Medical Implantable Antennas for IoT Based Health Monitoring Applications: A Review
Main Article Content
Abstract
Recently, implantable antennas have gained prominence in biomedical research owing to their compact design and efficient performance and extensive potential in biomedical and wireless communication applications. One such application is in the biomedical field, where the designed system must function within human body tissues and interact with an external device. To implement this communication framework, both advanced software and proper hardware design are essential. The antenna that is designed for biomedical applications must fulfill several requirements including energy efficiency, compact size, and multi-band operations. Therefore, designing an antenna with large bandwidth, multiband capability, circular polarization, and a compact size is essential for medical applications. From that point of view, this paper aims to survey existing antenna designs in literature for implantable medical devices (IMDs). The review conducted in this paper will specifically focus on three types of implantable antennas which are dual-band, circular polarized, and multi-band circular polarized antennas. Besides, we analyze the results of the most recently published articles and compare them with existing literature. The key challenges faced in implantable antenna design will also be discussed in detail.
Article Details
Section
How to Cite
References
Ahmad, S., Ullah, S., Ghaffar, A. and Vargas, D.S., 2022. A compact flexible circularly polarized implantable antenna for biotelemetry applications. Computers, Materials & Continua, 73(2), pp. 2457-2472. https://doi.org/10.32604/cmc.2022.025527.
Ahmed, S.A. and Al-Hindawi, A.M.J., 2023. Double-staged syndrome coding scheme for improving information transmission security over the wiretap channel. Journal of Engineering, 29(2), pp. 112-136. https://doi.org/10.31026/j.eng.2023.02.08.
Al-Sehemi, A., Al-Ghamdi, A., Dishovsky, N., Atanasova, G. and Atanasov, N., 2020. A flexible broadband antenna for IoT applications. International Journal of Microwave and Wireless Technologies, 12(6), pp. 531-540. https://doi.org/10.1017/S1759078720000161.
Ali, H.O. and Al-Hindawi, A.M., 2021. A Ultra-broadband thin metamaterial absorber for Ku and K bands applications. Journal of Engineering, 27(5), pp. 1-16. https://doi.org/10.31026/j.eng.2021.05.01.
Aliqab, K., Nadeem, I. and Khan, S.R., 2023. A comprehensive review of in-body biomedical antennas: Design, challenges and applications. Micromachines, 14(7), P. 1472. https://doi.org/10.3390/mi14071472.
Alireza Akbarpour, S.C., 2017. Dual-band electrically coupled loop antenna for implant applications. IET microwaves, antennas & propagation, 11(7), pp. 1020-1023. https://doi.org/10.1049/iet-map.2016.0958.
Anchidin, L., Lavric, A., Mutescu, P.-M., Petrariu, A.I. and Popa, V., 2023. The design and development of a microstrip antenna for internet of things applications. Sensors, 23(3), P. 1062. https://doi.org/10.3390/s23031062.
Arora, G., Maman, P., Sharma, A., Verma, N. and Puri, V., 2020. Systemic overview of microstrip patch antenna’s for different biomedical applications. Advanced pharmaceutical bulletin, 11(3), P.439. https://doi.org/10.34172/apb.2021.051.
Asili, M., Chen, P., Hood, A.Z., Purser, A., Hulsey, R., Johnson, L., Ganesan, A.V., Demirci, U. and Topsakal, E., 2015. Flexible microwave antenna applicator for chemo-thermotherapy of the breast. IEEE Antennas and Wireless Propagation Letters, 14, pp. 1778-1781. https://doi.org/10.1109/LAWP.2015.2423655.
Awl, H.N., Karim, B.A., Abdulkarim, Y.I., Deng, L., Hassan, D.A. and Karaaslan, M., 2019. Broadband microstrip antenna for C-band, X-band, and KU-band applications.In 2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) (pp. 1-5). IEEE.
https://doi.org/10.1109/UkrMiCo47782.2019.9165490.
Bairappaka, S.K., Ghosh, A., Kumar, J. and Bhattacharya, A., 2022. A compact triple band circular polarized slotted microstrip patch antenna with low frequency ratio. International Journal of RF and Microwave Computer‐Aided Engineering, 32(12), P. e23410. https://doi.org/10.1002/mmce.23410.
Basir, A., Cho, Y., Shah, I.A., Hayat, S., Ullah, S., Zada, M., Shah, S.A.A. and Yoo, H., 2023. Implantable and ingestible antenna systems: From imagination to realization IEEE Antennas and Propagation Magazine, 65(5), pp. 70-83. https://doi.org/10.1109/MAP.2023.3301398.
Bekasiewicz, A. and Koziel, S., 2016. Compact UWB monopole antenna for internet of things applications. Electronics Letters, 52(7), pp. 492-494. https://doi.org/10.1049/el.2015.4432.
Chauhan, A., Chauhan, G.K. and Kaur, G., 2015. Implantable antennas in biomedical applications.In 2015 International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 25-29). IEEE. https://doi.org/10.1109/CICN.2015.14.
Chen, J., 2024. Research on the application of modern communication technology in the field of the internet of things. The Frontiers of Society, Science and Technology, 6(5), pp. 134-139. https://dx.doi.org/10.25236/FSST.2024.060519.
Chow, E.Y., Ouyang, Y., Beier, B., Chappell, W.J. and Irazoqui, P.P., 2009. Evaluation of cardiovascular stents as antennas for implantable wireless applications. IEEE Transactions on Microwave Theory and Techniques, 57(10), pp. 2523-2532. https://doi.org/10.1109/TMTT.2009.2029954.
Code, S., 1999. Limits of human exposure to radiofrequency electromagnetic fields in the frequency range from 3 kHz to 300 GHz. Environmental Health Directorate, Health Protection Branch, Health Canada, Canada. https://doi.org/10.1109/IEEESTD.2006.99501.
Commission., F.C., 1999. Medical implant communications service (MICS) federal register. Rules and Regulations, 64(240).
Duan, Z., Guo, Y.-X., Xue, R.-F., Je, M. and Kwong, D.-L., 2012. Differentially fed dual-band implantable antenna for biomedical applications. IEEE Transactions on Antennas and Propagation, 60(12), pp. 5587-5595. https://doi.org/10.1109/TAP.2012.2209197.
Emami-Nejad, H. and Mir, A., 2017. Design and simulation of a flexible and ultra-sensitive biosensor based on frequency selective surface in the microwave range. Optical and Quantum Electronics, 49, pp. 1-15. https://doi.org/10.1007/s11082-017-1147-8.
Faisal, F. and Yoo, H., 2018. A miniaturized novel-shape dual-band antenna for implantable applications. IEEE Transactions on Antennas and Propagation, 67(2), pp. 774-783. https://doi.org/10.1109/TAP.2018.2880046.
Fields, R.E., 1997. Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields. Oet Bull, 65(10), pp. 1-57. https://doi.org/10.1109/isemc.2004.1349969.
Ganeshwaran, N., Jeyaprakash, J.K., Alsath, M.G.N. and Sathyanarayanan, V., 2019. Design of a dual-band circular implantable antenna for biomedical applications. IEEE Antennas and Wireless Propagation Letters, 19(1), pp. 119-123. https://doi.org/10.1109/LAWP.2019.2955140.
Gosalia, K., Humayun, M.S. and Lazzi, G., 2005. Impedance matching and implementation of planar space-filling dipoles as intraocular implanted antennas in a retinal prosthesis. IEEE Transactions on Antennas and Propagation, 53(8), pp. 2365-2373. https://doi.org/10.1109/TAP.2005.852514.
Greatbatch, W. and Holmes, C.F., 1991. History of implantable devices. IEEE Engineering in Medicine and Biology Magazine, 10(3), pp. 38-41. https://doi.org/10.1109/51.84185.
Hamza, A.R., Al-Hindawi, A. and Azeez, H.I., 2016. Design and analysis of textile ISM/UWB antenna for on-body communications. Journal of Modeling and Simulation of Antennas and Propagation, 2(1), pp. 7-12.
Hamza, A.R. and Al-Hindawi, A.M.J., 2021. The effecting of human body on slotted monopole antenna in wearable communications. Journal of Engineering, 27(2), pp. 27-43. https://doi.org/10.31026/j.eng.2021.02.03.
Herth, E., Guerchouche, K., Rousseau, L., Calvet, L.E. and Loyez, C., 2017. A biocompatible and flexible polyimide for wireless sensors. Microsystem Technologies, 23, pp. 5921-5929. https://doi.org/10.1007/s00542-017-3364-2.
Hu, X.-y., Yin, W.-l., Du, F., Zhang, C., Xiao, P. and Li, G., 2023. Biomedical applications and challenges of in-body implantable antenna for implantable medical devices: A review. AEU-International Journal of Electronics and Communications, 174, P. 155053. https://doi.org/10.1016/j.aeue.2023.155053.
Kaim, V., Kanaujia, B.K., Kumar, S., Choi, H.C., Kim, K.W. and Rambabu, K., 2020. Ultra-miniature circularly polarized CPW-fed implantable antenna design and its validation for biotelemetry applications. Scientific reports, 10(1), P. 6795. https://doi.org/10.1038/s41598-020-63780-4.
Kamel, Y.A., Mohamed, H.A., ELsadek, H. and ELhennawy, H.M., 2022. Miniaturized triple-band circular-polarized implantable patch antenna for bio-telemetry applications. IEEE Antennas and Wireless Propagation Letters, 22(1), pp. 74-78. https://doi.org/10.1109/LAWP.2022.3202310.
Karacolak, T., Hood, A.Z. and Topsakal, E., 2008. Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Transactions on Microwave Theory and Techniques, 56(4), pp. 1001-1008. https://doi.org/10.1109/TMTT.2008.919373.
Karim, B.A. and Ali, H.K., 2023. A novel beamforming technique using mmWave antenna arrays for 5G wireless communication networks. Digital Signal Processing, 134, P. 103917. https://doi.org/10.1016/j.dsp.2023.103917.
Karim, D.O., Al-Hindawi, A.M.J. and Shather, A.H., 2023. Modeling and simulating NOMA performance for next generations. Journal of Engineering, 29(04), pp. 155-175. https://doi.org/10.31026/j.eng.2023.04.07.
Ke Zhang, C.L., Xueguan Liu, Huiping Guo, and Xinmi Yang, 2017. Miniaturized circularly polarized implantable antenna for ISM-Band biomedical devices. International Journal of Antennas and Propagation, P. 9 https://doi.org/10.1155/2017/9750257.
Khan, M.A., ul Haq, M.A. and ur Rehman, S., 2016. A practical miniature antenna design for future internet of things enabled smart devices.In 2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS) (pp. 1-6). IEEE. https://doi.org/10.1109/ICSPCS.2016.7843339.
Kim, D.-H., Viventi, J., Amsden, J.J., Xiao, J., Vigeland, L., Kim, Y.-S., Blanco, J.A., Panilaitis, B., Frechette, E.S. and Contreras, D., 2010. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature materials, 9(6), pp. 511-517. https://doi.org/10.1038/nmat2745.
Kiourti, A., Costa, J.R., Fernandes, C.A. and Nikita, K.S., 2014. A broadband implantable and a dual-band on-body repeater antenna: Design and transmission performance. IEEE Transactions on Antennas and Propagation, 62(6), pp. 2899-2908. https://doi.org/10.1109/TAP.2014.2310749.
Kiourti, A., Kaltampani, A. and Nikita, K.S., 2014. A novel algorithm for implantable antenna design: Size and radiation performance considerations.In The 8th European Conference on Antennas and Propagation (EuCAP 2014) (pp. 864-867). IEEE. https://doi.org/10.1109/EuCAP.2014.6901899.
Kiourti, A. and Nikita, K.S., 2014. Implantable antennas: A tutorial on design, fabrication, and in vitro/in vivo testing. IEEE Microwave Magazine, 15(4), pp. 77-91. https://doi.org/10.1109/MMM.2014.2308765.
Kumar, N. and Jamwal, P., 2021. Analysis of modern communication protocols for IoT applications. Karbala International Journal of Modern Science, 7(4), P. 14. https://doi.org/10.33640/2405-609X.3165.
Li, H., Guo, Y.X. and Xiao, S.Q., 2016. Broadband circularly polarised implantable antenna for biomedical applications. Electronics Letters, 52(7), pp. 504-506. https://doi.org/10.1049/el.2015.4445.
Li, Y., Lu, Z. and Yang, L., 2019. CPW-fed slot antenna for medical wearable applications. IEEE Access, 7, pp. 42107-42112. https://doi.org/10.1109/ACCESS.2019.2908199.
Lin, J.C., 2003. Safety standards for human exposure to radio frequency radiation and their biological rationale. IEEE Microwave Magazine, 4(4), pp. 22-26. https://doi.org/10.1109/MMW.2003.1266063.
Liska, J., Gao, M., Jelinek, L., Algarp, E.R., Skrivervik, A.K. and Capek, M., 2024. Maximum radiation efficiency of arbitrarily-shaped implantable antennas. IEEE Transactions on Antennas and Propagation. https://doi.org/10.1109/TAP.2024.3365860.
Liu, C., Guo, Y.-X. and Xiao, S., 2012. Compact dual-band antenna for implantable devices. IEEE Antennas and Wireless Propagation Letters, 11, pp. 1508-1511. https://doi.org/10.1109/LAWP.2012.2233705.
Liu, C., Guo, Y.-X. and Xiao, S., 2016. A review of implantable antennas for wireless biomedical devices.In Forum for electromagnetic research methods and application technologies (FERMAT) (1-11)
Liu, C., Zhang, Y. and Liu, X., 2018. Circularly polarized implantable antenna for 915 MHz ISM-band far-field wireless power transmission. IEEE Antennas and Wireless Propagation Letters, 17(3), pp. 373-376. https://doi.org/10.1109/LAWP.2018.2790418.
Liu, X.Y., Wu, Z.T., Fan, Y. and Tentzeris, E.M., 2016. A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring. IEEE Antennas and Wireless Propagation
Letters, 16, pp. 577-580. https://doi.org/10.1109/LAWP.2016.2590477.
Liu, Y., Chen, Y., Lin, H. and Juwono, F.H., 2016. A novel differentially fed compact dual-band implantable antenna for biotelemetry applications. IEEE Antennas and Wireless Propagation Letters, 15, pp. 1791-1794. https://doi.org/10.1109/LAWP.2016.2536735.
Malik, N.A., Sant, P., Ajmal, T. and Ur-Rehman, M., 2020. Implantable antennas for bio-medical applications. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 5(1), pp. 84-96. https://doi.org/10.1109/JERM.2020.3026588.
Mehmood, Y., Ahmad, F., Yaqoob, I., Adnane, A., Imran, M. and Guizani, S., 2017. Internet-of-things-based smart cities: Recent advances and challenges. IEEE Communications Magazine, 55(9), pp. 16-24. https://doi.org/10.1109/MCOM.2017.1600514.
Merli, F., 2011. Implantable antennas for biomedical applications. EPFL.
Misra, G., Kumar, V., Agarwal, A. and Agarwal, K., 2016. Internet of things (IoT)–A technological analysis and survey on vision, concepts, challenges, innovation directions, technologies, and applications (an upcoming or future generation computer communication system technology). American Journal of Electrical and Electronic Engineering, 4(1), pp. 23-32. http://doi.org/10.12691/ajeee-4-1-4.
Mohamadzade, B., Hashmi, R.M., Simorangkir, R.B., Gharaei, R., Ur Rehman, S. and Abbasi, Q.H., 2019. Recent advances in fabrication methods for flexible antennas in wearable devices: State of the art. Sensors, 19(10), P.2312. https://doi.org/10.3390/s19102312.
Mohan, A. and Kumar, N., 2024. Implantable antennas for biomedical applications: a systematic review. BioMedical Engineering OnLine, 23(1), P. 87. https://doi.org/10.1186/s12938-024-01277-1.
Mosavinejad, S.S., Rezaei, P. and Khazaei, A.A., 2022. Design of miniaturized and biocompatible antenna with Y-shaped slots for implantable applications. AUT Journal of Electrical Engineering, 54(2), pp. 199-208. https://doi.org/10.22060/eej.2022.21118.5458.
Nag, A., Simorangkir, R.B., Valentin, E., Björninen, T., Ukkonen, L., Hashmi, R.M. and Mukhopadhyay, S.C., 2018. A transparent strain sensor based on PDMS-embedded conductive fabric for wearable sensing applications. IEEE Access, 6, pp. 71020-71027. https://doi.org/10.1109/ACCESS.2018.2881463.
Palandoken, M., 2017. Compact bioimplantable MICS and ISM band antenna design for wireless biotelemetry applications. Radioengineering, 26(4), pp. 917-923. https://doi.org/10.13164/re.2017.0917.
Patil, K.S. and Rufus, E., 2020. A review on antennas for biomedical implants used for IoT based health care. Sensor Review, 40(2), pp. 273-280. https://doi.org/10.1108/SR-01-2019-0020.
Patil, K.S. and Rufus, E., 2022. Design of bio-implantable antenna using metamaterial substrate. Wireless Personal Communications, 124(2), pp. 1443-1455. https://doi.org/10.1007/s11277-021-09414-y.
Pawar, P. and Trivedi, A., 2019. Device-to-device communication based IoT system: benefits and challenges. IETE Technical Review, 36(4), pp. 362-374. https://doi.org/10.1080/02564602.2018.1476191.
Quevedo-Teruel, O. and Rajo-Iglesias, E., 2010. Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices (Microwave metamaterials: application to devices, circuits and antennas). IET microwaves, antennas & propagation, 4(8), pp. 1048-1055. https://doi.org/10.1049/iet-map.2009.0594.
Rashid, Z.M. and Al-Hindawi, A.M.J., 2019. Design of adaptive planar microstrip patch array operating at 28 GHz for 5G smart mobile system. Kurdistan Journal of Applied Research, 4(2), pp. 158-172. https://doi.org/10.24017/science.2019.2.16.
Scanlon, W.G., Evans, N.E. and McCreesh, Z.M., 1997. RF performance of a 418-MHz radio telemeter packaged for human vaginal placement. IEEE transactions on biomedical engineering, 44(5), pp. 427-430. https://doi.org/10.1109/10.568919.
Simorangkir, R.B., Yang, Y., Hashmi, R.M., Björninen, T., Esselle, K.P. and Ukkonen, L., 2018. Polydimethylsiloxane-embedded conductive fabric: Characterization and application for realization of robust passive and active flexible wearable antennas. IEEE Access, 6, pp. 48102-48112. https://doi.org/10.1109/ACCESS.2018.2867696.
Skrivervik, A.K. and Merli, F., 2011. Design strategies for implantable antennas.In 2011 Loughborough Antennas & Propagation Conference (1-5). IEEE. https://doi.org/10.1109/LAPC.2011.6114011.
Soliman, M.M., Chowdhury, M.E., Khandakar, A., Islam, M.T., Qiblawey, Y., Musharavati, F. and Zal Nezhad, E., 2021. Review on medical implantable antenna technology and imminent research challenges. Sensors, 21(9), P. 3163. https://doi.org/10.3390/s21093163.
Song, Z., Xu, X., Wang, Y., Shi, Y., Zheng, X. and Wang, L., 2024. Design of a miniaturized dual circularly polarized implantable antenna by using characteristic mode method. Scientific reports, 14(1), P. 16384. https://doi.org/10.1038/s41598-024-67027-4.
Soontornpipit, P., Furse, C.M. and Chung, Y.C., 2004. Design of implantable microstrip antenna for communication with medical implants. IEEE Transactions on Microwave Theory and Techniques, 52(8), pp. 1944-1951. https://doi.org/10.1109/TMTT.2004.831976.
Soontornpipit, P., Furse, C.M. and Chung, Y.C., 2005. Miniaturized biocompatible microstrip antenna using genetic algorithm. IEEE Transactions on Antennas and Propagation, 53(6), pp. 1939-1945. https://doi.org/10.1109/TAP.2005.848461.
Tajwar Abrar Aleef, Y.B.H., Vu Hoang Minh, Saed Khawaldeh, Usama Pervaiz, 2017. Design and simulation-based performance evaluation of a miniaturised implantable antenna for biomedical applications. Micro & Nano Letters, 12(10), pp. 821–826. https://doi.org/10.1049/mnl.2017.0272.
Tetik, E. and Antepli, A., 2018. The effect on the human body of a wearable circular antenna based on metamaterial.In 5th International Conference on Materials Science and Nanotechnology for Next Generation (MSNG2018).
Valanarasi, A. and Dhanasekaran, R., 2020. Optimum band ε shaped miniature implantable antennas for telemetry applications. IEEE Transactions on Antennas and Propagation, 69(1), pp. 55-63. https://doi.org/10.1109/TAP.2020.3008622.
Wang, W., Xuan, X.-W., Zhao, W.-Y. and Nie, H.-K., 2021. An implantable antenna sensor for medical applications. IEEE Sensors Journal, 21(13), pp. 14035-14042. https://doi.org/10.1109/JSEN.2021.3068957.
Wang, Y., Zhang, J., Peng, F. and Wu, S., 2019. A glasses frame antenna for the applications in Internet of Things. IEEE Internet of Things Journal, 6(5), pp. 8911-8918. https://doi.org/10.1109/JIOT.2019.2924236.
Wessels, D., 2002. Implantable pacemakers and defibrillators: device overview & EMI considerations.In 2002 IEEE International Symposium on Electromagnetic Compatibility (pp. 911-915). IEEE. https://doi.org/10.1109/ISEMC.2002.1032815.
Xu, L.-J., Chu, Z.-J., Zhu, L., Xu, J.-P. and Duan, Z., 2020. Design and analysis of dual-band implantable antennas based on effective relative permittivity calculation. IEEE Transactions on Antennas and Propagation, 69(5), pp. 2463-2472. https://doi.org/10.1109/TAP.2020.3030958.
Xu, L.-J., Guo, Y.-X. and Wu, W., 2012. Dual-band implantable antenna with open-end slots on ground. IEEE Antennas and Wireless Propagation Letters, 11, pp. 1564-1567. https://doi.org/10.1109/LAWP.2012.2237010.
Xu, L.-J., Guo, Y.-X. and Wu, W., 2014. Bandwidth enhancement of an implantable antenna. IEEE Antennas and Wireless Propagation Letters, 14, pp. 1510-1513 https://doi.org/10.1109/LAWP.2014.2374217.
Xu, L.-J., Guo, Y.-X. and Wu, W., 2014. Miniaturized dual-band antenna for implantable wireless communications. IEEE Antennas and Wireless Propagation Letters, 13, pp. 1160-1163.
Yadav, A., Kumar Singh, V., Kumar Bhoi, A., Marques, G., Garcia-Zapirain, B. and de la Torre Díez, I., 2020. Wireless body area networks: UWB wearable textile antenna for telemedicine and mobile health systems. Micromachines, 11(6), P. 558. https://doi.org/10.3390/mi11060558.
Yilmaz, T., Karacolak, T. and Topsakal, E., 2008. Characterization and testing of a skin mimicking material for implantable antennas operating at ISM band (2.4 GHz-2.48 GHz). IEEE Antennas and Wireless Propagation Letters, 7, pp. 418-420. https://doi.org/10.1109/LAWP.2008.2001736.
Zheng, G., Shankaran, R., Orgun, M.A., Qiao, L. and Saleem, K., 2016. Ideas and challenges for securing wireless implantable medical devices: A review. IEEE Sensors Journal, 17(3), pp. 562-576. https://doi.org/10.1109/JSEN.2016.2633973.