مساهمة مقاومة انضغاط الخرسانة الحشوية في الأداء الإنشائي لأعمدة (CFSST): دراسة تحليلية
محتوى المقالة الرئيسي
الملخص
تُعد المنشات الشاهقة الارتفاع مؤشرًا مهمًا في التطور الحضري المعاصر، وخاصة في المناطق التي تتميز بالنمو الحضري المتسارع والكثافة السكانية. يصمم هذا النوع من المباني لتحمل ظروف الأحمال الشديدة. لذلك، فإن استخدام العناصر الهيكلية المركبة في مثل هذه الهياكل مطلوب لتوفير مزيد من القوة والديمومة. تقدم هذه الورقة نموذج تحليلي باعتماد طريقة العناصر المحدودة المحددة للأعمدة الأنبوبية المصنوعة من الفولاذ المقاوم للصدأ والمملوءة بالخرسانة (CFSST) ذات المقطع العرضي (100 × 100) مم وطول (1250) مم لفحص تأثير قوة انضغاط الخرسانة على استجابة اعمدة (CFSST) . في البدء, تم تقييم النموذج التحليلي من خلال مقارنة شاملة مع بحث تجريبي، وبعد ذلك تم استخدام النموذج لدراسة المعاملات المعتمدة، أي قوة انضغاط الخرسانة. تم تضمين مجموعة واسعة من قوى ضغط الخرسانة (45 و50 و55 و60 و65 و70 و75) ميجا باسكال. أشارت نتائج العناصر المحدودة إلى أن القوة القصوى لأعمدة CFSST تتناسب طرديًا مع قوة انضغاط الخرسانة الحشوية. بلغت أقصى قدرة تحميل مكتسبة (416 كيلو نيوتن) عند قوة تحمل الخرسانة 75 ميجا باسكال. وامتد تحسين زيادة قوة ضغط الخرسانة الحشوية ليشمل الصلابة والمتانة وحمل الخضوع ليصبح (89، 38.9، و64%) على التوالي، مع زيادة قوة الانضاط إلى 75 ميجا باسكال. ولم يشمل تحسن الاستجابة مؤشر اللدونة. ولوحظ انخفاض في مؤشر اللدونة مع زيادة قوة انضغاط الخرسانة الحشوية ليصل إلى 15.4% عند 65 ميجا باسكال. يستمر هذا الانخفاض ثابتًا حتى مع زيادة قوة الضغط الى (70 و75 ميجا باسكال).
##plugins.themes.bootstrap3.displayStats.downloads##
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Alrebeh, S.K., and Ekmekyapar, T., 2019. Structural behavior of concrete-filled steel tube short columns stiffened by external and internal continuous spirals. Structures, 22, pp. 98–108, https://doi:10.1016/j.istruc.2019.07.001
Al-Sherrawi, M.H., Salman, H.M., and Mohammed, S.D., 2025. Analytical and theoretical development of load-moment interaction diagrams of rectangular CFRP-RC columns. Engineering Technology Application Science Research, 15(4), pp. 25178–25191, https://doi.org/10.48084/etasr.12059
Carlos, A., Coronado, and Maria, M. Lopez, 2006. Sensitivity analysis of reinforced concrete beams strengthened with FRP laminates, Cement and Concrete Composites, 28(1), pp. 102-114. https://doi.org/10.1016/j.cemconcomp.2005.07.005
Dabaon, M.A., El-Boghdadi, M.H., and Hassanein, M.F., 2009. Experimental investigation on concrete-filled stainless steel stiffened tubular stub columns. Engineering Structures, 31(2), pp. 300–307. https://doi.org/10.1016/j.engstruct.2008.08.017
Dai, X., and Lam, D., 2010. Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections. Steel and Composite Structures, 10(6), pp. 517–539, https://doi.org/10.12989/scs.2010.10.6.517
Dong, H., Li, Y., Cao, W., Qiao, Q., and Li, R., 2018. Uniaxial compression performance of rectangular CFST columns with different internal construction characteristics. Engineering Structures, 176(1), pp. 763–775, https://doi:10.1016/j.engstruct.2018.09.05
Ellobody, E., and Young, B., 2005. Structural performance of cold-formed high strength stainless steel columns. Journal of Constructional Steel Research, 61(12), pp. 1631-1649. https://doi.org/10.1016/j.jcsr.2005.05.001
Ellobody, E., and Young, B., 2006. Design and behaviour of concrete-filled cold-formed stainless steel tube columns. Engineering Structures, 28(5), pp. 716–728. https://doi.org/10.1016/j.engstruct.2005.09.023
Ellobody, E., Young, B., and Lam, D., 2006. Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. journal of Constructional Steel Research, 62(7), pp. 706–715. https://doi.org/10.1016/j.jcsr.2005.11.002
Hassanein, M.F., Shao, Y.B., Elchalakani, M., and El Hadidy, A.M., 2020. Flexural buckling of circular concrete-filled stainless steel tubular columns. Marine Structures, 71(5), P. 102722. https://doi.org/10.1016/j.marstruc.2020.102722
Kazemzadeh Azad, S., Li, D., and Uy, B., 2021. Compact and slender box concrete-filled stainless steel tubes under compression, bending, and combined loading. Journal of Constructional Steel Research, 184(9), P. 106813. https://doi.org/10.1016/j.jcsr.2021.106813
Lam, D., and Gardner, L., 2008. Structural design of stainless steel concrete filled columns. Journal of Constructional Steel Research, 64(11), pp. 1275–1282. https://doi.org/10.1016/j.jcsr.2008.04.012
Lam, D., and Williams, C.A., 2004. Experimental study on concrete filled square hollow sections. Steel and Composite Structures, 4(2), pp. 95–112, https://doi.org/10.12989/scs.2004.4.2.095
Lee, S.H., Uy, B., Kim, S.H., Choi, Y.H., and Choi, S.M., 2011. Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. Journal of Constructional Steel Research, 67(1), pp. 1–13. https://doi.org/10.1016/j.jcsr.2010.07.003
Liew, J.Y.R.., Xiong, M., and Xiong, D., 2016. Design of concrete filled tubular beam-columns with high strength steel and concrete. Structures, 8(12), pp. 213–226. https://doi.org/10.1016/j.istruc.2016.05.005
Liu, D., 2004. Behaviour of high strength rectangular concrete-filled steel hollow section columns under eccentric loading. Thin-Walled Structures, 42(12), pp. 1631–1644. https://doi.org/10.1016/j.tws.2004.06.002
Liu, D., 2005. Tests on high-strength rectangular concrete-filled steel hollow section stub columns. Journal of Constructional Steel Research, 61(7), pp. 902–911. https://doi.org/10.1016/j.jcsr.2005.01.001
Liu, D., 2006. Behaviour of eccentrically loaded high-strength rectangular concrete-filled steel tubular columns. Journal of Constructional Steel Research, 62(8), pp. 839–846. https://doi.org/10.1016/j.jcsr.2005.11.020
Manikanta, K., Hanumantha Rao, C., and Siva Kishore, I., 2020. Investigation on structural behavior of concrete filled stainless steel tubular stub columns. Materials Today: Proceedings, 33(1), pp. 964–972.
https://doi.org/10.1016/j.matpr.2020.06.525
Mursi, M., and Uy, B., 2004. Strength of slender concrete filled high strength steel box columns. Journal of Constructional Steel Research, 60(12), pp. 1825–1848. https://doi.org/10.1016/j.jcsr.2004.05.002
Naaman, A.E., and Jeong, S.M., 1995. Structural ductility of concrete beams prestressed with FRP tendons, non-metallic (FRP) reinforcement for concrete structures. Proceedings of the Second International RILEM Symposium, L. Taerwe, ed., CRC Press, Boca Raton, FL, pp. 379-386.
Rasmussen, K.J.R., 2000. Recent research on stainless steel tubular structures. Journal of Constructional Steel Research, 54(1), pp. 75–88. https://doi.org/10.1016/S0143-974X(99)00052-8
Salman, H.M., and Al-Sherrawi, M.H. 2024. M-N Interaction diagrams of RC columns strengthened with steel C-sections and battens. Civil Engineering Journal. 10(6), pp. 1974–1986, https://doi.org/10.28991/CEJ-2024-010-06-016
Tao, Z., Ha,n L.H., and Wang, D.Y., 2007. Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns. Thin-Walled Structures, 45(5), pp. 517–527. https://doi.org/10.1016/j.tws.2007.04.003
Tokgoz, S., Dundar, C., Karaahmetli, S., and Ozel, R., 2021. Research on concrete-filled stainless steel tubular composite columns. Structures, 33, pp. 703–719, https://doi.org/10.1016/j.istruc.2021.04.065
Uy, B., Tao, Z., and Han, L.H., 2011. Behaviour of short and slender concrete-filled stainless steel tubular columns. Journal of Constructional Steel Research, 67(3), pp. 360–378, https://doi.org/10.1016/j.jcsr.2010.10.004
Uy, B., 2000. Strength of concrete-filled steel box columns incorporating local buckling. , Journal of Structural Engineering. ASCE, 126(3), pp. 341–352. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341)
Uy, B., 2008. Stability and ductility of high performance steel sections with concrete infill. Journal of Constructional Steel Research, 64(7-8), pp. 748–754. https://doi.org/10.1016/j.jcsr.2008.01.036
Wang, X., Liu J., and Zhou, X., 2016. Behaviour and design method of short square tubed-steel- reinforced-concrete columns under eccentric loading. Journal of Constructional Steel Research, 116(1), pp. 193–203. https://doi.org/10.1016/j.jcsr.2015.09.018
Young, B., and Ellobody, E., 2006. Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns. Journal of Constructional Steel Research, 62(5), pp. 484–492. https://doi.org/10.1016/j.jcsr.2005.08.004
Zeghiche, J., and Chaoui, K., 2005. An experimental behaviour of concrete-filled steel tubular columns, Journal of Constructional Steel Research, 61(1), pp. 53–66, https://doi.org/10.1016/j.jcsr.2004.06.006
Zhang, T., Ding, F., Wang, L., Liu, X., and Jiang, G., 2018. Behavior of polygonal concrete-filled steel tubular stub columns under axial loading. Steel Composite Structures, 28(5), pp. 573–588. https://doi.org/10.12989/scs.2018.28.5.573
