Comparative Finite Element Study of Single and Group Piles Adjacent to Slopes Under Lateral Cyclic Loading
Main Article Content
Abstract
This study investigates the performance of a single pile and a (2×2) pile group located near saturated clayey slope under cyclic lateral loading using Finite Element Analysis (FEA). The simulations were conducted using Plaxis 3D with the Hardening Soil Model (HSM), which allows for a more accurate representation of soil behavior, especially in cyclic loading conditions. The model considered clayey soils with parameters derived from the official geotechnical report prepared by the Consulting Engineering Bureau (CEB) Laboratories of the University of Baghdad's College of Engineering. Both the single pile and pile group were placed at a distance of (4D) from an (8m) high slope with a (1:4) gradient. The loading conditions included static vertical loads and cyclic lateral loads. The most important results reached, pile groups reduced lateral displacement by 30-50% versus single piles, which suffered 20-40% greater displacement near slopes due to uneven soil support. One-way cyclic loading caused larger than two-way cyclic load permanent displacements, while two-way loading increased fatigue risks, with both degrading clay strength by up to 50%. Peak bending moments occurred at pile heads and slope crests, but group piles lowered these stresses by 30%.
Downloads
Article Details
Section
How to Cite
References
Andersen, K.H., 2015. Cyclic soil parameters for offshore foundation design. Frontiers in offshore geotechnics III, 5, pp. 5-82.
Basack, S., and Dey, S., 2012. Influence of relative pile-soil stiffness and load eccentricity on single pile response in sand under lateral cyclic loading. Geotechnical and Geological Engineering, 30, pp. 737-751.
Broms, B.B., 1964. Lateral resistance of piles in cohesive soils. Journal of the Soil Mechanics and Foundations Division, 90(2), pp. 27-63. https://doi.org/10.1061/JSFEAQ.0000611
Darcy, H., 1856. Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau (Vol. 1). Victor dalmont.
Deendayal, R., Sitharam, T.G., and Muthukkumaran, K., 2016. Effect of earthquake on a single pile located in sloping ground. International Journal of Geotechnical Earthquake Engineering (IJGEE), 7(1), pp. 57-72. https://doi.org/10.4018/IJGEE.2016010104.
Deendayal, R., 2017. Behavior of a single pile located on sloping ground of a soil under cyclic loading: a finite element analysis. International Journal of Civil Engineering and Technology (IJCIET), 8(10), pp. 925-932.
Gazetas, G., and Dobry, R., 1984. Simple radiation damping model for piles and footings. Journal of Engineering Mechanics, 110(6), pp. 937-956. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:6(937)
Gazetas, G., 1984. Seismic response of end-bearing single piles. International Journal of Soil Dynamics and Earthquake Engineering, 3(2), pp. 82-93. https://doi.org/10.1016/0261-7277(84)90003-2
Hopstad, A.L.H., Argyriadis, K., Manjock, A., Goldsmith, J., and Ronold, K.O., 2018, November. DNV GL standard for floating wind turbines. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 51975, P. V001T01A020). American Society of Mechanical Engineers. https://doi.org/10.1115/IOWTC2018-1035
Hussein, A.K., Mahmood, M.R., and Aswad, M.F., The behavior of secant pile wall embedded within soil by numerical analysis. http://dx.doi.org/10.30684/etj.2024.153503.1818
Islam, M.A., and Gnanendran, C.T., 2013. Slope stability under cyclic foundation loading-Effect of loading frequency. In Geo-Congress 2013: Stability and Performance of Slopes and Embankments III, pp. 750-761. https://doi.org/10.1061/9780784412787.075
Jin, Y., Bao, X., Kondo, Y., and Zhang, F., 2010. Numerical evaluation of group-pile foundation subjected to cyclic horizontal load. Frontiers of Architecture and Civil Engineering in China, 4, pp. 196-207.
Lehane, B.M., and Jardine, R.J., 1994. Displacement-pile behaviour in a soft marine clay. Canadian Geotechnical Journal, 31(2), pp. 181-191. https://doi.org/10.1139/t94-024
Long, J.H., and Vanneste, G., 1994. Effects of cyclic lateral loads on piles in sand. Journal of Geotechnical Engineering, 120(1), pp. 225-244. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(225)
Maheshwari, P. and Viladkar, M., 2007. Strip footings on a three layer soil system: theory of elasticity approach. International Journal of Geotechnical Engineering, 1(1), pp. 47-59. https://doi.org/10.3328/IJGE.2007.01.01.47-59
Matlock, H., 1970, April. Correlation for design of laterally loaded piles in soft clay. In Offshore Technology Conference (pp. OTC-1204). OTC. https://doi.org/10.4043/1204-MS
Naeini, S.A., and Hamidpoorzare, M., 2011. Numerical modeling of the seismic behavior of pile group in soil slopes. Unsaturated Soils: Theory and Practice.
Nimbalkar, S., and Basack, S., 2024. Pile group in clay subjected to cyclic lateral load: Numerical modelling and design recommendation. Marine Georesources & Geotechnology, 42(1), pp. 67-87. https://doi.org/10.1080/1064119X.2022.2150103
Orense, R.P., Yoshimoto, N. and Hyodo, M., 2012. Cyclic shear behavior and seismic response of partially saturated slopes. Soil Dynamics and Earthquake Engineering, 42, pp. 71-79. https://doi.org/10.1016/j.soildyn.2012.06.006
Peng, W.Z., Zhao, M.H., Yang, C.W., and Zhao, H., 2023. Model test and finite beam element solution of cyclic lateral characteristics of piles in sloping ground. Rock and Soil Mechanics, 44(2), P. 4. https://doi.org/10.16285/j.rsm.2022.5186
Poulos, H.G., 1971. Behavior of laterally loaded piles: I-single piles. Journal of the Soil Mechanics and Foundations Division, 97(5), pp. 711-731. https://doi.org/10.1061/JSFEAQ.0001592
Poulos, H.G., 1989. Cyclic axial loading analysis of piles in sand. Journal of Geotechnical Engineering, 115(6), pp. 836-852. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:6(836)
Qu, L.M., Ding, X.M., Wu, C.R., Long, Y.H., and Yang, J.C., 2020. Effects of topography on dynamic responses of single piles under vertical cyclic loading. Journal of Mountain Science, 17(1), pp. 230-243.
Randolph, M., and Gourvenec, S., 2017. Offshore geotechnical engineering. CRC press. https://doi.org/10.1201/9781315272474
Rao, S.N., Ramakrishna, V.G.S.T., and Rao, M.B., 1998. Influence of rigidity on laterally loaded pile groups in marine clay. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), pp. 542-549. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(542)
Rathod, K., Siddhardha, R., Munaga, T., and Gonavaram, K.K., 2024. An approach to characterize cyclic deflection of piles in cohesion less soil media under 1-way and 2-way cyclic loading on sloping ground. Sādhanā, 49(3), P. 210.
Reese, L.C., 1965. Non-dimensional solution for laterally loaded piles with soil modulus assumed proportional to depth. In Proc. 8th Texas Conf. SMFE. The Univ. of Texas.
Schanz, T., Vermeer, P.A., and Bonnier, P.G., 2019. The hardening soil model: Formulation and verification. In Beyond 2000 in Computational Geotechnics, pp. 281-296. Routledge.
Seed, H.B., and Idriss, I.M., 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, 97(9), pp. 1249-1273. https://doi.org/10.1061/JSFEAQ.0001662
Standard, B., 2006. Eurocode 1: Actions on structures—. British Standard, United Kingdom, 196.
Sundaramoorthy, M. and Rathod, D., 2024. The behaviour of a hybrid fibre reinforced full-scale concrete piles under lateral cyclic loading. Geotechnical and Geological Engineering, 42(6), pp. 4527-4542.
Terzaghi, K., 1943, Theoretical Soil Mechanics, Wiley, New York.
Wang, L., Zhang, X., and Tinti, S., 2021. Large deformation dynamic analysis of progressive failure in layered clayey slopes under seismic loading using the particle finite element method. Acta Geotechnica, 16(8), pp. 2435-2448.
Wu, F., Chen, C.H., and Litton, R.W., 2020, May. Effect of best-estimate clay PY curves on performance of offshore structures. In Offshore Technology Conference, P. D011S003R001. OTC. https://doi.org/10.4043/30889-MS
Yun, J.W., and Han, J.T., 2023. Evaluation of the dynamic behavior of pile groups considering the kinematic force of the slope using centrifuge model tests. Soil Dynamics and Earthquake Engineering, 173, P. 108106. https://doi.org/10.1016/j.soildyn.2023.108106
Zdravkovic, L., Taborda, D.M.G., Potts, D.M., Jardine, R.J., Sideri, M., Schroeder, F.C., Byrne, B.W., McAdam, R., Burd, H.J., Houlsby, G.T., and Martin, C.M., 2015. Numerical modelling of large diameter piles under lateral loading for offshore wind applications. Frontiers in Offshore Geotechnics III, 1, pp. 759-764.
Zhou, P., Dai, F., Yang, S., Liu, Y., Yan, Z., and Wei, M., 2025. Long-term cyclic performance of offshore jacked piles in structured clays: Insights from model testing. Marine Structures, 101, P. 103769. https://doi.org/10.1016/j.marstruc.2024.103769
