Study of Heat Generation and Power Losses in MultiCrystalline Silicon Photovoltaic Solar Module
Main Article Content
Abstract
A photovoltaic modules convert only a fraction of incident solar energy into electricity, with the remainder dissipated as heat through various loss mechanisms. This study makes an attempt to quantify the recoverable thermal energy from multicrystalline silicon photovoltaic modules under varying irradiance conditions for arid climates. Experimental measurements were conducted over six months in Baghdad, Iraq. Data were filtered to maintain 25°C module temperature across four irradiance levels (250, 500, 750, 1000 W/m²). Results demonstrate thermal losses increasing from 10.33% to 19.02% with rising irradiance, while recoverable thermal energy fraction (ξu) ranges from 29.72% to 35.06%. Module efficiency decreased from 18.1% at 500 W/m² to 16.7% at 1000 W/m², reflecting thermal loss dominance over optical gains. Spectral analysis revealed uniform distribution of recoverable thermal energy across the solar spectrum rather than infrared concentration. The quantified thermal losses provide fundamental data for hybrid photovoltaic-thermal (PV/T) system development optimized for high-irradiance arid conditions, supporting renewable energy advancement where abundant solar resources enable combined electrical and thermal harvesting.
Article Details
Section
How to Cite
References
Aghaei, M., Kumar, N.M., Eskandari, A., Ahmed, H., Vidal de Oliveira, A.K., and Chopra, S.S., 2020. Solar PV systems design and monitoring. In: Photovoltaic Solar Energy Conversion. Academic Press, pp. 117–145. https://doi.org/10.1016/B978-0-12-819610-6.00005-3
Arifin, Z., Suyitno, S., Tjahjana, D.D., Juwana, W.E., and Putra, M.R., 2020. The effect of heat sink properties on solar cell cooling systems. Applied Sciences, 10(21), P. 7919. https://doi.org/10.3390/app10217919
Asif, M.H., Zhongfu, T., Ahmad, B., Irfan, M., Razzaq, A., and Ameer, W., 2023. Influencing factors of consumers’ buying intention of solar energy: A structural equation modeling approach. Environmental Science and Pollution Research, 30(11). https://doi.org/10.1007/s11356-022-23627-8
Aslam, A., Ahmed, N., Qureshi, S.A., Assadi, M., and Ahmed, N., 2022. Advances in solar PV systems; A comprehensive review of PV performance, influencing factors, and mitigation techniques. Energies, 15(20), P. 7595. https://doi.org/10.3390/en15207595
Barron-Gafford, G.A., Minor, R.L., Allen, N.A., Cronin, A.D., Brooks, A.E., and Pavao-Zuckerman, M.A., 2016. The photovoltaic heat island effect: Larger solar power plants increase local temperatures. Scientific Reports, 6(1), P. 35070. https://doi.org/10.1038/srep35070
Bhore, C.V., Andhare, A.B., Padole, P.M., Loyte, A., Vincent, J.S., Devarajan, Y., and Vellaiyan, S., 2023. Experimental investigation on minimizing degradation of solar energy generation for photovoltaic module by modified damping systems. Solar Energy, 250, pp. 194–208. https://doi.org/10.1016/j.solener.2022.10.031
Cotfas, D.T., Cotfas, P.A., Ursutiu, D., and Samoila, C., 2012. In: 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM). IEEE, pp. 966–972. ISBN 978-1-4673-1653-8. https://lib.ugent.be/catalog/ebk01:3420000000000684
Dupre, O., Vaillon, R., and Green, M.A., 2016. Recombination mechanisms in photovoltaic devices. Solar Energy, 140, pp. 73–85. https://doi.org/10.1016/j.solener.2016.10.019
Fang, S., Lyu, X., Tong, T., Lim, A.I., Li, T., Bao, J., and Hu, Y.H., 2023. Turning dead leaves into an active multifunctional material as evaporator, photocatalyst, and bioplastic. Nature Communications, 14(1), P. 1203. https://doi.org/10.1038/s41467-023-36878-3
Green, M. A., 2006. Third Generation Photovoltaics: Advanced Solar Energy Conversion, Springer. https://doi.org/10.1007/3-540-28829-9
Hashim, E.T. and Abbood, A.A., 2016. Temperature effect on power drop of different photovoltaic module. Journal of Engineering, 22(5), pp. 126–143. https://doi.org/10.31026/j.eng.2016.05.09
Hashim, E.T. and Talib, Z.R., 2018. Study of the performance of five parameter model for monocrystalline silicon photovoltaic module using a reference data. FME Transactions, 46, pp. 585–594. https://doi.org/10.5897/AJEST2018.2566
Hashim, E.T. and Talib, Z.R., 2018. Modeling and simulation of solar module performance using five parameters model by using MATLAB in Baghdad City. Journal of Engineering, 24(10), pp. 15–31. https://doi.org/10.31026/j.eng.2018.10.02
Hashim, E.T., 2016. Determination of Mono-Crystalline Silicon photovoltaic module parameters using three different methods. Journal of Engineering, 22(7), pp. 92–107. https://doi.org/10.31026/j.eng.2016.07.06
Hernandez-Callejo, L., Gallardo-Saavedra, S., and Alonso-Gomez, V., 2019. A review of photovoltaic systems: Design, operation and maintenance. Solar Energy, 188, pp. 426–440. https://doi.org/10.1016/j.solener.2019.06.017
Hibberd, C., Plyta, F., Monokroussos, C., Bliss, M., Betts, T., & Gottschalg, R., 2011. Voltage‑dependent quantum efficiency measurements of amorphous silicon multi‑junction mini‑modules. Solar Energy Materials and Solar Cells, 95, pp. 123–126. https://doi.org/10.1016/j.solmat.2010.04.125
Kadia, N.J., Hashim, E.T., and Abdullah, I.B., 2022. Performance of different photovoltaic technologies for Amorphous Silicon (A-Si) and Copper Indium Gallium Di Selenide (CIGS) photovoltaic modules. Journal of Engineering and Sustainable Development, 26(1), pp. 95–105. https://doi.org/10.31272/jeasd.26.1.10
Katee, N.S., Abdullah, I.B., and Hashim, E.T., 2022. Extracting four solar model electrical parameters of Mono-Crystalline Silicon (mc-Si) and Thin Film (CIGS) solar modules using different methods. Journal of Engineering, 27(4), pp. 16–32. https://doi.org/10.31026/j.eng.2021.04.02
Kraemer, D., Hu, L., Muto, A., Chen, X., Chen, G., and Chiesa, M., 2008. Applied Physics Letters, 92(24), P. 243503. https://doi.org/10.1063/1.2946676
Lipiński, W., Abbasi-Shavazi, E., Chen, J., Coventry, J., Hangi, M., Iyer, S., Kumar, A., Li, L., Li, S., Pye, J., and Torres, J.F., 2020. Progress in heat transfer research for high-temperature solar thermal applications. Applied Thermal Engineering, 184, P. 116137. https://doi.org/10.1016/j.applthermaleng.2020.116137
Lorenzi, B., Acciarri, M., & Narducci, D., 2018. Experimental determination of power losses and heat generation in solar cells for photovoltaic–thermal applications. Journal of Materials Engineering and Performance, 27(12), pp. 6291–6298. https://doi.org/10.1007/s11665-018-3604-3
Ma, Y., Yang, K., Shi, X., Ding, W., Ni, L., and Jin, L., 2021. Design of cold chain container energy storage and conversion system based on modularization. In: 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), pp. 698–703. IEEE. https://ieeexplore.ieee.org/document/9713245
Mesquita, I., Andrade, L., and Mendes, A., 2019. Temperature impact on perovskite solar cells under operation. Chemsuschem, 12(10), pp. 2186–2194. https://doi.org/10.1002/cssc.201802899
Mizoshiri, M., Mikami, M., and Ozaki, K., 2012. Thermal–photovoltaic hybrid solar generator using thin-film thermoelectric modules. Japanese Journal of Applied Physics, 51(6S), P. 06FL07. ISSN 0021-4922. https://doi.org/10.1143/JJAP.51.06FL07
Mohammed, S.A. and Hashim, E.T., 2019. Designing a maximum power point tracking system for a Monocrystalline silicon solar module using the Arduino microcontroller and synchronous buck converter. FME Transactions, 47, pp. 524–533. https://doi.org/10.5937/fmet1903524M
Nelson, J., 2003. The Physics of Solar Cells, Imperial College Press, London. https://doi.org/10.1142/p276
Nkounga, W.M., Ndiaye, M.F., Ndiaye, M.L., Grandvaux, F., Tabourot, L., and Conde, M., 2021. Sizing optimization of a charging station based on the multi-scale current profile and particle swarm optimization: application to power-assisted bikes. In: 2021 Sixteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), pp. 1–12. IEEE. https://univ-smb.hal.science/hal-03457476/document
Outes, C., Fernández, E.F., Seoane, N., Almonacid, F., and García-Loureiro, A.J., 2020. Numerical optimisation and recombination effects on the vertical-tunnel-junction (VTJ) GaAs solar cell up to 10,000 suns. Solar Energy, 203, pp. 136–144. https://doi.org/10.1016/j.solener.2020.04.029.
Richter, A., Hermle, M., and Glunz, S.W., 2013. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE Journal of Photovoltaics, 3(4), pp. 1184–1191. https://doi.org/10.1109/JPHOTOV.2013.2270351
Sarath, K.P., Osman, M.F., Mukesh, R., Manu, K.V., and Deepu, M., 2023. A review of the recent advances in the heat transfer physics in latent heat storage systems. Thermal Science and Engineering Progress, 12, P. 101886. https://doi.org/10.1016/j.tsep.2023.101886
Sharma, S.K., Navadeep, S., Francesco, R., and Nguyen, T.T., 2019. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today, 29, P. 100795. https://doi.org/10.1016/j.nantod.2019.100795
Sun, C., Zou, Y., Qin, C., Zhang, B., and Wu, X., 2022. Temperature effect of photovoltaic cells: A review. Advanced Composites and Hybrid Materials, 5(4), pp. 2675–2699. https://doi.org/10.1007/s42114-022-00533-z
Sze, S.M. and Ng, K.K., 2007. Physics of Semiconductor Devices. 3rd ed. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9780470068328
Vorobiev,Y., González-Hernández, J., Vorobiev, P., and Bulat, L., 2005. Solar Energy, 80, pp. 170–176. ISSN 0038-092X. https://doi.org/10.1016/j.solener.2005.04.022
Wei, J., Wang, Q., Huo, J., Gao, F., Gan, Z., Zhao, Q., and Li, H., 2021. Mechanisms and suppression of photoinduced degradation in perovskite solar cells. Advanced Energy Materials, 11(3), P. 2002326. https://doi.org/10.1002/aenm.202002326
Zhou, J., Yi, Q., Wang, Y., and Ye, Z., 2015. Temperature Distribution of Photovoltaic Module Based on Finite Element Simulation. Solar Energy, 111, pp. 97–103. https://doi.org/10.1016/j.solener.2014.10.040