Improvement of Hot Mix Asphalt Resistance to Permanent Deformation at High Temperature Using Nanomaterial Modifiers: A Review

Main Article Content

Yousuf M. Hamed Al Hamdou
Amjad H. Khalil Al Bayati

Abstract

The integration of nanomaterials in asphalt modification has emerged as a promising approach to enhance the performance of asphalt pavements, particularly under high-temperature conditions. Nanomaterials, due to their unique properties such as high surface area, exceptional mechanical strength, and thermal stability, offer significant improvements in the rheological properties, durability, and resistance to deformation of asphalt binders. This research reviewed the application of various nanomaterials, including nano silica, nano alumina, nano titanium, nano zinc, and carbon nanotubes in asphalt modification. The incorporation of these nanomaterials into asphalt mixtures has shown potential to increase the stiffness and high-temperature performance, thereby reducing rutting potential and improving the overall lifespan of the pavement. The mechanisms by which nanomaterials enhance the thermal and mechanical properties of asphalt were explored. Furthermore, the challenges associated with their implementation were examined, as effective utilization is hindered by agglomeration, inconsistent dispersion, and dosage sensitivity, compounded by the absence of standardized guidelines and the variability in reported contents. The findings indicate that while nanomaterials hold considerable potential for improving high-temperature asphalt performance, further research is needed to optimize their use and fully realize their benefits in large-scale applications.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

“Improvement of Hot Mix Asphalt Resistance to Permanent Deformation at High Temperature Using Nanomaterial Modifiers: A Review” (2025) Journal of Engineering, 31(11), pp. 133–159. doi:10.31026/j.eng.2025.11.09.

References

AASHTO T307-99, 2010. Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials. AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO T315-12, 2011. Standard Method of Test for Determining the Dynamic Shear Rheometer (DSR) Properties of Asphalt Binder. AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO T350-14, 2013. Standard Method of Test for Multiple Stress Creep Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO T378-17, 2014. Standard Method of Test for Determining the Flow Number (FN) of Asphalt Mixtures Using the Asphalt Mixture Performance Tester (AMPT). AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO T324-19, 2018. Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA). AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

AASHTO TP79, 2013. Standard Practice for Determining the Permanent Deformation and Creep Characteristics of Hot Mix Asphalt (HMA) Using the Uniaxial Repeated Load Test. AASHTO. Washington, DC: American Association of State Highway and Transportation Officials.

Abdel Wahed T., Abdel Raheem A., and Moussa G.S., 2022. Performance evaluation of asphalt mixtures modified with nanomaterials. Mansoura Engineering Journal (MEJ), 47(1). https://doi.org/10.21608/bfemu.2022.221670

Abd N.I., and Latief R.H., 2024. Assessment of rutting resistance for fiber-modified asphalt mixtures. (2024) Journal of Engineering, 30(05), pp. 98–113. https://doi.org/10.31026/j.eng.2024.05.07.

Aboelmagd A.Y., Moussa G.S., Enieb M., Khedr S., and Alla E.M., 2021. Evaluation of hot mix asphalt and binder performance modified with high content of nano silica fume. Journal of Engineering Sciences, 49(4), pp. 378–399. https://doi.org/10.21608/JESAUN.2021.70733.1046

Al Mistarehi, B., Al-Omari, A., Taamneh, M., Imam, R., and Khafaja, D.A.D., 2023. The effects of adding nano clay and nano zinc oxide on asphalt cement rheology. Journal of King Saud University - Engineering Sciences, 35(4), pp. 260–269. https://doi.org/10.1016/j.jksues.2021.03.010

Albayati, A.H., and Alani A.F.H., 2017. Influence of temperature upon permanent deformation parameters of asphalt concrete mixes Journal of Engineering, 23(7), pp. 14–32. https://doi.org/10.31026/j.eng.2017.07.02.

Albayati, A.H., Latief, R.H., Al-Mosawe, H., and Wang, Y., 2024. Nano-additives in asphalt binder: bridging the gap between traditional materials and modern requirements. Applied Sciences, 14, P. 3998. https://doi.org/10.3390/app14103998

Albayati, A.H., Oukaili, N.K., Moudhafar, M.M., Allawi, A.A., Said, A.I., and Ibrahim, T.H., 2024. Experimental study to investigate the performance-related properties of modified asphalt concrete using nanomaterials Al2O3, SiO2, and TiO2. Materials, 17, P. 4279. https://doi.org/10.3390/ma17174279

Albayati, A.H.K., and Latief, R.H., 2017. Evaluating the Performance of High Modulus Asphalt Concrete Mixture for Base Course in Iraq, Journal of Engineering, 23(6), pp. 14–33. https://doi.org/10.31026/j.eng.2017.06.02.

Ali S.I.A., Alothman D., and Gökçekuş H., 2023. Rheological performance of ZycoTherm/Nano-Silica composite modified binders. Turkish Journal of Civil Engineering, 34(2), pp. 77–102. https://doi.org/10.18400/tjce.1239171

Ali, S.I.A., Ismail, A., Karim, M.R., Yusoff, N.I.M., Al-Mansob, R.A., and Aburkaba, E., 2016. Performance evaluation of Al2O3 nanoparticle-modified asphalt binder. Road Materials and Pavement Design, 18(6), pp. 1251–1268. https://doi.org/10.1080/14680629.2016.1208621

Ali S., Ismail A., Yusoff N., Abdul Hassan N., and Ibrahim A., 2016. Characterization of the performance of aluminum oxide nanoparticles modified asphalt binder. Jurnal Teknologi (Sciences & Engineering), 78(4), pp. 91–96.

Aljbouri H.J., and Albayati A.K., 2024. The effect of nano-hydrated lime on the durability of hot mix asphalt. Journal of Engineering, 30(03), pp. 143–158. https://doi.org/10.31026/j.eng.2024.03.10.

Al Mousawi, E.J., Al Rubaee, R.H., and Shubber, A.A., 2020. Mixing and compaction temperature of nanosilica composite polymer modified asphalt. Wasit Journal of Engineering Sciences, 8(2). https://doi.org/10.31185/ejuow.Vol8.Iss2.165

Ameli A., Pakshir A.H., Babagoli R., Norouzi N., Nasr D., and Davoudinezhad S., 2020. Experimental investigation of the influence of Nano TiO2 on rheological properties of binders and performance of stone matrix asphalt mixtures. Construction and Building Materials, 265, P. 120750. https://doi.org/10.1016/j.conbuildmat.2020.120750

Amin, I., El-Badawy, S.M., Breakah, T., and Ibrahim, M.H.Z., 2016. Laboratory evaluation of asphalt binder modified with carbon nanotubes for the Egyptian climate. Construction and Building Materials, 121, pp. 361–372. https://doi.org/10.1016/j.conbuildmat.2016.05.168

Ashish, P. K., and Singh D., 2018. Development of empirical model for predicting G*/sinδ and viscosity value for nanoclay and carbon nano tube modified asphalt binder. Construction and Building Materials, 165, pp. 363–371. https://doi.org/10.1016/j.conbuildmat.2018.01.021

Asphalt Institute, 2007. The Asphalt Handbook, Manual Series No. 4 (MS-4), 7th Edition. USA.

ASTM E2456-06, 2012. ASTM: Standard terminology relating to nanotechnology. West Conshohocken, PA, USA.

ASTM D4402/D4402M-15, 2015. Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Rotational Viscometer. ASTM. West Conshohocken, PA: ASTM International.

ASTM D6931-12, 2015. Standard Test Method for Indirect Tensile (IDT) Strength of Asphalt Mixtures. ASTM. West Conshohocken, PA: ASTM International.

ASTM D6927-15, 2015. Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. ASTM. West Conshohocken, PA: ASTM International.

Bhat, F. S., and Mir M. S., 2021. A study investigating the influence of nano Al2O3 on the performance of SBS modified asphalt binder. Construction and Building Materials, 271, P. 121499. https://doi.org/10.1016/j.conbuildmat.2020.121499

Buhari, R., Abdullah M.E., Ahmad M.K., Chong A.I., Haini R., and Bakar S.K., 2018. Physical and rheological properties of titanium dioxide modified asphalt. E3S Web of Conferences, 34, P. 01035. https://doi.org/10.1051/e3sconf/20183401035

Cao, Y., Liu, Z., and Song, W., 2022. Performance and overall evaluation of nano-alumina-modified asphalt mixture. Nanotechnology Reviews, 11(1), pp. 2891–2902. https://doi.org/10.1515/ntrev-2022-0485

Chen, X., and Mao, S.S., 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 107(7), pp. 2891–2959. https://doi.org/10.1021/cr0500535

Faramarzi, M., Arabani, M., Haghi, A., and Mottaghitalab, V., 2015. Carbon nanotubes-modified asphalt binder: preparation and characterization. International Journal of Pavement Research and Technology, 8, pp. 29–37. https://doi.org/10.6135/ijprt.org.tw/2015.8(1).29

Fierro, J.L.G., 2006. Metal Oxides: Chemistry and Applications. Florida, USA: CRC Press.

Filho, T. M., P.G., Lucena L., L.C., and Lopes C. M., 2022. Investigation of titanium nanoparticles-reinforced asphalt composites using rheological tests. TRANSPORTES, 30(2), P. 2614. https://doi.org/10.14295/transportes.v30i2.2614

Fu Z., Tang Y., Ma F., Wang Y., Shi K. , Dai J., Hou Y. , and Li J., 2022. Rheological properties of asphalt binder modified by nano-TiO2/ZnO and basalt fiber, Construction and Building Materials, Volume 320, P. 126323, https://doi.org/10.1016/j.conbuildmat.2022.126323

Enieb, M., and Diab A., 2017. Characteristics of asphalt binder and mixture containing nanosilica. International Journal of Pavement Research and Technology, 10, pp. 148–157. https://doi.org/10.1016/j.ijprt.2016.11.009.

Galooyak, S.S., Palassi, M., Farahani, H.Z., and Goli, A., 2015. Effect of carbon nanotube on the rheological properties of bitumen. Petroleum & Coal, 57(5), pp. 556–564.

Gedafa, D.S., Karki B., Berg A., Saha R., and Melaku R.S., 2019. Effect of nanomaterials on cracking and rutting resistance of HMA. Airfield and Highway Pavements, pp. 88–95. https://doi.org/10.1061/9780784482476.010

Gong, M., Yang, J., Yao, H., Wang, M., Niu, X., and Haddock, J.E., 2017. Investigating the performance, chemical, and microstructure properties of carbon nanotube-modified asphalt binder. Road Materials and Pavement Design, 19(7), pp. 1499–1522. https://doi.org/10.1080/14680629.2017.1323661

Hamedi H., Moghadas Nejad F., and Oveisi K., 2015. Estimating the moisture damage of asphalt mixture modified with nano zinc oxide. Materials and Structures, 49. https://doi.org/10.1617/s11527-015-0566-x

Hassan, F.S., and Ismael M.Q., 2025. Marshall properties and rutting resistance for asphaltic mixtures modified by nano-montmorillonite. Journal of Engineering, 31(2), pp. 19–33. https://doi.org/10.31026/j.eng.2025.02.02.

Huang, Y.H., 2004. Pavement Analysis and Design. Upper Saddle River, NJ: Pearson Prentice Hall.

Hussein, S., Hussein, T., and Khoshnaw, G., 2021. Impact of nano materials on the properties of asphalt cement. Eurasian Journal of Science and Engineering, 7, pp. 155–162. https://doi.org/10.23918/eajse.v7i1p155

International Bureau of Weights and Measures, 2006. The International System of Units (SI), 8th ed. ISBN 92-822-2213-6.

Ismael, M.Q., Fattah, M.Y., and Jasim, A.F., 2021. Improving the rutting resistance of asphalt pavement modified with the carbon nanotubes additive. Ain Shams Engineering Journal, 12(4), pp. 3619–3627. https://doi.org/10.1016/j.asej.2021.02.038

Jenima, J., Dharshini, M.P., Ajin, M.L., Moses, J.J., Retnam, K.P., Arunachalam, K.P., Avudaiappan, S. and Munoz, R.F.A., 2024. A comprehensive review of titanium dioxide nanoparticles in cementitious composites. Heliyon, 10(20), P. e39238. https://doi.org/ 10.1016/j.heliyon.2024.e39238.

Kadhim H. J., Modarres A., and Al-Busaltan S., 2024. Rheological and microstructural properties of nano-composite bitumen modified by nano-alumina and low-SBS content. Case Studies in Construction Materials, 20, P. e03244. Https://doi.org/10.1016/j.cscm.2024.e03244

Karahancer, S., 2020. Effect of aluminum oxide nano particle on modified bitumen and hot mix asphalt. Petroleum Science and Technology, 38(13), pp. 773–784. https://doi.org/10.1080/10916466.2020.1783292

Kleizienė, R., Paliukaitė, M., and Vaitkus, A., 2020. Effect of Nano SiO2, TiO2 and ZnO modification to rheological properties of neat and polymer modified bitumen. In: Pasetto, M., Partl, M., Tebaldi, G. (eds) Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE). Lecture Notes in Civil Engineering, vol 48.

Springer, Cham. https://doi.org/10.1007/978-3-030-29779-4_32

Long, H., You, L., Tang, X., Ma, W., Ding, Y. and Xu, F., 2020. Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using molecular dynamics simulation. Construction and Building Materials, 255, P. 119354. https://doi.org/ 10.1016/j.conbuildmat.2020.119354

Masri, K.A., Zali, S.M., Syafiqah, N., Jaya, R.P., Seman, M.A., and Hasan, M.R., 2022. The influence of nano titanium as bitumen modifier in stone mastic asphalt. Advances in Materials Science and Engineering, 2022, P. 4021618. https://doi.org/10.1155/2022/4021618

Mashaan, N.S., 2022. Rutting Performance of Nano-Silica-Modified C320 Bitumen, Eng, 3(4), pp. 635–645. https://doi.org/10.3390/eng3040043.

Meenu K., and Bindhu B.K., 2018. Comparative study on bituminous concrete modified by nano silica and micro silica. IJSTE, 4(10).

Mohammed A.A., Mwangi P.M., Anwar M.P., Leong L.T., Jayaprakash J., Ramadhansyah P.J., Jaafar Z.F.M., and Mashros N., 2021. Nano-silica-modified asphalt concrete under rutting resistance and shape memory component. IOP Conf. Series: Earth and Environmental Science, 682, P. 012041. https://doi.org/10.1088/1755-1315/682/1/012041

Mohammed, A.M., and Abed, A.H., 2024. Effect of nano-TiO2 on physical and rheological properties of asphalt cement. Open Engineering, 14(1), P. 20220520. https://doi.org/10.1515/eng-2022-0520

Mostafa A. E. A., 2016. Examining the performance of hot mix asphalt using nano-materials. IOSR Journal of Mechanical and Civil Engineering, 6(2), pp. 25–34.

Neto O., Ferreiro A., Freire A., Silva T., Lucena G.C.B., and Neto, L. V., 2020. Rheological analysis of asphalt binders modified with hydrated lime and titanium dioxide nanoparticles. International Journal for Innovation Education and Research, 8(11).

Neto V.F. S., Lêda C.F.L., Lucena, Barros A. G., Lucena E.F.L., and Filho P. G.T. M., 2022. Rheological evaluation of asphalt binder modified with zinc oxide nanoparticles. Case Studies in Construction Materials, 17, P. e01224. https://doi.org/10.1016/j.cscm.2022.e01224

Qasim Z.I., Al-Sahaf N.A., and Al-Jameel H.A., 2022. Effectiveness of micro- and nano silica as modifiers in asphalt concrete mixture. Journal of Engineering Science and Technology, 17(2), pp. 820–838.

Qian, G., Yu, H., Gong, X., and Zhao, L., 2019. Impact of nano-TiO2 on the NO2 degradation and rheological performance of asphalt pavement. Construction and Building Materials, 218, pp. 53–63. https://doi.org/10.1016/j.conbuildmat.2019.05.075

Riaz, K., Khan, R., Khan, I., Jan, M.R., and Wahab, A., 2013. To study the viscoelastic behavior of asphalt binders using Multi Stress Creep Recovery test. Life Science Journal, 10(12s), pp. 921–925.

Saltan M., Terzi S., and Karahancer S., 2017. Examination of hot mix asphalt and binder performance modified with nano silica. Construction and Building Materials, 156, pp. 976–984. https://doi.org/10.1016/j.conbuildmat.2017.09.069

Saltan M., Terzi S., and Karahancer S., 2018. Performance analysis of nano-modified bitumen and hot mix asphalt. Construction and Building Materials, 173, pp. 228–237. https://doi.org/10.1016/j.conbuildmat.2018.04.014

Shi K X., Cai L., Xu W., Fan J., and Wang X., 2018. Effects of nano-silica and rock asphalt on rheological properties of modified bitumen. Construction and Building Materials, 161, pp. 705–714. https://doi.org/10.1016/j.conbuildmat.2017.11.162

Santagata, E., Baglieri, O., Tsantilis, L., and Dalmazzo, D., 2012. Rheological characterization of bituminous binders modified with carbon nanotubes. Procedia - Social and Behavioral Sciences, 53, pp. 546–555. https://doi.org/10.1016/j.sbspro.2012.09.905

Shell Bitumen, 2015. Shell Bitumen Handbook. 6th ed. London: ICE Publishing.

Shafabakhsh G.A., Sadeghnejad M., Ahoor B., and Taheri E., 2020. Laboratory experiment on the effect of nano SiO2 and TiO2 on short and long-term aging behavior of bitumen. Construction and Building Materials, 237, 117640. https://doi.org/10.1016/j.conbuildmat.2019.117640

Shafabakhsh, G., Aliakbari Bidokhti, M., and Divandari, H., 2020. Evaluation of the performance of SBS/Nano-Al2O3 composite-modified bitumen at high temperature. Road Materials and Pavement Design, 22(11), pp. 2523–2537. https://doi.org/10.1080/14680629.2020.1772351

Song, W., 2022. Study on the high and low temperature performance of nano alumina modified asphalt mixture. International Journal of Microstructure and Materials Properties, 1(1). https://doi.org/10.1504/IJMMP.2022.10052619

Taher Z.K., and Ismael M.Q., 2023. Moisture susceptibility of hot mix asphalt mixtures modified by nano silica and subjected to aging process. Journal of Engineering, 29(4). https://doi.org/10.31026/j.eng.2023.04.09

Taherkhani H., Afroozi S., and Javanmard S., 2017. Comparative study of the effects of nanosilica and Zyco-Soil nanomaterials on the properties of asphalt concrete. Journal of Materials in Civil Engineering. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0001889

Taherkhani, H. and Tajdini, M., 2019. Comparing the effects of nano-silica and hydrated lime on the properties of asphalt concrete. Construction and Building Materials, 218, pp. 308–315. https://doi.org/10.1016/j.conbuildmat.2019.05.116

Tanzadeh, J., Vahedi, F., Kheiry, P.T., and Tanzadeh, R., 2012. Laboratory study on the effect of nano TiO2 on the rutting performance of asphalt pavements. Advanced Materials Research, pp. 990–994. https://doi.org/10.4028/www.scientific.net/amr.622-623.990

The European Commission, 2011. Recommendation on the definition of nanomaterial (2011/696/EU). Official Journal of the European Union, L 275/38.

Xu X., Guo H., Wang X., Zhang M., Wang Z., and Yang B., 2019. Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder. Construction and Building Materials, 224, pp. 732–742. https://doi.org/10.1016/j.conbuildmat.2019.07.097

Yang, Q., Liu, Q., Zhong, J., Hong, B., Wang, D., and Oeser, M., 2019. Rheological and micro-structural characterization of bitumen modified with carbon nanomaterials. Construction and Building Materials, 201, pp. 580–589. https://doi.org/10.1016/j.conbuildmat.2018.12.173

Yarahmadi, A. M., Shafabakhsh, G., and Asakereh, A., 2022. Laboratory investigation of the effect of nano CaCO3 on rutting and fatigue of stone mastic asphalt mixtures. Construction and Building Materials, 317, P. 126127. https://doi.org/10.1016/j.conbuildmat.2021.126127

You, Z., Mills-Beale, J., Foley, J.M., Roy, S., Odegard, G.M., Dai, Q., and Goh, S.W., 2011. Nanoclay-Modified Asphalt Materials: Preparation and Characterization. Construction and Building Materials, 25, pp. 1072-1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070.

Yousef, N., EL-Kemary, M., Salama, M.I., and Bekheet, W., 2025. Improving the performance of asphalt concrete mixtures using mesoporous silica nanoparticles and graphitic carbon nitride. Innovative Infrastructure Solutions, 10, P. 221. https://doi.org/10.1007/s41062-025-01951-w.

Yunus, K. N. M., Abdullah M. E., Ahmad M. K., Kamaruddin N. H. M., and Tami H., 2018. Physical and rheological properties of nano zinc oxide modified asphalt binder. MATEC Web Conf., 250, P. 02004. https://doi.org/10.1051/matecconf/201825002004

Zhang, H., Zhu, C. and Kuang, D., 2015. Physical, rheological, and aging properties of bitumen containing organic expanded vermiculite and nano-zinc oxide. Journal of Materials in Civil Engineering, 27(12), P. 04015203. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001499

Zhu, Q., He Z., Wang J., and Wang S., 2024. Morphology, rheology, and physical properties investigations of multi-scale nano-zinc oxide modified asphalt binder. Alexandria Engineering Journal, 89, pp. 31–38. https://doi.org/10.1016/j.aej.2023.12.031

Similar Articles

You may also start an advanced similarity search for this article.