تصميم وتنفيذ شبكة الوصول الراديوي السحابية (C-RAN) باستخدام منصة OMNET++
محتوى المقالة الرئيسي
الملخص
لتوفير البيانات عالية السرعة، تعمل حاليًا شبكات الاتصالات اللاسلكية التجارية من الجيل الخامس. ومع ذلك، ستواجه شبكات الجيل الخامس اللاسلكية ضغطًا كبيرًا بسبب الزيادة الهائلة في عدد الأجهزة الذكية وإدخال تطبيقات إنترنت كل شيء (IoE) التي تتطلب اتصالاً موثوقًا للغاية وزمن انتقال منخفض. لذلك، فإن معدل البيانات الذي يمكن أن تقدمه شبكات الجيل الخامس لن يدعم الزيادة الهائلة الحالية في حركة المرور. هذا قد حفز البحث في التقدمات اللازمة لنقل الشبكات الحالية إلى الجيل السادس من الشبكات الخلوية، وهو الجيل التالي. لذلك اقترح البحث عمل شبكة الوصول اللاسلكي السحابية (Cloud-RAN) وهي البنية التحتية المخصصة المناسبة لدعم تطبيقات شبكات الجيل الخامس وما بعده (B5G)، لذا فإن الهدف الرئيسي في البحث الحالي هو نشر شبكة الوصول اللاسلكي السحابية (C-RAN) كممكن لمشغلي الشبكات المتقدمين باستمرار والمستخدمين النهائيين المتزايدين لدعم الطلبات المختلفة للخدمات وتقليل نفقات الشبكة. من خلال فصل وحدات النطاق الأساسي (BBU) عن رأس الراديو البعيد (RRH) وتركيز معالجة النطاق الأساسي في مركز بيانات مشترك (مجموعة من وحدات النطاق الأساسي)، تقلل هذه البنية التحتية التكاليف وتزيد من استخدام الموارد المتاحة. في البحث المقترح تم استخدام محاكاة OMNET++ لتقييم C-RAN حيث تم استخدام أداة Simu5G لمحاكاة المستخدم ومكون) RRH جانب الخلية) بينما تم استخدام أداة iCanCloud لمحاكاة بنية السحابة إلى مجموعة )BBU جانب المعالجة(
##plugins.themes.bootstrap3.displayStats.downloads##
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Alexiou, A., White Paper WWRF contributions towards IMT-2030.
Amiri, E., Wang, N., Shojafar, M., Hamdan, M.Q., Foh, C.H. and Tafazolli, R., 2023. Deep reinforcement learning for robust vnf reconfigurations in o-ran. IEEE Transactions on Network and Service Management, 21(1), pp. 1115-1128. https://doi.org.10.1109/TNSM.2023.3316074.
Beloglazov, A., Abawajy, J. and Buyya, R., 2012. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future generation computer systems, 28(5), pp. 755-768. https://doi.org/10.1016/j.future.2011.04.017.
Castane, G.G., Nunez, A. and Carretero, J., 2012, July. iCanCloud: A brief architecture overview. IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, pp. 853-854. IEEE. https://doi.org/10.1109/ISPA.2012.131.
Chabira, C., Shayea, I., Nurzhaubayeva, G., Aldasheva, L., Yedilkhan, D. and Amanzholova, S., 2025. AI-Driven Handover Management and Load Balancing Optimization in Ultra-Dense 5G/6G Cellular Networks. Technologies, 13(7), P. 276. https://doi.org/10.3390/technologies13070276.
Chen, K., Cui, C., Huang, Y., Huang, B., Wu, J., Rangan, S. and Zhang, H., 2013. C-RAN: A green RAN framework. In Green Communications: Theoretical Fundamentals, Algorithms and Applications, pp. 279-304. CRC Press.
Chen, N., Rong, B., Zhang, X. and Kadoch, M., 2017. Scalable and flexible massive MIMO precoding for 5G H-CRAN. IEEE Wireless Communications, 24(1), pp. 46-52. https://doi.org/10.1109/MWC.2017.1600139WC.
Chughtai, N.A., Ali, M., Qaisar, S., Imran, M., Naeem, M. and Qamar, F., 2018. Energy efficient resource allocation for energy harvesting aided H-CRAN. IEEE Access, 6, pp. 43990-44001. https://doi.org/10.1109/ACCESS.2018.2862920.
Dahrouj, H., Douik, A., Dhifallah, O., Al-Naffouri, T.Y. and Alouini, M.S., 2015. Resource allocation in heterogeneous cloud radio access networks: Advances and challenges. IEEE Wireless Communications, 22(3), pp. 66-73. https://doi.org.10.1109/MWC.2015.7143328.
Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I. and Poor, H.V., 2017. Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), pp. 185-191. https://doi.org.101109/MCOM.2017.1500657CM.
Ejaz, W., Sharma, S.K., Saadat, S., Naeem, M., Anpalagan, A. and Chughtai, N.A., 2020. A comprehensive survey on resource allocation for CRAN in 5G and beyond networks. Journal of Network and Computer Applications, 160, P. 102638. https://doi.org/10.1016/j.jnca.2020.102638.
Farhat, I., Awan, F.G., Rashid, U., Anwaar, H., Khezami, N., Boulkaibet, I., Neji, B. and Nzanywayingoma, F., 2024. Recent trends in cloud radio access networks. IEEE Access. https://doi.org.10.1109/ACCESS.2024.3437196.
Farooqui, M.F., Muqeem, M., Sultan, A., Nazeer, J. and Abdeljaber, H.A., 2023. A fuzzy logic based solution for network traffic problems in migrating parallel crawlers. International Journal of Advanced Computer Science and Applications, 14(2).
Hao, W., Muta, O. and Gacanin, H., 2018. Price-based resource allocation in massive MIMO H-CRANs with limited fronthaul capacity. IEEE Transactions on Wireless Communications, 17(11), pp. 7691-7703. https://doi.org.10.1109/TWC.2018.2869749.
Hossain, M.F., Mahin, A.U., Debnath, T., Mosharrof, F.B. and Islam, K.Z., 2019. Recent research in cloud radio access network (C-RAN) for 5G cellular systems-A survey. Journal of Network and Computer Applications, 139, pp. 31-48. https://doi.org/10.1016/j.jnca.2019.04.019.
Ismail, S.F. and Kadhim, D.J., 2024. Towards 6G technology: Insights into resource management for cloud RAN deployment. IoT, 5(2), pp. 409-448. https://doi.org/10.3390/iot5020020.
Ismail, S.F. and Kadhim, D.J., 2025. Adaptive BBU migration based on deep Q-Learning for Cloud radio access network. Applied Sciences, 15(7), P. 3494. https://doi.org/10.3390/app15073494.
Jahandar, S., Shayea, I., Gures, E., El-Saleh, A.A., Ergen, M. and Alnakhli, M., 2025. Handover decision with multi-access edge computing in 6G networks: A survey. Results in Engineering, P. 103934. https://doi.org/10.1016/j.rineng.2025.103934.
Jiang, D. and Liu, G., 2016. An overview of 5G requirements. 5G Mobile Communications, pp. 3-26.
Kalil, M., Al-Dweik, A., Sharkh, M.F.A., Shami, A. and Refaey, A., 2017. A framework for joint wireless network virtualization and cloud radio access networks for next generation wireless networks. IEEE Access, 5, pp. 20814-20827. https://doi.org.10.1109/ACCESS.2017.2746666.
Kaltenberger, F., Silva, A.P., Gosain, A., Wang, L. and Nguyen, T.T., 2020. OpenAirInterface: Democratizing innovation in the 5G Era. Computer Networks, 176, P. 107284. https://doi.org/10.1016/j.comnet.2020.107284
Kardaras, G. and Lanzani, C., 2009, September. Advanced multimode radio for wireless & mobile broadband communication. In 2009 European wireless technology conference, pp. 132-135. IEEE.
Khani, M., Jamali, S. and Sohrabi, M.K., 2023. An enhanced deep reinforcement learning-based slice acceptance control system (EDRL-SACS) for cloud–radio access network. Physical Communication, 61, P. 102188. https://doi.org/10.1016/j.phycom.2023.102188.
Kolawole, O.Y., Vuppala, S. and Ratnarajah, T., 2017. Multiuser millimeter wave cloud radio access networks with hybrid precoding. IEEE Systems Journal, 12(4), pp. 3661-3672. https://doi.org.10.1109/JSYST.2017.2713463.
Mai, Z., Chen, Y., Xie, Y. and Chen, G., 2023. An energy efficiency optimization jointing resource allocation for delay-aware traffic in fronthaul constrained C-RAN. Wireless Networks, 29(1), pp. 353-368. https://doi.org/10.1007/s11276-022-03118-2.
Meerja, K.A., Shami, A. and Refaey, A., 2015. Hailing cloud empowered radio access networks. IEEE Wireless Communications, 22(1), pp. 122-129. https://doi.org.10.1109/MWC.2015.7054727.
Moura, B.M., Schneider, G.B., Yamin, A.C., Santos, H., Reiser, R.H. and Bedregal, B., 2022. Interval-valued fuzzy logic approach for overloaded hosts in consolidation of virtual machines in cloud computing. Fuzzy Sets and Systems, 446, pp. 144-166. https://doi.org/10.1016/j.fss.2021.03.001.
Nardini, G., Sabella, D., Stea, G., Thakkar, P. and Virdis, A., 2020. Simu5g–an omnet++ library for end-to-end performance evaluation of 5G networks. IEEE Access, 8, pp. 181176-181191. https://doi.org.10.1109/ACCESS.2020.3028550.
Nikaein, N., 2015, September. Processing radio access network functions in the cloud: Critical issues and modeling. In Proceedings of the 6th international workshop on mobile cloud computing and services, pp. 36-43. https://doi.org/10.1145/2802130.28021.
Peng, M., Wang, C., Lau, V. and Poor, H.V., 2015. Fronthaul-constrained cloud radio access networks: Insights and challenges. IEEE Wireless Communications, 22(2), pp. 152-160. https://doi.org.10.1109/MWC.2015.7096298.
Perera, T.D.P., Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S. and Li, J., 2017. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), pp. 264-302. https://doi.org.10.1109/COMST.2017.2783901.
Perveen, A., Abozariba, R., Patwary, M. and Aneiba, A., 2023. Dynamic traffic forecasting and fuzzy-based optimized admission control in federated 5G-open RAN networks. Neural Computing and Applications, 35(33), pp. 23841-23859. https://doi.org/10.1007/s00521-021-06206-0.
Rangan, S., Rappaport, T.S. and Erkip, E., 2014. Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), pp. 366-385. https://doi.org.10.1109/JPROC.2014.2299397.
Rodoshi, R.T., Kim, T. and Choi, W., 2020. Resource management in cloud radio access network: Conventional and new approaches. Sensors, 20(9), p.2708. https://doi.org/10.3390/s20092708.
Saatchi, R., 2024. Fuzzy Logic Concepts, Developments and Implementation. Information, 15(10).
Schwarz, S., 2018, December. Dynamic distributed antenna systems: A transitional solution for CRAN implementation. In 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1-7. IEEE. https://doi.org.10.1109/GLOCOMW.2018.8644523.
Stephen, R.G. and Zhang, R., 2018. Uplink channel estimation and data transmission in millimeter-wave CRAN with lens antenna arrays. IEEE Transactions on Communications, 66(12), pp. 6542-6555. https://doi.org.10.1109/TCOMM.2018.2859996.
Wassie, S.F., Di Maio, A. and Braun, T., 2025, March. Deep reinforcement learning for context-aware online service function chain deployment and migration over 6G networks. In Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing, pp. 1361-1370).https://doi.org/10.1145/3672608.3707975
Xia, N., Chen, H.H. and Yang, C.S., 2017. Radio resource management in machine-to-machine communications—A survey. IEEE Communications Surveys & Tutorials, 20(1), pp. 791-828. https://doi.org/10.1109/COMST.2017.2765344.
You, X., Wang, C.X., Huang, J., Gao, X., Zhang, Z., Wang, M., Huang, Y., Zhang, C., Jiang, Y., Wang, J. and Zhu, M., 2021. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Science China Information Sciences, 64(1), P. 110301. https://doi.org/10.1007/s11432-020-2955-6.
