تحديد الحد الأدنى لضغط الامتزاج لحقل نفط عراقي باستخدام معادلة الحالة modified Peng Robison

محتوى المقالة الرئيسي

Rusul H. Rabeeah
Mohammed S. Al-Jawad

الملخص

إن خصائص السوائل المكمنية تشكل معلومات بالغة الأهمية تستخدم في العديد من حسابات هندسة الإنتاج والمكامن. وتعتبر خصائص PVT للسوائل المكمنية ضرورية لإدارة المكمن بفعالية من اكتشاف المكمن إلى هجره، كما أن ضغط الامتزاج الأدنى (MMP) يعد مقياساً بالغ الأهمية يستخدم لتقييم احتمالية تطبيق الإزاحة القابلة للامتزاج. ويمكن أن يكون حقن الغاز الهيدروكربوني وسيلة فعالة للغاية لزيادة إنتاجية البئر في تحسين استخلاص النفط، وخاصة إذا تم تطوير قابلية الامتزاج أثناء عملية الإزاحة. وهناك العديد من التجارب المتاحة لتحديد ضغط الامتزاج وضغط الحجم ودرجة الحرارة (PVT)، ولكنها مكلفة وتستغرق وقتاً طويلاً. والهدف من هذه الدراسة هو تقدير الخصائص الفيزيائية وسلوك الطور المتوقع للسوائل المكمنية وتحديد ضغط الامتزاج الأدنى اللازم لحقن ثاني أكسيد الكربون بالهيدروكربونات في أحد حقول النفط العراقية. وقد تم التوصل إلى اتفاق جيد بين البيانات المحسوبة من معادلة الحالة باستخدام(PR)وبيانات المختبر من خلال عملية الانحدار. نتيجة لهذه الدراسة تم تحديد نوع السائل المكمن في أحد حقول النفط العراقية من خلال نمذجة PVT وهو عبارة عن مكمن نفط أسود، وتم استخدام ثلاث طرق مختلفة لتقدير قيم ضغط الامتزاج الأدنى (MMP) باستخدام معادلة الحالة المعدلة مع المقارنة بالارتباطات، وقد وجد أن طريقتي cell-to-cell وKey Tie Line لديهما أقل الأخطاء من طريقة multiple mixing cell.

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"تحديد الحد الأدنى لضغط الامتزاج لحقل نفط عراقي باستخدام معادلة الحالة modified Peng Robison" (2025) مجلة الهندسة, 31(7), ص 221–232. doi:10.31026/j.eng.2025.07.12.

المراجع

Adekunle, O., and Hoffman, B.T., 2014. Minimum miscibility pressure studies in the Bakken. SPE Improved Oil Recovery Symposium. https://doi.org/10.2118/169077-MS.

Ahmad, W., Vakili-Nezhaad, G., Al-Bemani, A.S., and Al-Wahaibi, Y., 2016. Experimental determination of minimum miscibility pressure. Procedia Engineering, 148, pp. 1191–1198. https://doi.org/10.1016/j.proeng.2016.06.629.

Ahmadi, K., and Johns, R.T., 2011. Multiple mixing-cell method for MMP calculations. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/116823-MS.

Ahmed, T., 1997. A generalized methodology for minimum miscibility pressure. Latin American and Caribbean Petroleum Engineering Conference. https://doi.org/10.2118/39034-MS.

Al-Hinai, K., Al-Bemani, A., and Vakili-Nezhaad, G., 2014. Experimental and theoretical investigation of the CO2 minimum miscibility pressurefor the Omani oils for CO2 injection Eor method. International Journal of Environmental Science and Development, pp. 142–146. https://doi.org/10.7763/ijesd.2014.v5.466

Ayoub, M.A., Tackie-Otoo, B.N., and Zulkefli, S.H., 2022. The combined effects of the minimum miscibility pressure and injection rate variations on recovery of CO2 flooding in sandstone reservoir. Journal of Petroleum Exploration and Production Technology, 12(11), pp. 2899–2913. https://doi.org/10.1007/s13202-022-01480-7

Cui, W., Liang, Y., Masuda, Y., Tsuji, T., Matsuoka, T., and Takahashi, H., 2022. Estimation of the minimum miscibility pressure for CO2–crude-oil systems by molecular dynamics simulation. Petroleum Research, 8(1), pp. 1–10. https://doi.org/10.1016/j.ptlrs.2022.08.001.

Dindoruk, B., Johns, R., and Orr, F.M., 2021. Measurement and modeling of minimum miscibility pressure: A state-of-the-art review. SPE Reservoir Evaluation & Engineering, 24(02), pp. 367–389. https://doi.org/10.2118/200462-PA.

Ekundayo, J.M., and Ghedan, S.G., 2013. Minimum miscibility pressure measurement with slim tube apparatus - how unique is the value? All Days. SPE Reservoir Characterization and Simulation Conference and Exhibition, Abu Dhabi, UAE. https://doi.org/10.2118/165966-MS.

Elsharkawy, A.M., Poettmann, F.H., and Christiansen, R.L., 1992. Measuring minimum miscibility pressure: Slim-tube or rising-bubble method? SPE/DOE Enhanced Oil Recovery Symposium. https://doi.org/10.2118/24114-MS.

Firoozabadi, A., and Aziz, K., 1986. Analysis and correlation of Nitrogen and lean-gas miscibility pressure. SPE Reservoir Engineering, 1(06), pp. 575–582. https://doi.org/10.2118/13669-PA.

Glasø, 1985. Generalized minimum miscibility pressure correlation. Society of Petroleum Engineers Journal, 25(06), pp. 927–934. https://doi.org/10.2118/12893-PA.

Hadi, L.I., and Hamd-Allah, S.M., 2020. Estimation of minimum miscibility pressure for hydrocarbon gas injection based on Eos. Association of Arab Universities Journal of Engineering Sciences, 27(3), pp. 9–14. https://doi.org/10.33261/jaaru.2020.27.3.002.

Hamd-allah, S., Lazim, S.A., and Hameed, A.A., 2018. Estimation of minimum miscibility pressure for CO2 flood based on Eos. Journal of Engineering, 24(4), pp. 89–95. https://doi.org/10.31026/j.eng.2018.04.06.

Hameed, A.A, 2017, Determination of Minimum Miscibility Pressure for CO2 Flood into Iraqi Oil Reservoirs, M.Sc. thesis, Petroleum technology, University of Technology.

Hawthorne, S.B., Miller, D.J., Jin, L., and Gorecki, C.D., 2016. Rapid and simple capillary-rise/vanishing interfacial tension method to determine crude oil minimum miscibility pressure: Pure and Mixed CO2, methane, and ethane. Energy & Fuels, 30(8), pp. 6365–6372. https://doi.org/10.1021/acs.energyfuels.6b01151.

Hutchinson, C.A., and Braun, P.H., 1961. Phase relations of miscible displacement in oil recovery. AIChE Journal, 7(1), pp. 64–72. https://doi.org/10.1002/aic.690070117.

Jarrell, P.M., Fox, C.E., Stein, M.H., and Webb, S.L., 2002. Practical aspects of CO2 flooding. Society of Petroleum Engineers, https://doi.org/10.2118/9781555630966.

Jessen, K. and Orr, F.M., 2008. On interfacial-tension measurements to estimate minimum miscibility pressures. SPE Reservoir Evaluation & Engineering, 11(05), pp. 933-939. https://doi.org/10.2118/110725-PA.

Khorsandi, S., and Johns, R.T., 2015. Tie-line solutions for MMP calculations by equations-of-state. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/175025-MS.

Li, S., and Luo, P., 2017. Experimental and simulation determination of minimum miscibility pressure for a Bakken tight oil and different injection gases. Petroleum, 3(1), pp. 79–86. https://doi.org/10.1016/j.petlm.2016.11.011.

Mansour, E.M., Al-Sabagh, A.M., Desouky, S.M., Zawawy, F.M., and Ramzi, M., 2018b. A new estimating method of minimum miscibility pressure as a key parameter in designing co2 gas injection process. Egyptian Journal of Petroleum, 27(4), pp. 801–810. https://doi.org/10.1016/j.ejpe.2017.12.002.

Metcalfe, R.S., Fussell, D.D., and Shelton, J.L., 1973. A multicell equilibrium separation model for the study of multiple contact miscibility in rich-gas drives. Society of Petroleum Engineers Journal, 13(03), pp. 147–155. https://doi.org/10.2118/3995-PA.

Mihcakan, I.M., 1993. Minimum Miscibility Pressure as a Function of Temperature and Gas Composition Using the Rising Bubble Apparatus. MS thesis, Colorado School of Mines, USA.

Mohamed Mansour, E., 2020. Equation of state. Inverse Heat Conduction and Heat Exchangers. IntechOpen. http://dx.doi.org/10.5772/intechopen.89919.

Orr, F.M., and Jessen, K., 2007. An analysis of the vanishing interfacial tension technique for determination of minimum miscibility pressure. Fluid Phase Equilibria, 255(2), pp. 99–109. https://doi.org/10.1016/j.fluid.2007.04.002.

Peng, W., and Pope, G.A., 2001. Proper use of equations of state for compositional reservoir simulation. Journal of Petroleum Technology, 53(07), pp. 74–81. https://doi.org/10.2118/69071-JPT

Rao, D.N., and Lee, J.I., 2002. Application of the new vanishing interfacial tension technique to evaluate miscibility conditions for the Terra Nova Offshore Project. Journal of Petroleum Science and Engineering, 35(3–4), pp. 247–262. https://doi.org/10.1016/S0920-4105(02)00246-2.

Robinson, D.B., and Peng, D.Y., 1978. The characterization of the Heptanes and heavier fractions for the GPA peng-robinson programs. Tulsa, Okla: Gas Processors Association. https://doi.org/10.1021/i160057a011.

Saini, D., 2019. CO2-Reservoive Oil Miscibility: Experimental and non-experimental characterization and determination approaches. Cham, Switzerland: Springer. ISBN: 978-3-319-95546-9.

Srivastava, R.K., and Huang, S.S., 1998. New interpretation technique for determining minimum miscibility pressure by rising. SPE India Oil and Gas Conference and Exhibition. https://doi.org/10.2118/39566-MS.

Stalkup, F.I., 1983. Status of miscible displacement. Journal of Petroleum Technology, 35(04), pp. 815–826. https://doi.org/10.2118/9992-PA.

Tileuberdi, N., AL-Dujaili, A.N., Mashrapova, M., Togizov, K., Sanatbekov, M., and Yergali, A., 2024. Optimizing oil recovery by low-pressure nitrogen injection: an experiment case study. ES Materials & Manufacturing, 25, P. 1189. https://dx.doi.org/10.30919/esmm1189.

Wang, Y., and Orr, F.M., 1997. Analytical calculation of minimum miscibility pressure. Fluid Phase Equilibria, 139(1–2), pp. 101–124. https://doi.org/10.1016/S0378-3812(97)00179-9.

Yarborough, L., and Smith, L.R., 1970. Solvent and driving gas compositions for miscible slug displacement. Society of Petroleum Engineers Journal, 10(03), pp. 298–310. https://doi.org/10.2118/2543-PA.

Yellig, W.F., and Metcalfe, R.S., 1980. Determination and prediction of CO2 minimum miscibility pressures (includes Associated Paper 8876 ). Journal of Petroleum Technology, 32(01), pp. 160–168. https://doi.org/10.2118/7477-PA.

Zhang, K., and Gu, Y., 2016. New qualitative and quantitative technical criteria for determining the minimum miscibility pressures (mmps) with the rising-bubble apparatus (RBA). Fuel, 175, pp. 172–181. https://doi.org/10.1016/j.fuel.2016.02.021.

Zick, A.A., 1986. A combined condensing/vaporizing mechanism in the displacement of oil by enriched gases. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/15493-MS

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.