تقييم الأداء الصوتي لكاتم الصوت الممتص للعادم عددياً

محتوى المقالة الرئيسي

اسماء عدي
Ali I. Mosa

الملخص

الدافع وراء هذه الدراسة هو زيادة مستوى التلوث الضوضائي في جميع أنحاء العالم في العقد الماضي. الضوضاء من عوادم السيارات هي مشكلة كبيرة، من أجل تقليل تكلفة المواد الممتصة للصوت المستخدمة في كاتم الصوت، تم استخدام مواد صديقة للبيئة لدراسة فعاليتها في امتصاص الصوت. الهدف من هذه الدراسة هو تقييم إمكانات ألياف المواد الطبيعية كممتصات صوت فعالة في كاتم الصوت الممتص للعادم. أيضًا، تقييم أداء كاتم الصوت الإهليلجي من خلال دراسة عدد من العوامل، بما في ذلك مواد البطانة، وسمك البطانة، وكيف تؤثر هذه العوامل على فقدان انتقال الصوت. يتم استخدام طريقة العناصر المحدودة لمحاكاة وتحليل فقدان انتقال الصوت لنموذج كاتم صوت إهليلجي ثلاثي الأبعاد تم بناؤه باستخدام COMSOL Multiphysics. اقترحت هذه الورقة نموذجًا لكاتم صوت العادم مع نفايات (نخيل التمر أو جوز الهند أو ألياف جوز الهند والذرة) كمواد صديقة للبيئة لامتصاص الصوت. بالإضافة إلى ذلك، تم إجراء دراسة معاملية بمدى تردد يصل إلى (6000) هرتز من أجل تقييم تأثير سمك البطانة وقطر أنبوب المدخل / المخرج على فقدان النقل. أشارت النتائج إلى أن مقاومة تدفق الهواء للمادة (Rf) تحدد فقدان نقل الصوت؛ توفر المواد ذات مقاومة تدفق الهواء الأعلى تخفيفًا أفضل. كما أنها أكثر كفاءة عند تقليل قطر المدخل / المخرج وزيادة سمك البطانة.

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"تقييم الأداء الصوتي لكاتم الصوت الممتص للعادم عددياً" (2025) مجلة الهندسة, 31(7), ص 84–98. doi:10.31026/j.eng.2025.07.05.

المراجع

Amuaku, R., Amoah Asante, E., Edward, A. and Bright Gyamfi, G., 2019. Effects of chamber perforations, inlet and outlet pipe diameter variations on transmission loss characteristics of a muffler using comsol multiphysics. Advances in Applied Sciences, 4(6), P. 104. https://doi.org/10.11648/j.aas.20190406.11.

Antebas, A.G., Denia, F.D., Pedrosa, A.M. and Fuenmayor, F.J., 2013. A finite element approach for the acoustic modeling of perforated dissipative mufflers with non-homogeneous properties. Mathematical and Computer Modelling, 57(7–8), pp. 1970–1978. https://doi.org/10.1016/j.mcm.2012.01.021.

Arenas, J.P. and Asdrubali, F., 2018. Handbook of Ecomaterials. Handbook of Ecomaterials. https://doi.org/10.1007/978-3-319-48281-1.

Arslan, H., Ranjbar, M., Secgin, E. and Celik, V., 2020. Theoretical and experimental investigation of acoustic performance of multi-chamber reactive silencers. Applied Acoustics, 157, P. 106987. https://doi.org/10.1016/j.apacoust.2019.07.035.

Ashok Reddy, K., 2017. A critical review on acoustic methods & materials of a muffler. Materials Today: Proceedings, 4(8), pp. 7313–7334. https://doi.org/10.1016/j.matpr.2017.07.061.

Bordonga, J., Fromm, E. and Ernst, E.W., 2022. Design and implementation of active noise cancellation for car cabin on sulaimania roads using arduino embedded system. Journal of Engineering Education, 28(4), pp. 243–244. https://doi.org/10.1002/j.2168-9830.1993.tb01083.x.

Cao, L., Fu, Q., Si, Y., Ding, B. and Yu, J., 2018. Porous materials for sound absorption. Composites Communications, 10, pp. 25–35. https://doi.org/10.1016/j.coco.2018.05.001.

El Chami, Y., Pezeshki, Z., Sidi Mohamed, S.M. and Safaei, B., 2024. Enhanced acoustic attenuation performance of a novel absorptive muffler: A Helmholtz equation-based simulation study. Journal of Engineering Management and Systems Engineering, 3(1), pp. 53–64. https://doi.org/10.56578/jemse030105.

Chichvarina, K. and Smirnov, S., 2020. Study of the combined muffler effectiveness. MATEC Web of Conferences, 320, p. 00023. https://doi.org/10.1051/matecconf/202032000023.

Delany, M.E. and Bazley, E.N., 1970. Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), pp.105–116. https://doi.org/10.1016/0003-682X(70)90031-9.

Harold W. Lord, William S. Gatley, H.A.E., 1987. Noise Control for Engineers. R.E. Krieger Publishing Company.

Hosseini Fouladi, M., Ayub, M. and Jailani Mohd Nor, M., 2011. Analysis of coir fiber acoustical characteristics. Applied Acoustics, 72(1), pp. 35–42. https://doi.org/10.1016/j.apacoust.2010.09.007.

Jang, E.S., 2023. Sound absorbing properties of selected green material—A review. Forests, 14(7). https://doi.org/10.3390/f14071366.

Kalita, U., Pratap, A. and Kumar, S., 2015. Behavior of transmission loss in muffler with the variation in absorption layer thickness. International Journal of Scientific Research and Management (IJSRM), 3(4), pp. 2321–3418.

Kalita, U. and Singh, M., 2023. Acoustic performance analysis of muffler by varying sound absorption materials. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.272.

Kashikar, A., Suryawanshi, R., Sonone, N., Thorat, R. and Savant, S., 2021. Development of muffler design and its validation. Applied Acoustics, 180, P. 108132. https://doi.org/10.1016/j.apacoust.2021.108132.

khdier, H., Hussein, A. and Salih, W., 2020. Manufacturing of thermal and acoustic insulation from (Polymer blend/recycled natural fibers). Engineering and Technology Journal, 38(12), pp. 1801–1807. https://doi.org/10.30684/etj.v38i12A.1509.

Kosała, K., 2022. Transmission loss of absorptive mufflers lined with expanded clay granulates. Vibrations in Physical Systems, 33(2), pp. 2–9. https://doi.org/10.21008/j.0860-6897.2022.2.16.

Li, Y., Dai, Y., Yao, G., Luo, W., Zhi, C. and Xing, Y., 2024. Design of an improved impedance tube to measure sound absorption coefficients of flexible textile materials. Engineering Research Express, 6(1), P. 15413. https://doi.org/10.1088/2631-8695/ad3404.

Liu, G.R., 2002. Mesh Free Methods Moving Beyond the Finite Element Method. CRC Press.

Madier, D., 2023. An Introduction to the Fundamentals of Mesh Generation in Finite Element. http://www.fea-academy.com.

Min, H., Lou, H. and Zhao, Y., 2024. Acoustic properties of a micro-perforated muffler with parallel-arranged cavities of different depths. Building and Environment, 261(December 2023), P. 111728. https://doi.org/10.1016/j.buildenv.2024.111728.

Mosa, A.I., Al-Sadawi, L.A., Attia, O.H. and Adam, N.M., 2024. Predicting and modeling the effects of turbines noise on operator’s mental task performance in Al-Dora power plant. EUREKA, Physics and Engineering, 2024-Septe(5), pp. 173–182. https://doi.org/10.21303/2461-4262.2024.003390.

Mosa, A.I., Putra, A. and Mahmood, H.A., 2023. Evaluating the impact of structure parameters on the acoustic performance of an exhaust muffler with shells. Eastern-European Journal of Enterprise Technologies, 6(10(126)), pp. 43–49. https://doi.org/10.15587/1729-4061.2023.289250.

Potente, D., 2005. General design principles for an automotive muffler. Annual Conference of the Australian Acoustical Society 2005, Acoustics 2005: Acoustics in a Changing Environment, (November), pp. 121–126.

Prasad, A. and Thiagarajan, R.C., 2015. Acoustic performance design of automotive muffler . In: Proceedings of the COMSOL Conference. https://www.researchgate.net/publication/350063080_Acoustic_Performance_Design_of_Automotive_Muffler.

Ranjbar, M. and Alinaghi, M., 2016. Effect of liner layer properties on noise transmission loss in absorptive mufflers. Mathematical Modelling and Applications, 1(2), pp. 46–54. https://doi.org/10.11648/j.mma.20160102.13.

Ranjbar, M. and Kermani, M., 2015. Muffler design by noise transmission loss maximization. PhD thesis, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ).

Roy, T.W. Le, 2011. Muffler characterization with implementation of the finite element method and experimental techniques. Michigan Technological University. Michigan Technological University. https://doi.org/10.37099/mtu.dc.etds/381.

Sari, N.H., Wardana, I.N.G., Irawan, Y.S. and Siswanto, E., 2016. Physical and acoustical properties of corn husk fiber panels. Advances in Acoustics and Vibration, 2016, pp. 1–8. https://doi.org/10.1155/2016/5971814.

Sari, N.H., Wardana, I.N.G., Irawan, Y.S. and Siswanto, E., 2017. Corn husk fiber-polyester composites as sound absorber: Nonacoustical and acoustical properties. Advances in Acoustics and Vibration, 2017, pp. 1–7. https://doi.org/10.1155/2017/4319389.

Suhaeri, S., Fulazzaky, M.A., Husaini, H., Dirhamsyah, M. and Hasanuddin, I., 2024. Application of scirpus grossus fiber as a sound absorber. Heliyon, 10(7), P. e28961. https://doi.org/10.1016/j.heliyon.2024.e28961.

Taban, E., Amininasab, S., Soltani, P., Berardi, U., Abdi, D.D. and Samaei, S.E., 2021. Use of date palm waste fibers as sound absorption material. Journal of Building Engineering, 41(April). https://doi.org/10.1016/j.jobe.2021.102752.

Vasile, O., Gillich, N. and Laurentiu, N., 2011. Finite element analysis for reactive and dissipative rectangular muffler. In: Recent Advances in Signal Processing, Computational Geometry and Systems Theory - ISCGAV’11, ISTASC’11. pp. 251–255.

Venkataraman, D.B. and Raj, G., 2014. Experimental investigation and performance evaluation of passive noise control components. International Journal of Innovative Research in Science, Engineering and Technology, 03(09), pp. 16064–16071. https://doi.org/10.15680/ijirset.2014.0309041.

Vimaladass, A., 2022. Investigation of vehicle muffler acoustic transmission loss. PhD thesis in Kaunas University of Technology.

Wördenweber, B., 1984. Finite element mesh generation. Computer-Aided Design, 16(5), pp. 285–291. https://doi.org/10.1016/0010-4485(84)90087-3.

Xu, M.B., Selamet, A., Lee, I.J. and Huff, N.T., 2004. Sound attenuation in dissipative expansion chambers. Journal of Sound and Vibration, 272(3–5), pp. 1125–1133. https://doi.org/10.1016/j.jsv.2003.07.025.

Yang, T., Hu, L., Xiong, X., Petrů, M., Noman, M.T., Mishra, R. and Militký, J., 2020. Sound absorption properties of natural fibers: A review. Sustainability (Switzerland), 12(20), pp.1–25. https://doi.org/10.3390/su12208477.

Zhu, Y. wei, Zhu, F. wang, Zhang, Y. shan and Wei, Q. guo, 2017. The research on semi-active muffler device of controlling the exhaust pipe’s low-frequency noise. Applied Acoustics, 116, pp.9–13. https://doi.org/10.1016/j.apacoust.2016.09.011.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.