symmetric and anti-symmetric, cross and angle-ply
laminated plate considering some design parameters such as aspect ratios, number of layers,
lamination type and orthotropic ratio. The results obtained gives good agreement with those
published by other researchers.

Keywords: buckling load, Rayleigh-Ritz method, different edge conditions, and composite
laminated plate.
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1.INTRODUCTION

Any material involving two or more constituents by different properties and distinction boundary
among the constituents can be known as a composite material. The main components of composite
material are matrix and fibers, Singh, 2012. Many advantages for composites modified, such as
specific strength can range as high as four times of those of high strength steel compounds, and for
specific modulus, the rate can be as high as seven times those to titanium, aluminum, steel
compounds. The fiber reinforced composite is used in the format of a comparatively thin plate so
consequently the load carrying ability of composite laminated plate with buckling taken into account
considered by researchers with different loading and edge conditions. The main essential problems
of laminated plates even now are the buckling problems, and that has attracted the attention of many
researchers in the present. Different solution methods are used to solve the buckling analysis by
researchers such as the Navier method, the Levy method, the Ritz technique, and the finite element
method. The Levy solutions can be advanced for plates with two opposite edges simply supported
and the other two boundaries having clamped or free edge conditions. The Navier solutions can be
improved for a composite plate when all four boundaries are simply supported. Ritz technique and
finite element method are used to determine approximate solutions for different edge conditions,
Reddy, 2003.

Many researchers have studied the critical buckling load of composite plates. Zhong, and Gu, 2007
investigated the buckling load factor of simply supported symmetric cross-ply (0-90) rectangular
and square plates subjected to unidirectional linearly varying in-plane loads (uniform and non-
uniform). The exact solution is developed to obtain the buckling behavior based on the first order
shear deformation theory (FSDT). The results were verified by comparing the present work with the
computer code ABAQUS. This work investigated the effect of aspect (a/b), thickness-to-width
(h/b) and the modulus(E; /E,) ratio on the buckling load factor. Shufrin, et al., 2008 presented the
buckling analysis of symmetric cross and angle ply under uniaxial and biaxial compression load
laminated rectangular composite plates with various edge conditions. The multi-term extended
Kantorovich method was used to reduce the partial differential buckling equations to ordinary
differential equations (ODE). The equation of motion is derived using the principle of virtual work.
The resulting eigenvalue problem is solved using the exact element method for buckling analysis.
The accuracy of the method is examined over the numerical analysis of different rectangular plates
with various in-plane loads (uniaxial or biaxial) and edge conditions. Kuo, and Shiau, 2009 showed
the buckling analysis and vibration of composite plates with different fibre spacing. The finit
element method (FEM) is used. The results showed the buckling load and natural frequencies
increased efficiently when the fibers distributed in the middle section of the plate. The fibers
distributed in the external section of the plate increase the buckling load. Kim, et al., 2009 presented
two variable refined plate theories for buckling analysis of composite and isotropic plate. The
equation of motion is derived by using the principle of virtual work. The Navier technique is used to
investigate the solution of simply supported composite plate applying to in-plane load. Numerical
results determined by the theory was present and are compared with classical laminated plate theory
(CLPT) and first order shear deformation theory (FSDT) solutions. They concluded the used theory
does not need shear correction factor, simple to use and also similar to (FSDT). Kumar Panda, and
Ramachandra, 2010 presented the buckling analysis of laminated plates for different edge
conditions and applying to non-uniform in-plane loading. The theory used is higher order shear
deformation theory (HSDT). For the edge conditions, suitable beam functions were used as
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displacement field in Galerkin’s method. The buckling load is determined from calculating the
related linear eigenvalue problem. The obtained results are compared with the results obtained by
other researchers and with the numerical results using ANSYS to verify them. Thai, and Kim, 2011
investigated the buckling analysis of orthotropic Levy plate based on two variable refined plate
theory. Comparison studies are performed to verify the validity of the present results. In addition,
the closed-form solutions of orthotropic plate based on CPT are also generated for the verification
purpose. The effects of boundary condition, loading condition, and variation of modulus ratio,
aspect ratio, and thickness ratio on the critical buckling loads of orthotropic plates are studied and
discussed in details. Mohan Kumar, et al., 2013 showed the effect of the length-to-thickness (a/t)
ratio, the aspect ratio (a/b), the fiber orientation on the buckling load for the glass epoxy laminated
plate in clampthe ed-free-clamped-free configuration by finite element method (FEA). Buckling
analysis was carried out on the laminated plate both; numerically and experimentally; for the two
various geometrical configurations to predict the buckling load and the obtained results were
compared with the finite element method, and give good agreement. Sayyad, and Ghugal, 2014
studied the natural frequencies and critical buckling loads of composite plate by using (ESDT). The
deformation model contains exponential terms in addition to (CLPT) terms. The governing
equations are derived based on the Hamilton’s principle. The Navier type solution is used for
solving this equation of simply supported square plates. The Navier solution for laminated plate
based on (HSDT), (TSDT), (FSDT) and (CLPT) for verification purpose. The results are determined
by using analytic and then a comparison was made with the existing higher order theories to
analyzing the vibration and buckling behavior of composite plates. Widad, and Firas, 2015 studied
buckling and free vibration analysis of composite thin plates subjected to various distributed loads
using (CLPT). Also, they investigated the effect the buckling loads for composite plates with
various combinations parameter such as edge conditions on the natural frequencies and also
determined this buckling loads. The transverse deflection is considered with specific suitable
functions depending on the type of the chosen boundary conditions applied to the edges which may
be simply supported, clamped or free, the edge conditions proposed here are all edges simply, all
edges clamped, two edges simply and other clamped, two edges simply and other free and two edges
clamped and other free; the chosen functions are sin-cosine combinations. Analytical investigation is
presented using the Ritz method for homogeneous equations eigenvalue problems. This study
accounts the effect of the boundary conditions, aspect ratio, load ratio, and lamination angle. The
results are verified by comparing them to results determined by (FEM) using ANSYS, form
experimental results and that determined by other researchers. Osman, et al., 2017 presented the
Buckling analysis of symmetric cross — ply rectangular laminates under uniaxial and biaxial
compression. They used finite element analysis based on classical laminate theory. The effect of

boundary condition, aspect ratio(%) and elastic modulus ratio on buckling load is explained. It is

found that as the plate becomes more restrained its resistance to buckling increases. Also, the critical
buckling load decreases when the modulus ratio increases and becomes almost constant for higher
values of the elastic modular ratio.

In current work, Rayleigh-Ritz technique is used to investigate the critical buckling of uniaxial and
biaxial compression loads for angle and cross-laminated composite plate under different edge
conditions, using unified modified Fourier function.
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2. THEORETICAL ANALYSIS:
2.1 Buckling Analysis of Laminated Plates:
The governing equation is derived by using CPLT, Sayyad, 2014:

o*w 22w 22w

D11 — ~ + (2D1 + 4Dgg) ——~— + D = Ne gz + Ny 53 (1)

ax Zayz 22 ay*

Where stress resultants are expressed in displacement form from below:

(Mx' Mxy) fhlijz(o'x » Oy, ny)z dz = Y-y fzzkk+1(0x» Oy, ny)z dz )

Integrating Eq. (2) through the thickness of the plate, the stress resultant is associated with the
displacement (w) by the relatives:

M, D11 Dy Dis kx
My = D12 D22 D26 ky (3)
Mxy D16 D26 D66 kxy
_ =h
= [Qy] u* 2% dz 4)
2

Where Qij transformed reduced stiffness and D;; bending stiffness matrix , Reddy, 2004.
The twisting moments and bending, transversal shear forces can be written in terms of the
displacement function as, Henry Khov, 20009.

a%w a%w
M = _Dll 9x2 D12 W (5)
2%w 02
M = _D22 ay 2 Dlzﬁ (6)
32
My, 21)66 % ©)
Qy = Dzz 353 — (D12 + 4D66) 9)

For a flexible restricted rectangular plate shown in Fig.1, the boundary conditions are:

ow

kxow = Qx  Kyo7= %

= —M, ..at x=0 (10-11)

kx1W = Qx x1 a = _M .. at x=a (12'13)
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kyow = @y Kyo 3o = =M, .. aty=0 (14-15)
kyiw = —Qy, Kylz—‘: = —M, ..aty=b (16-17)

Where kg, ky1 and ko, k., are the transitional stiffness of spring,K,, K,jand Ky, Ky, are the
rotations stiffness of spring at y=0 and b (x=0 and a), respectively. Eq. (10)-(17) express a set of
different edge conditions from which, the entire classic homogeneously boundary conditions can be
direct gotten by as putting the constants of spring equalize to an very small or large number.

From Eqg. (5-17), the edge conditions can be finally written as follows:

kxow = —Dy4 ?:TV: — (D12 + 4Deg) % (18)
kyxiw = Dy4 ?:T‘Z + (D12 + 4Dee) % (19)
Kxo ?3_: =Dy ZZTVZV 12 (;27‘: (20)
K1 ?3_: =Dy 227‘: 12 ZZT‘Z (21)

And similarly, the other four equations in the y-direction are found.

As mentioned for many plates and shell researches that exact solution for plate or shell with general
boundary conditions is not available, so the Ritz method is used to get an approximate solution from
Hamilton's equation:

5 If(U-w)=0 (22)

Where U is the strain energy, W is potential energy due to the external forces. 6 the random
variation.

Where

h
Uu=[3 fob foa(axsx + 0y€y + TyyVxy)dx dy dz + Elastic energy of springs at edges
2

w=2["[" [Nx (Z—Z)Z] dx dy +3 ) [} [Ny (‘;—”y")z] dx dy (23)

Substituting Egs. (2- 3),(18-21) in Eq.(23), we get:
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1 b ra 92w\ 2 32w\ ? 32w \2 92w 92w
U-w=:5k [Dn (5) +022(555) + 406s (555) + ZDlzﬁW] dxay +

1 b w2 1 (b w2
0 [kxowz + Ko (22) ] _dy+); [kxlwz + K (2) ]x=a
w2 w2 b w2
K, (%) ] de+%f0a [kylw2 +Kyq (%) ] bdx—%fo foa [Nx (%) ]dx dy —
y= y=

[ ) axa @

1
dy + Efoa [kyow2 +

2.2 Admissible functions:

In the Rayleigh-Ritz technique, the allowable functions play an essential part. The products of the
beam functions are regularly selected as the allowable functions, and the displacement function can
be accordingly expressed as, W.L. Li, 2004.

W(x: y) = 2m,n=1 AmnX(x) Y(y) (25)

Where X(x), Y (y) are the specific variables for beams that include similar edge conditions in the (y,
Xx) direction, correspondingly.

Though functions of the beam can be in general achieved as a linear combination of hyperbolic and
trigonometric functions, they involve some unknown parameters that must be determined from the
boundary conditions. Accordingly, then, every boundary condition essentially leads to a various set
of beam functions. In actual applications, this is disadvantageous, beside the tediousness of
determining the essential functions for a different boundary beam. To avert this difficulty, developed
Fourier series method has been suggested for beams with an arbitrary boundary at both ends in
which the characteristic functions are written in the form of, Li,2000.

mn

w(x) = Y=o @m COS AgmXx + P(x) (Aam = T) 0<x<a (26)

P (x) is the function in Eq. (26) considers an arbitrarily continued function that, in any case of edge
conditions, is constantly selected to satisfy the equations as follows:

P"0)=W"0)=ay, P"(@)=W"(a)=ay (27-28)
P'(0) =W'(0) =By, and P'(a) =W'(a) =B, (29-30)

P (x) is here inserted to take care of the latent discontinuities of the function of displacement and its
derivative at endpoints. Accurately, previously it is known that the smoothest a periodical function,
the quicker its Fourier extension convergence. Thus, adding of the P (x) will have two instantaneous
interests: (1) the series of Fourier extension is presently agree with any edge conditions, and (2) the
solution of the series of Fourier and its accurateness of convergences.

P (x) has just been realized as a continuous function that satisfies Eq. (27) - (30), the function P (x)
format is not a worry regarding the convergences of the series solution. Therefore, it can be chosen
in any required formula. Like a substantiation, supposes the P (x) is a function of polynomial,
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PG =ThoCa P (3), (31)
Where P,(x) is the Legendre function of order n, C, is the coefficient of extension.

It is clarified that P (x) desires to be minimum a 4" polynomial to satisfy Eq.(27) - (30) jointly.
Substituting Eqg. (31) into Eq. (27) - (30) results in

C3P3"(0) + C,P;"" (0) = a3a,, (32)
C3Py' (1) + CuP" (1) = a3ay, (33)
C1P1(0) + C,P;(0) + C3P3(0) + C4P,(0) = apfy, (34)
CiPi(1) + CoP3(1) + C3P3(1) + CuP(1) = apy, (35)

From the last equations, the constants C, (n = 1,2,3,4), are straight acquired in terms of the
boundary constants, a,, @, B, and ;. since the constant C, doesn't really seem in Eq. (32)-(35), it
can be a random number theoretically. For example, C, is here chosen to satisfy, Li, 2002.

To find p(x) from Li, 2002 by integration the P;"" and P, then will obtained eq (39)

JyP(x)dx =0 (36)
The last appearance for the P(x) can be shown as
P(x) =¢.(x) @ @37)
Where
@ = {ao, a1, Bo, f1}" (38)
and
(—(15x* — 60ax® + 60a?x? — 8a*)/360a)
T ! (15x* — 30a%x? + 7a*)/360a L
Sa(x) (6ax — 2a?* — 3x?)/6a (39)
L (3x%2 —a?)/6a

The results in Eq. (37) - (39) are already derived from an additional simple but a little common
approach, Li, 2004.

To obtain the unknown of edge constants, «,, a4, 8, andg;, the substitution of Eq.(26) , (37) into the
edge conditions Eq.(18)-(23) that results in

a= Z%:O Hngamam (40)
Where



Number 8 Volume 25 August 2019 Journal of Engineering

14+ 8k oal 7Tkyoa® —kyoa —kyoa
360D, 360D, 3D 6
7kx1a3 8kx1a3 —kxla —kxla
360D14 360D, 3Dq1 6
H, = 41
a a a Keo o 1 -1 (41)
had = =0 4 - —
3 6 Dll a a
a a -1 Kep 1
6 3 a D11 a
and
_ kxo m Kx1 2 my2 T
Qam - {(_1) D_11 (_1) D_11 - Aam (_1) Aam (42)

It must be reminded that the matrix Ha will become single for a total free Beam. Though, this
problem can be got over to some extent by artificially connecting one or more springs with the
smallest stiffness to the ends of a beam. It has been shown in, W.L. Li, 2002. Though the matrix
might be ill-conditioned in such a treating and the natural frequencies can still be accurately
calculated for a completely free beam. However, the characteristic functions are very suitable for
this special case and can be easily used as the allowable functions in the Rayleigh-Ritz technique.

By using Egs. (37) and (40), Eq. (29) becomes as:

w(x) = Y=o G Pm (x) (43)
Where

@ (x) = €08 Agmx + (o (VD H " Qam (44)
Eqg. (25) can be consequently rewritten as:

w(x,¥) = n=o Am @i () 0n (v) (45)
Where:

1 (y) = cos Apny + $ (WH, Qi (46)

The terms for ,(y), Hyand Q,,,, can be, correspondingly, obtained from Egs. (39), (41) and (43) by
easily changing the x- regarding parameters by the y- regarding.

2.3 Determination of Critical Buckling Loads:

Consider an orthotropic laminated plate, the material directions of width coincide with the
plate directions. The plate is subjected to biaxial in-plane compressive forces N,andN,, along the
both sides of edges (x) and (y), respectively.
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The total mechanical energy can be written in the following expressions:

1 b ra 02w 2 02w 2 20%w 2 92w 02w 92w 20%w
E= Efo fo [Dll (axZ) + D2z (ayZ) + Dse (6x6y) t+2 (D12 ax2 9y? + D165 axdy +
02w 20%w

1 b aw\ 2 1 b w2
D26a—yzm)] dx dy + Efo [kxOWZ + KXO (a) ]x:o dy + Efo [kxlwz + le (E) ] dy +

xX=a
1 ra aw\ 2 1 ra w2 1 w2 w2
Efo [ky()WZ + KyO (E) ]y=0 defo [kylwz + Kyl (E) ]y=b dx — Eff [Nx (5) + Ny (5) ] dx dy
(47)
By minimizing the total mechanical energy with respect to A:

O0E

=0 (48)

Eq. (48) will result in a set of algebraic equations like the following:

f(Amn, Nov) = 0 for buckling problem (49)
Solving Eq. (48) as an Eigenvalue problem to obtain the following:
a1,1 A1,(msn) A1
: ’ : { : } =0 (50)
Ay A(man),(men)] Amn

Eq. (50) equating it to zero to get critical buckling load N,,.. For different edge conditions and M
&N more than one, the solution becomes very complicate and needs a program to findN,,.. For
numerical study, ANSYS (15.0) programming is used.

3-RESULTS AND CONCLUSIONS

In present work modified Fourier series is used for the first time to obtain critical buckling load
of laminated plates, for verification all results are compared with others obtained by many
researchers, as shown below:
3-1-Results

Eigenvalue problem obtained by Ritz method is solved by using MATLAB (versionl5) to
investigate the buckling load of the composite laminated plate (CLP) with elastic edge condition. A
four-letter symbol describes the plates for example SCSC denotes a plate with simply supported
edge at y=b, y=0, clamped at x=a, x=0. Numerical results of the orthotropic plate are compared with
those found by, Widad, and Firas, 2015 and Shufrin, et al., 2008, which shows good agreement
between the results. As shown in Tables 1 and 2, the laminated plates considered here have
symmetric cross-ply [0 90 0]and angle[30 — 30 30]-ply and subjected to uniaxial compression. It
is noticed that the clamped edge along two or four edges can hold buckling load more than a plate
with simply supported boundary conditions, especially for the case where plate SFSF in Table 1,
because of the high stiffness due to the boundary. When the plate is simply supported or mixed with
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free edges, it is weak to hold large loads compared with clamped plates, because of the its lower
stiffness. The results for the composite plate with various edge conditions showed, stacking
sequence, (a\b) and modulus ratio giving a good agreement when compared with Reddy, 2003 and
Shufrin, et al., 2008. Tables 3, 4, and 5, show that the buckling behavior of laminated plate is the
same as obtained by other researchers. When changing some design parameters such as modulus

ratio and aspect ratio (%) simply supported anti-symmetric cross-ply and angle-ply buckling load in

present work is presented in Table 6, also results give good agreement with those obtained by
Reddy, 2003, while Tables 7 and 8 give critical biaxial buckling load for simply supported (SSSS)
cross-ply and angle-ply (symmetric and anti-symmetric) and for different aspect ratio with changing
modulus ratio, again these results agree in value or behavior with those obtained Reddy, 2003,
while Table 9 gives biaxial critical buckling load for (0 90 0) laminated plate under different
boundary conditions, also when compared with those obtained by Reddy, 2003, give good
agreement in value and behavior.

3.2. CONCLUSIONS

This study investigated the buckling analysis of a composite laminated plate. Several
assumptions are made to solve the buckling problem.
The results are obtained basically by using analytic analysis and then compared with the results
determined by other researchers; the comparison shows good agreement between them.
The results yielded the following conclusions:

1- Modified Fourier series is an efficient function for critical buckling analysis of laminated
plates with general edge conditions.

2- The aspect ratio is inversely proportional with the buckling as proved by other methods used
in other researchers when changing some design parameters such as modulus ratio and
aspect ratio(3).

3- The edge conditions affect the buckling load. Clamped boundary conditions show high
stiffness, results in high buckling load. Clamped edges made the plate carries load larger
than the simply supported edges; where the buckling load for SFSF laminated plate under
uniform load, is less by 80% than the critical load of CCCC.

4- The uniaxial compression can carry buckling load higher than the biaxial compression .

5- The angle-ply can carry buckling load higher than the cross-ply for high modulus ratios.
NOMENCLATURE
Symbols Description Units
a, b plate length and width, respectively M
E1,E2, Ez | modulus of elasticity in 1, 2, and 3 directions Gpa
respectively

10
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Ex modulus of elasticity in x directions (45° directions) Gpa
E, Ec total mechanical and kinetic energies of a system N.m
Gi2, G23, | shear modulus in plane 1-2, 2-3, 1-3 , respectively Gpa
Gis
h thickness of the laminate Mm
h¢, hy, thickness at the top and bottom of the laminate Mm
hk, hk-1 | distances from the reference plane of the laminate to Mm
the two surfaces of the kth ply
I, second mass moment of inertia Kg.m?
I ] components of series | -
Kx, Ky, Kxy | curvatures of the reference plane of the plate | -
k layer numper | -
L total number of layers in the laminate | = --—---
My, My, | bending and twist moments per unit length acting on a N.m/m
Myy laminate
Qx, Q, | shear force N
Ko, K1 | rotational stiffness at x = 0 and a, respectively N.m/rad
Ko, Ky, | rotational stiffness at y = 0 and b, respectively N.m/rad
k.o, ky, | translational stiffness at x = 0 and a, respectively N/m
kyo, kyq | translational stiffness at'y =0 and b, respectively N/m
M, N upper limits of double series | -
t time sec.
Am expansion or Rayleigh-Ritz coefficient | = -
U strain energy of deformation N.m
/A elastic potential energy N.m
u,v,w | displacements in x, Yy, z directions, respectively M
Uo, Vo, Wo | displacements of the reference surface in the x, y, z M

11



Number 8 Volume 25 August 2019 Journal of Engineering

directions, respectively

W(X) flexural displacement of a beam

M
w(x,y) | flexural displacement of a plate M
M

w(x,y,t) | dynamic displacement

\Y volume of object m?

Ve, Vi, V, | volume fractions of fiber, matrix, and voids | -----

respectively

Ve, Vi volumes of the composite, fiber, respectively m?
W total work done N.m
P(X) a simple polynomial function | = -

Xm(X), beam characteristic functon | -
Yn(y)

ABBREVIATION LIST

Abbreviation Description
FEM finite element method
CLPT classical laminated plate theory
HSDPT higher order shear deformation plate theory
FSDT first-order shear deformation Theory
ESL equivalent single layer
FRPC fiber reinforced polymeric composites
ODE ordinary differential equations
UAC uniaxial compression
BAC biaxial compression
PS pure shear
UAS uniaxial compression and shear
BAS biaxial compression and shear
ESDT exponential shear deformation theory

12
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i
/ Input the boundary conditions /

y

Form the work of external forces (eq.23)

!

Form the total potential eneray (eq. 24)

v

Subs displacement field

|

Apply Ritz solution (eq. 48) to extract and solve Eigen- value problem to
find the critical buckling load (eq. 47)

Figure 2. Block diagram of determining critical buckling using MATLAB R2015a.

Table 1. Non-dimensional buckling load(N = N.,.b?/E,h3), for [0 90 0] plates of different
Boundary conditions, (E;/E, = 10, G;, = 0.6E,,v,, = 0.25,a = b).

Type of boundary conditions
References

SSSS CCcccC SCSC FSFS | FCFC
Present work 11.550 40.38 35.900 | 8.049 | 32.544

Firas, 2015 11.491 40.507 36.255 | 7.991 | 32.982

Table 2. Non-dimensional buckling load (N = N, 12(1 — v;,v,,)/E; h?), for [30 -30 30] plates of
different boundary conditions, (E;/E, = 2.45, G, = 0.48E, vy, = 0.23 a=b).

Type of boundary conditions
References

SSSS | CCCC | CSCS SCSC

Present work 25.77 66.81 47.33 39.32

Shufrin, 2008 | 26.67 65.26 49.18 40.93

Discrepancy% | 3.4 2.3 3.9 4
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Table 3. Non-dimensional buckling load(N = N,,.b%/D,,m?), for [0 90 90 0] plates (SSSS) of
different aspect, modulus ratio, ( Gy, = 0.5E,,v;, = 0.25).

References a/b E,/E,=5 | 10 20 25 40
Present work 13.94 18.225 | 22 23.1 25
Reddy, 2004 05 13.9 18.126 | 21.87 | 22.87 | 24.59
Present work 5.66 6.353 7 713 |75
Reddy, 2004 1 5.65 6.347 6.96 7.12 7.4
Present work 5.238 5.28 5.317 | 5.326 | 5.34
Reddy, 2004 | ° |s5233 |s527 |s531 |5.318 | 533

Table 4. Non-dimensional buckling load(N = N,,.b?/D,,m?), for [0 90], laminated plates
(CCCEF) of different aspect, modulus ratio, ( G;, = 0.5E,,v;, = 0.25).

E,/E, References :{ b 15 2
Present work 6.7 348 | 247
3 Shufrin, 2008 6.4 3.3 | 2.34
Discrepancy% 4.7 5 5
Present work 8.08 396 |26
10" | Shufrin, 2008 7.84 378 | 2.48
Discrepancy% 2.9 4 4

Table 5. Non-dimensional buckling load(N = N,,.b?/D,,m?), for [0 90], laminated plates (CSCS)
of different aspect, modulus ratio, ( G;, = 0.5E,,v;, = 0.25).

=l References I 1.5 2
E, =1
Present work 6.671 6.379 6.12
3 Shufrin, 2008 6.659 6.295 5.84
Discrepancy% 0.179 1.3 4.5
Present work 6.584 6.096 5.71
10 Shufrin, 2008 6.557 6.056 5.46
Discrepancy% 0.41 0.656 4.3
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Table 6. Non-dimensional buckling load(N = N,,.b?/E,h?3), for anti-symmetric laminated plates
(SSSS) with the effect of different modulus ratio, ( G;, = 0.5E,,v;, = 0.25).

Ply
Orientations i
References /g =10 25 40
2
Present work 11.174 23.523 35.874
[090], Reddy 10.864 22.622 34.381
Discrepancy% 2.7 3.8 4.1
Present work 18.2 42.81 67.38
[45 — 45], . Reddy 17.637 41.16 64.68
Discrepancy% 3 3.8 4

Table 7 . Non-dimensional buckling load under Biaxial compression(N = N_,.b%/D,,n?), for
[0 90 90 0] plates (SSSS) of different aspect, modulus ratio, ( G;, = 0.5E;,v;, = 0.25).

References | a/b E,/E,=5 10 20 25 40
Present work 05 11.132 12.718 13.946 14.271 14.831
Reddy,2004| ™ 11.12 12694 13922  14.248] 14766
Present work ) 2.827 3.176 3.484 3.566 3.706
Reddy,2004 2.825 3.174 3.481 3.562 3.702
Present work 1.611 1.625 1.635 1.638 1.642
Reddy,2004 | 1 1610 1.624 1.634 1.636 1641

Table 8. Non-dimensional buckling load under Biaxial compression(N = N.,.b?/E,h3?), for
anti-symmetric laminated plates (SSSS) with the effect of different modulus ratio, ( G, =

O.5E2, Vip = 025)

Ply

Orientations References El/Ezzlo 25 40
Present work 5.587 11.761 17.937
[090], | Reddy, 2004 5.432 11.311 17.190

Discrepancy% 2.7 3.8 4.1
45 — 451, Present work 9.108 21.447 33.788
Reddy, 2004 8.813 20.578 32.343

Discrepancy% 3 3.8 4
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Table 9. Non-dimensional critical buckling load under Biaxial compression(N = N,,.b?/E,h3),
of symmetric cross ply (0/90/0) square plates for various boundary conditions and modulus
ratIOS, (G12 = 0.6E2,V12 == 025)

E,/E, | References SSSS SCSS SCSC SFSF
10 Present- work 5.751 9.363 13.487 1.105
Reddy, 2004 5746 ] 9.353 13.468 1.123

20 Present- work 9.631 13.984 22.038 1.407
Reddy, 2004 9.591 14.026 21.709 1.420
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