A Comprehensive Review on the Use of Polyethylene Waste in Hot Mix Asphalt: Material Properties, Performance Enhancement, and Sustainability Perspectives

Main Article Content

Anwer M. Ali
Ahmed D. Abdulateef
Mustafa Q. Khalid
Rasha K. Mahmoud

Abstract

Polyethylene (PE) waste is both an environmental threat and a chance for innovation in pavement engineering. This review examines low-density (LDPE) and high-density (HDPE) PE as asphalt modifiers, outlining their influence on binder performance, mixture properties, environmental gains, and economic viability. Drawing on laboratory studies and field trials, it compares PE types, dosages, and mixing methods. PE raises the binder’s softening point, viscosity, and elasticity, while reducing penetration and ductility. In mixtures, it can lift Marshall stability by up to 167%, cut rut depth by about 70%, and raise tensile strength by 30%. HDPE usually delivers the bigger mechanical boost thanks to its higher crystallinity, whereas LDPE offers better workability and cold-weather flexibility. Environmentally, PE-modified asphalt can divert up to 2 t of plastic per kilometer, save up to 8% bitumen, and trim greenhouse-gas emissions by 4–7%. Life-cycle analyses indicate 5–15% cost savings through longer service life and lower maintenance. However, key research gaps remain in long-term performance, storage stability, low-temperature cracking, and microplastic risk. Addressing these challenges requires standardized testing and field validation. PE-modified asphalt thus emerges as a practical, scalable, and sustainable option—turning plastic waste into a resilient and cost-effective infrastructure solution.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

“A Comprehensive Review on the Use of Polyethylene Waste in Hot Mix Asphalt: Material Properties, Performance Enhancement, and Sustainability Perspectives” (2025) Journal of Engineering, 31(12), pp. 45–66. doi:10.31026/j.eng.2025.12.03.

References

Abduljabbar, N., Al-Busaltan, S., Dulaimi, A., Al-Yasari, R., Sadique, M., and Nageim, H. A., 2022. The effect of waste low-density polyethylene on the mechanical properties of thin asphalt overlay. Construction and Building Materials, 315, P. 125722. https://doi.org/10.1016/j.conbuildmat.2021.125722

Abernathy, A.M., Colosi, L.M., Samaraee, A.A., Ozbulut, O.E., Lloyd, L.N. and Habbouche, J., 2025. Life cycle assessment of recycled plastic modified asphalt pavements: A case study in Virginia’, Transportation Research Record, 2679(5), pp. 626–642. https://doi.org/10.1177/03611981241302338.

Adinoyi Abdulfatai, M., Rabi’u, I., and Suleiman, A., 2023. Effects of waste-crosslinked polyethylene electrical waste coating on the properties of bitumen. FUDMA Journal of Sciences, 7(2), pp. 79–89. https://doi.org/10.33003/fjs-2023-0702-1338

Al-Hadidy, A.I., and Tan, Y.Q., 2009. Evaluation of Pyrolisis LDPE modified asphalt paving materials. Journal of Materials in Civil Engineering, 21(10), pp. 618-623. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(618)

Ali, M., Ibrahim, M., Imran, J., and Numan, R. M., 2024. Effect of waste plastic on performance of asphalt mixtures. Preprints, P. 202409.0774. https://doi.org/10.20944/preprints202409.0774.v1

Almeida, A., Capitão, S., Bandeira, R., Fonseca, M., and Picado-Santos, L., 2020. Performance of AC mixtures containing flakes of LDPE plastic film collected from urban waste, considering ageing. Construction and Building Materials, 232, P. 117253. https://doi.org/10.1016/j.conbuildmat.2019.117253

Arshadi, M., and Taherkhani, H., 2024. Investigating the properties of asphalt binder modified by high- and low-density polyethylene polymer and nano-silica. International Journal of Pavement Engineering, 26(2), pp. 145–160.

Assefa, N., 2021. Evaluation of the effect of recycled waste plastic bags on mechanical properties of hot mix asphalt mixtures for road construction. Sustainable Environment, 7(1), P. 1957649. https://doi.org/10.1080/27658511.2021.1957649

Assolie, A.A., Al-Migdady, A., Borowski, G., Alsaqoor, S., Ali, A.S.B., and Alahmer, A., 2025. Utilizing waste polyethylene for improved properties of asphalt binders and mixtures: A review. Advances in Science and Technology Research Journal, 19(1), pp. 301–320. https://doi.org/10.12913/22998624/195657

Awwad, M.T. and Shbeeb, L., 2007. The use of polyethylene in hot asphalt mixtures. American Journal of Applied Sciences, 4(6), pp. 390-396. https://doi.org/10.3844/ajassp.2007.390.396

Bagampadde, U., Kaddu, D., and Kiggundu, B.M., 2013. Evaluation of rheology and moisture susceptibility of asphalt mixtures modified with low density polyethylene. International Journal of Pavement Research and Technology, 6(3), pp. 217–224. https://doi.org/10.6135/ijprt.org.tw/2013.6(3).217

Basheet, S.H. and Latief, R.H., 2024. Asphalt Binder Modification with High-Density Polyethylene Polymer and Low-Density Polyethylene Polymer–Efficiency of Conducting Semi-Wet Mixing Process. Journal of Ecological Engineering, 25(12). pp. 202-212 https://doi.org/10.12911/22998993/194397

Basheet, S.H., and Latief, R.H., 2024. Assessment of the properties of asphalt mixtures modified with LDPE and HDPE polymers. International Journal of Applied Science and Engineering, 21(5), P. 265. https://doi.org/10.6703/IJASE.202412_21(5).007

Becker, Y., Méndez, M.P., and Rodríguez, Y., 2001. Polymer modified asphalt. Visión Tecnológica, 9(1), pp. 39–50.

Bohm, S., 2016. Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder. Construction and Building Materials. https://doi.org/10.1016/J.CONBUILDMAT.2016.03.057

Brasileiro, L., Moreno-Navarro, F., and Tauste-Martínez, R., 2019. Reclaimed polymers as asphalt binder modifiers for more sustainable roads: A review. Sustainability, 11(3), P. 646.

Bueno, I.M., and Teixeira, J.E.S.L., 2024. Waste plastic in asphalt mixtures via the dry method: A bibliometric analysis. Sustainability, 16(11), P. 4675. https://doi.org/10.3390/su16114675

Cuadri, A.A., Roman, C., and García-Morales, M., 2016. Formulation and processing of recycled-low-density-polyethylene-modified bitumen emulsions for reduced-temperature asphalt technologies. Chemical Engineering Research and Design, 115, pp. 328–339.

Dalhat, M.A. and Al-Abdul Wahhab, H.I., 2017. Performance of recycled plastic waste modified asphalt binder in Saudi Arabia. International Journal of Pavement Engineering, 18(4), pp. 349-357. https://doi.org/10.1080/10298436.2015.1088150

Eme, D.B., and Nwaobakata, C., 2019. Effect of low-density polyethylene as bitumen modifier on some properties of hot mix asphalt. Nigerian Journal of Technology, 38(1), pp. 1–7. https://doi.org/10.4314/njt.v38i1.1

Fang, C., Yu, R., Li, Y., Zhang, M., and Hu, J., 2013. Preparation and characterization of an asphalt-modifying agent with waste packaging polyethylene and organic montmorillonite. Polymer Testing, 32(5), pp. 953–960. https://doi.org/10.1016/j.polymertesting.2013.04.006

Fang, C., Yu, R., Zhang, Y., Hu, J., Zhang, M., and Mi, X. 2012. Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite. Polymer Testing, 31(2), pp. 276–281. https://doi.org/10.1016/j.polymertesting.2011.11.008.

Filonzi, A., Komaragiri, S., and Roja, K. L., 2023. A comprehensive evaluation of mixture and binder properties to explore the use of low-density polyethylene (LDPE) as an asphalt modifier and co-modifier. International Journal of Pavement Engineering, 25(3), pp. 278–291. https://doi.org/10.1080/10298436.2022.2120988

Gawel, I., Stepkowski, R., and Czechowski, F., 2006. Molecular interactions between rubber and asphalt. Industrial & Engineering Chemistry Research, 45(9), pp. 3044-3049. https://doi.org/10.1021/ie050905r

Ghabchi, R., Singh, D., and Zaman, M., 2015. Laboratory evaluation of stiffness, low-temperature cracking, rutting, moisture damage, and fatigue performance of WMA mixes. International Journal of Pavement Engineering, 16(5), pp. 433–446.

Ghani, U., Zamin, B., Bashir, M.T., Ahmad, M., Sabri, M.M.S., and Keawsawasvong, S., 2022. Comprehensive study on the performance of waste HDPE and LDPE modified asphalt binders for construction of asphalt pavements application. Polymers, 14(17), P. 3673. https://doi.org/10.3390/polym14173673

Ghuzlan, K.A., Al-Khateeb, G.G., and Qasem, Y. 2013. Rheological properties of polyethylene-modified asphalt binder. In Proceedings of the 3rd Annual International Conference on Civil Engineering, pp. 1–12. Athens Institute for Education and Research (ATINER). http://dx.doi.org/10.30958/ajte.2-2-1

Ho, S., Church, R., Klassen, K., Law, B., MacLeod, D., and Zanzotto, L. 2006. Study of recycled polyethylene materials as asphalt modifiers. Canadian Journal of Civil Engineering, 33(8), pp. 968–981. https://doi.org/10.1139/l06-044

Issa, A.M.J.A.D., Sheikah, A., Nazzal, R.A.S.M.Y.A., and Maher, A.M.E.E.D. 2022. Study the effect of adding high-density polyethylene on the asphalt mixture. Proceedings of International Structural Engineering and Construction, 9, 1. https://doi.org/10.14455/ISEC.2022.9(1).MAT-01

Jan, H., Aman, M.Y., Tawab, M., Ali, K., and Ali, B. 2018. Performance evaluation of hot mix asphalt concrete by using polymeric waste polyethylene. In P. Vasant et al. (Eds.), Modeling, Simulation, and Optimization, Chapter 7, pp. 91–99. Springer. https://doi.org/10.1007/978-3-319-70542-2_7

Junaid, M., Jiang, C., Gazder, U., Hafeez, I., and Khan, D. 2024. Evaluation of asphalt mixtures modified with low-density polyethylene and high-density polyethylene using experimental results and machine learning models. Scientific Reports, 14, P. 24601. https://doi.org/10.1038/s41598-024-74657-1

Kakar, M.R., Mikhailenko, P., Piao, Z., Bueno, M., and Poulikakos, L. 2021. Analysis of waste polyethylene (PE) and its by-products in asphalt binder. Construction and Building Materials, 280, P. 122492. https://doi.org/10.1016/j.conbuildmat.2021.122492

Kakisina, E.M., Makmur, A., and Salim, F.D. 2020. Influence of LDPE plastic waste on asphalt mixture soaked in sea water. IOP Conference Series: Earth and Environmental Science, 498, P. 012026. https://doi.org/10.1088/1755-1315/498/1/012026

Khurshid, M.B., Qureshi, N.A., Hussain, A., and Iqbal, M.J. 2019. Enhancement of hot mix asphalt (HMA) properties using waste polymers. Arabian Journal for Science and Engineering, 44(7), pp. 6153–6167. https://doi.org/10.1007/s13369-019-03748-3

Kim, Y.M., and Kim, K. 2025. Evaluation of thermal aging susceptibility of recycled waste plastic aggregates (low-density polyethylene, high-density polyethylene, and polypropylene) in recycled asphalt pavement mixtures. Polymers, 17(6), P. 731. https://doi.org/10.3390/polym17060731

Kovács, R., Czímerová, A., Fonód, A., and Mandula, J., 2024. The use of waste low-density polyethylene for the modification of asphalt mixture. Buildings, 14(10), P. 3109. https://doi.org/10.3390/buildings14103109

Latief, R.H., 2025. Impact of using polyethylene polymer on properties of hot asphalt mixture by conducting semi-wet and dry mixing process. International Journal of Engineering, Transactions B: Applications, 38(05), pp. 1108–1119. https://doi.org/10.5829/ije.2025.38.05b.13

Lee, S., Mun, S., and Kim, Y. R., 2011. Fatigue and rutting performance of lime-modified hot-mix asphalt mixtures. Construction and Building Materials, 25(5), pp. 2177–2184.

Li, H., Hao, G., Zhou, L., Wang, S., Zhao, G., Zhang, Y., and Temitope, A.A., 2023. Effect of different waste plastic modifiers on conventional asphalt performance: optimal preparation parameters determination and mechanism analysis. Environmental Science and Pollution Research, 30(38), pp. 89910-89926. https://doi.org/10.1007/s11356-023-

28559-w

Li, M., Chen, X., Cong, P., Luo, C., Zhu, L., Li, H., Zhang, Y., Chao, M., and Yan, L. 2022. Facile synthesis of polyethylene-modified asphalt by chain end-functionalization. Composites Communications, 30, P. 101088. https://doi.org/10.1016/j.coco.2022.101088

Li, Y., Han, E., Wang, X., Liu, X., Ren, J., and Lin, Z., 2024. Recycling of waste polyethylene in asphalt and its performance enhancement methods: A critical literature review. Journal of Cleaner Production, 451, P. 142072. https://doi.org/10.1016/j.jclepro.2024.142072

Liang, M., Xin, X., Fan, W., Wang, H., Jiang, H., Zhang, J., and Yao, Z., 2019. Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: Experimental and numerical characterizations. Construction and Building Materials, 203, pp. 608–620. https://doi.org/10.1016/j.conbuildmat.2019.01.095

Liang, M., Xin, X., Fan, W., Zhang, J., Jiang, H., and Yao, Z., 2019. Comparison of rheological properties and compatibility of asphalt modified with various polyethylene. International Journal of Pavement Engineering, 22(2), pp.1–10. https://doi.org/10.1080/10298436.2019.1575968.

Lubis, A.S., Muis, Z.A., and Siregar, N.A., 2020. The effects of low-density polyethylene (LDPE) addition to the characteristics of asphalt mixture. IOP Conference Series: Earth and Environmental Science, 476, P. 012063. https://doi.org/10.1088/1755-1315/476/1/012063

Ma, D., Zhao, D., Zhao, J., Du, S., Pang, J., Wang, W., and Fan, C. 2016. Functionalization of reclaimed polyethylene with maleic anhydride and its application in improving high temperature stability of asphalt mixtures. Construction and Building Materials, 113, pp.596–602. https://doi.org/10.1016/j.conbuildmat.2016.03.096

MacArthur, D. E., Waughray, D., and Stuchtey, M. R. 2016. The new plastics economy: Rethinking the future of plastics. World Economic Forum.

Masad, E., Roja, K. L., Rehman, A., and Abdala, A. 2020. A review of asphalt modification using plastics: A focus on polyethylene [Technical report]. Texas A&M University at Qatar. https://doi.org/10.13140/RG.2.2.36633.77920

Moghadas Nejad, F., and Azarhoosh, A., 2014. Effect of high density polyethylene on the fatigue and rutting performance of hot mix asphalt–a laboratory study. International Journal of Pavement Engineering, 15(4), pp. 313–321. https://doi.org/10.1080/14680629.2013.876443

Naskar, M., Chaki, T.K., and Reddy, K.S., 2012. A novel approach to recycle the waste plastics by bitumen modification for paving application. Advanced Materials Research, 356, pp. 1763–1768. https://doi.org/10.4028/www.scientific.net/AMR.356-360.1763

Nguyen, V.H., Le, V.P., and Nguyen, T.P., 2025. Performance evaluation of waste high density polyethylene as a binder modifier for hot mix asphalt. International Journal of Pavement Research and Technology, 18, pp. 102–113. https://doi.org/10.1007/s42947-023-00331-w

Nisar, J., Mir, M.S., and Vivek., 2024. Comparative analysis of asphalt binder modified with HDPE and LDPE: Rheological and compatibility perspectives. E3S Web of Conferences, 596, P. 01027. https://doi.org/10.1051/e3sconf/202459601027

Nizamuddin, S., Jamal, M., and Biligiri, K. P., 2024. Effect of various compatibilizers on the storage stability, thermochemical and rheological properties of recycled plastic-modified bitumen. Innovative Infrastructure Solutions.

Nizamuddin, S., Jamal, M., Gravina, R., and Giustozzi, F. 2020. Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. Journal of Cleaner Production, 266, P. 121988. https://doi.org/10.1016/j.jclepro.2020.121988

Othman, A.M., 2010. Effect of low-density polyethylene on fracture toughness of asphalt concrete mixtures. Journal of Materials in Civil Engineering, 22(10), pp. 1019–1024. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000106

Pérez-Lepe, A., Martínez-Boza, F.J., Attané, P., and Gallegos, C. 2006. Destabilization mechanism of polyethylene-modified bitumen. Journal of Applied Polymer Science, 100(1), pp. 260–267. https://doi.org/10.1002/app.23091

Polacco, G., Berlincioni, S., Biondi, D., Stastna, J., and Zanzotto, L. 2005. Asphalt modification with different polyethylene-based polymers. European Polymer Journal, 41(12), pp. 2831–2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034

Prahara, E., Syahrullail, S., Praptiestrini, R., Rahman, M. H., and Siregar, M., 2020. The effect of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) on characteristics of asphalt concrete with dry and wet mixing process. IOP Conference Series: Materials Science and Engineering, 852, P. 012056. https://doi.org/10.1088/1757-899X/852/1/012056

Revelli, V., Kabir, S.F., Ali, A., Mehta, Y., and Cox, B.C., 2023. Storage stability and performance assessment of styrene-butadiene-styrene: Waste polyethylene–modified binder using waste cooking oil. Journal of Materials in Civil Engineering, 35(8), P. 04023162. https://doi.org/10.1061/JMCEE7.MTENG-16202

Roja, K.L., Rehman, A., and Ouederni, M., 2021. Influence of polymer structure and amount on microstructure and properties of polyethylene-modified asphalt binders. Materials and Structures, 54, P. 183.

Saroufim, E., Celauro, C., and Mistretta, M. C., 2018. A simple interpretation of the effect of the polymer type on the properties of PMBs for road paving applications. Construction and Building Materials, 158, pp. 114–123. https://doi.org/10.1016/j.conbuildmat.2017.10.034

Shamami, K.G., Effati, M., and Mirabdolazimi, S., 2023. Evaluation of the effects of graphene-nanoplatelets on the rutting, fatigue performance, and moisture sensitivity of hot-mix asphalt. International Journal of Pavement Research and Technology, 18(Suppl. 2), p.p. 183-197. https://doi.org/10.1007/s42947-023-00337-4

Singh, A., and Gupta, A. 2024. Mechanical and economical feasibility of LDPE waste-modified asphalt mixtures: Pathway to sustainable road construction. Scientific Reports, 14, P. 25311. https://doi.org/10.1038/s41598-024-75196-5

Singh, B., Kumar, L., Gupta, M., and Chauhan, G. S. 2013. Polymer‐modified bitumen of recycled LDPE and maleated bitumen. Journal of Applied Polymer Science, 127(1), pp. 67–78. https://doi.org/10.1002/app.36810

Sojobi, A.O., Nwobodo, S.E., and Aladegboye, O.J. 2016. Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent Engineering, 3(1), P. 1133480. https://doi.org/10.1080/23311916.2015.1133480

Spadoni, S., Ingrassia, L.P., Mocelin, D., and Kim, Y.R., 2022. Comparison of asphalt mixtures containing polymeric compounds and polymer-modified bitumen based on the VECD theory. Construction and Building Materials, 323, P. 126562.

Suksiripattanapong, C., Uraikhot, K., Tiyasangthong, S., Wonglakorn, N., Tabyang, W., Jomnonkwao, S., and Phetchuay, C., 2022. Performance of asphalt concrete pavement reinforced with high-density polyethylene plastic waste. Infrastructures, 7(5), P. 72. https://doi.org/10.3390/infrastructures7050072

Suleiman, G., Abu Taqa, A., Ergun, M., Qtiashat, D., Aburumman, M.O., Mohsen, M.O., Senouci, A., and Kesten, A.S., 2024. Green technology: Performance of sustainable asphalt mixes modified with linear low-density polyethylene waste. Buildings, 14(10), P. 3089. https://doi.org/10.3390/buildings14103089

Ullah, S., Raheel, M., Khan, R. and Khan, M.T., 2021. Characterization of physical & mechanical properties of asphalt concrete containing low-& high-density polyethylene waste as aggregates. Construction and Building Materials, 301, P. 124127. https://doi.org/10.1016/j.conbuildmat.2021.124127

Vargas, M.A., Vargas, M.A., and Sánchez-Sólis, A., 2013. Asphalt/polyethylene blends: Rheological properties, microstructure and viscosity modeling. Construction and Building Materials, 47, pp. 1–10.

Yan, K., Xu, H., and You, L., 2015. Rheological properties of asphalts modified by waste tire rubber and reclaimed low-density polyethylene. Construction and Building Materials, 86, pp. 73–79. https://doi.org/10.1016/j.conbuildmat.2015.02.092

Yeh, P.H., Nien, Y.H., Chen, W.C., and Liu, W.T., 2010. Evaluation of thermal and viscoelastic properties of asphalt binders by compounding with polymer modifiers. Polymer Composites, 31(10), p.p. 1738–1744. https://doi.org/10.1002/pc.20964

Yousefi, A.A. 2003. Polyethylene dispersions in bitumen: The effects of the polymer structural parameters. Journal of Applied Polymer Science, 90(12), pp. 3183–3190. https://doi.org/10.1002/app.12942

Yousuf, M., Jahanzaib, M., Iqbal, A., Ullah, K., Adnan, M., Ahmad, M., Ashiq, M., Shehzad, U., Munir, M., Rehman, S., Akhtar, M., Rizwan, M., Javed, M., Omer, A., and Akram, U., 2020. Utilization of waste plastic polymers to improve the performance of modified hot mix asphalt. Pakistan Journal of Engineering and Technology (PakJET), SI(1), pp. 162–171. https://doi.org/10.51846/vol3iss2pp162-171

Yu, S., Musazay, J.A., Zhang, C., Hu, P. and Shen, S., 2024. Workability of low-density polyethylene modified asphalt mixtures: A statistical analysis of particle kinematics. Journal of Cleaner Production, 447, P. 141564. https://doi.org/10.1016/j.jclepro.2024.141564

Zhang, H., Wu, X., Cao, D., Zhang, Y., and He, M., 2013. Effect of linear low density-polyethylene grafted with maleic anhydride (LLDPE-g-MAH) on properties of HDPE/SBS modified asphalt. Construction and Building Materials, 47, pp. 192–198. https://doi.org/10.1016/j.conbuildmat.2013.04.047

Zhuang, S., Wang, J., Li, M., Yang, C., Chen, J., and Zhang, X., 2023. Rutting and fatigue resistance of high-modulus asphalt mixture considering the combined effects of moisture content and temperature. Buildings, 13(7), P. 1608. https://doi.org/10.3390/buildings13071608

Similar Articles

You may also start an advanced similarity search for this article.