دراسة عدديه لأنتقال الحراره بالحمل الحراري في حيز حلقي مملوء جزئيا برغوه معدنيه

محتوى المقالة الرئيسي

Shahad Mahdi Saleh
Luma Fadhil Ali

الملخص

في هذه الدراسة، تم التحقيق عدديًا في انتقال الحرارة بالحمل الطبيعي في الفراغ الحلقي بين أسطوانتين متحدتي المركز، حيث يتم الحفاظ على درجة حرارة ثابتة للأسطوانة الداخلية، بينما تتعرض الأسطوانة الخارجية لتدفق حراري منتظم، وتُعزل الجدران الجانبية. تم تمثيل ديناميكا الموائع باستخدام معادلات نافير-ستوكس مع افتراض (Boussinesq)  بينما وُصف سلوك الرغوه  المعدنيه باستخدام نموذج  Brinkman- Forchheimer Darcy بالإضافة إلى ذلك، تم اعتماد فرضية التوازن الحراري المحلي في معادلة الطاقة الخاصة بالوسط المسامي. تم استخدام برنامج ANSYS FLUENT لحل المسألة.تقيّم هذه الدراسة تأثير كل من كثافة المسام (10 و40 وحدة لكل بوصة - PPI)، وزوايا الميل (0°، 30°، 60°، 90°)، وأرقام رايلي المختلفة (Ra) على الأداء الحراري. أظهرت النتائج أن وجود الوسط المسامي يعزز انتقال الحرارة مقارنة بالحالة الخالية من الرغوه المعدنيه. كما تبين أن عدد نوسلت يزداد مع زيادة كل من رقم رايلي وزاوية الميل. وبشكل عام، توفر الرغوه المعدنيه بكثافة 10 PPI أعلى قيم لعدد نوسلت واعظم نسبه مئوية للتحسن كانت 50 % عند عدد ريلي يساوي 106 مقارنة بالحالات الأخرى.


 

##plugins.themes.bootstrap3.displayStats.downloads##

##plugins.themes.bootstrap3.displayStats.noStats##

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"دراسة عدديه لأنتقال الحراره بالحمل الحراري في حيز حلقي مملوء جزئيا برغوه معدنيه" (2025) مجلة الهندسة, 31(12), ص 67–86. doi:10.31026/j.eng.2025.12.04.

المراجع

Aldoss, T. K., Alkam, M., and Shatarah, M., 2004. Natural convection from a horizontal annulus partially filled with porous medium. International Communications in Heat and Mass Transfer, 31(3), pp. 441–452. https://doi.org/10.1016/j.icheatmasstransfer.2004.02.014

Ali, A. M., 2012. Experimental and theoretical study of natural convection heat transfer between two inclined concentric cylinders filled with porous media. Tikrit Journal of Engineering Sciences, 18(4), pp. 40–51 https://doi.org/10.25130/tjes.18.4.14

Arpino, F., Carotenuto, A., Ciccolella, M., Cortellessa, G., Massarotti, N., and Mauro, A., 2016. Transient natural convection in partially porous vertical annuli. International Journal of Heat and Technology, 34(S2), pp. S512–S518. https://doi.org/10.18280/ijht.34S245

Badruddin, I. A., Al-Rashed, A. A., Ahmed, S. N. J., Khaleed, H. M. T., Ahmad, N. A., Kamangar, S., and Khan, T. M. Y., 2014. Investigation of discrete heating at upper section of a porous annulus. Australian Journal of Basic and Applied Sciences, 8(24), pp. 283–289.

Bejan, A., 2008. Convection in porous media. Applied Mathematical Sciences (Switzerland). https://doi.org/10.1007/978-0-387-76543-3_4

Braga, E. J., and de Lemos, M. J. S., 2006. Simulation of turbulent natural convection in a porous cylindrical annulus using a macroscopic two-equation model. International Journal of Heat and Mass Transfer, 49(19-20), pp. 3455–3466. https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.032

Bu-Xuan, W. and Xing, Z., 1990. Natural convection in liquid-saturated porous media between concentric inclined cylinders. International journal of heat and mass transfer, 33(5), pp. 827-833.

Chamkha, A. J., Miroshnichenko, I. V. and Sheremet, M. A., 2018. Unsteady conjugate natural convective heat transfer and entropy generation in a porous semicircular cavity. ASME Journal of Heat and Mass Transfer, 140(6). https://doi.org/10.1115/1.4038842

Charrier-Mojtabi, M.-C., 1997. Numerical simulation of two- and three dimensional free convection flows in a horizontal porous annulus using a pressure and temperature formulation. International Journal of Heat and Mass Transfer, 40(7), pp. 1521–1533. https://doi.org/10.1016/S0017-9310(96)00227-X

El-Shazly, K.M., 2000. Natural convection in annulus filled with either saturated porous media or horizontally divided into fluid and porous regions. Journal of Engineering and Applied Science, 47(3), pp. 539-554.

Ergun, S., 1952. Fluid flow through packed columns. Chemical Engineering Progress, 48(2), pp. 89–94.

Hamzah, J.A. and Nima, M.A., 2020. Experimental study of heat transfer enhancement in double-pipe heat exchanger integrated with metal foam fins. Arabian Journal for Science and Engineering 45, pp. 5153–5167 https://doi.org/10.1007/s13369-020-04371-3

Holman, J. P., 2010. Heat transfer (10th ed.). McGraw-Hill.

Hussein, A. M., Tahseen, T. A., and Jasim, A. H., 2009. Convection concentric annulus vertical cylinders filling porous media. Kirkuk University Journal Scientific Studies, 4(2), pp. 55–71., https://doi.org/10.32894/kujss.2009.39922

Iranmanesh, A., and Moshizi, S. A., 2024. Flow and heat transfer study of an annulus partially filled with metallic foam on two wall surfaces subject to asymmetrical heat fluxes. Arabian Journal for Science and Engineering, 49(2), pp. 1567–1584. https://doi.org/10.1007/s13369-023-07895-6

Khanafer, K., Al-Amiri, A., and Pop, I., 2008. Numerical analysis of natural convection heat transfer in a horizontal annulus partially filled with a fluid-saturated porous substrate. International Journal of Heat and Mass Transfer, 51(7–8), pp. 1613–1627. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.050

Kiwan, S., Alwan, H., and Abdelal, N. 2020. An experimental investigation of the natural convection heat transfer from a vertical cylinder using porous fins. Applied Thermal Engineering, 179. https://doi.org/10.1016/j.applthermaleng.2020.115673

Kiwan, S., and Al-Nimr, M. A., 2000. Using porous fins for heat transfer enhancement. ASME Journal of Heat and Mass Transfer. 123(4).

Kiwan, S., and Alzahrany, M.S., 2008. Effect of using porous inserts on natural convection heat transfer between two concentric vertical cylinders. Numerical Heat Transfer, Part A: Applications, 53(8), pp. 870–889. https://doi.org/10.1080/10407780701715869

Lu, T.J., Stone, H.A., and Ashby, M.F., 1998. Heat transfer in open-cellmetal foams. Acta Materialia. 46, pp. 3619–3635. https://doi.org/10.1016/S1359-6454(98)00031-7

Lu, W.; Zhao, C.Y., and Tassou, S.A., 2006. Thermal analysis on metal-foam filled heat exchangers. Part I: metal-foam filled pipes. International Journal of Heat Mass Transfer 49, pp. 2751–2761. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.012

Lu, Y., and Chen, Z., 2019. Numerical study on heat transfer performance of vacuum tube solar collector integrated with metal foams. International Journal of Low-Carbon Technologies, 14(3), pp. 344–350. https://doi.org/10.1093/ijlct/ctz005

Mahmood, M. A., Mustafa, M. A., Al-Azzawi, M. M., and Abdullah, A. R., 2020. Natural convection heat transfer in a concentric annulus vertical cylinders embedded with porous media. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 66(2), pp. 65-83.

Massarotti, N., Ciccolella, M., Cortellessa, G., and Mauro, A. 2016. New benchmark solutions for transient natural convection in partially porous annuli. International Journal of Numerical Methods for Heat and Fluid Flow, 26(3–4), pp. 1187–1225. https://doi.org/10.1108/HFF-11-2015-0464

Mohammed, A. A., 2007. Natural convection heat transfer in a vertical concentric annulus. Journal of Engineering, 13(3), pp. 1417–1427. https://doi.org/10.31026/j.eng.2007.03.03

Nield, D.A., and Bejan, A., 2013. Convection in porous media. (4th ed). Springer https://doi.org/10.1007/978-1-4614-5541-7

Nield, D.A., and Bejan, A., 2017. Convection in Porous Media. (5th ed). Springer http://dx.doi.org/10.1007/978-3-319-49562-0

Phanikumar, M. S., and Mahajan, R. L., 2002. Non-Darcy convection in high porosity metal foams. International Journal of Heat and Mass Transfer, 45(18), pp. 3781–3793. https://doi.org/10.1016/S0017-9310(02)00089-3

Poursharif, Z., Salarian, H., Javaherdeh, K., and Nimvari, M. E., 2022. Heat transfer investigation of non Newtonian fluid flow in an annular pipe embedded with porous discs: A turbulent study. Journal of Thermal Engineering, 8(2), pp. 235–248. https://doi.org/10.18186/thermal.1086202

Prasad, V. and Kulacki, F. A., 1985. Natural convection in porous media bounded by short concentric vertical cylinders. Journal of Heat Transfer,107(1), P. 147. https://doi.org/10.1115/1.3247371

Qu, Z. G., Xu, H. J. and Tao, W. Q., 2013. Conjugated natural convection in horizontal annuli partially filled with metallic foams by using two-equation model. Journal of Porous Media, 16(11), pp. 979–995. http://dx.doi.org/10.1615/JPorMedia.v16.i11.20

Saleh, M. H., and Katea, A. M., 2013. Laminar free convection in horizontal annulus filled with glass beads and with annular fins on the inner cylinder. Journal of Engineering, 19(8), pp. 999–1018. https://doi.org/10.31026/j.eng.2013.08.06

Sheremet, M. A., 2015. Unsteady conjugate natural convection in a three dimensional porous enclosure. Numerical Heat Transfer, Part A: Applications, 68(3), pp. 243–267. https://doi.org/10.1080/10407782.2014.977172

Wei, J. G., and Tao, W. Q., 1996. Three-dimensional numerical simulation of natural convection heat transfer in an inclined cylindrical annulus. Journal of Thermal Science, 5(3), pp. 175–183. https://doi.org/10.1007/BF02653182

Yasuyuki, T., Iwashige, K., Fukuda, K., and Hasegawa, S., 1984. Three-dimensional natural convection in an inclined cylindrical annulus. International Journal of Heat and Mass Transfer, 27(5), pp. 747–754. https://doi.org/10.1016/0017-9310(84)90144-3

Zhao, C.Y., Lu, W., and Tassou, S.A., 2006.Thermal analysis on metal-foam filled heat exchangers. Part II: tube heat exchangers. International Journal of Heat Mass Transfer, 49(15-16), pp. 2762–2770. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.014

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.