The Effect of Non-Thermal Plasma on the Structural and Optical Characteristics of SnO2:Co Thin Films Prepared by Spray Pyrolysis Technique
Main Article Content
Abstract
This study used a spray pyrolysis approach to create thin films from SnO2 doped with 2% Co on a heated glass substrate at 400°C and investigated how the structural and optical characteristics are affected by non-thermal plasma. X-ray diffraction analysis was initially employed to look into the structural characteristics, and the results indicate that the SnO2 and SnO2:Co thin film are polycrystalline and have tetragonal structure, peak formation has occurred in (110), (101), and (211), which correlate to the subsequent diffraction angles, respectively (26.55⁰), (33.90⁰), and (51.55⁰). A peak associated with Co was also observed at (311), which is equivalent to the (36.78⁰) diffraction angle. According to AFM analysis, the grain size decreases from 64.01 nm to 59.10 nm after doping. Roughness and root mean square also appears to increase after doping, according to the UV-VIS spectrometer analysis, thetransmittance increases with doping and decreases with non-thermal plasma exposure, the energy gap value increases during Non-thermal plasma exposure and its decrease after doping. Additionally, the absorbance, absorbance coefficient, refractive index and extinction coefficient rise following Cold plasma exposure.
Article Details
Section
How to Cite
References
Abdalameer, N.K., 2017. Effects of cold atmospheric plasma on the optical properties of SnO2 thin film. Advances in Natural and Applied Sciences, 11(9), pp.357-364.
Abdelkrim, A., Rahmane, S., Abdelouahab, O., Abdelmalek, N. and Brahim, G., 2016. Effect of solution concentration on the structural, optical and electrical properties of SnO2 thin films prepared by spray pyrolysis. Optik, 127(5), pp.2653-2658.https://doi.org/10.1016/j.jnoncrysol.2005.11.031
Abdullah, M.M., Suhail, M.H. and Abbas, S.I., 2012. Fabrication and testing of SnO2 thin films as a gas sensor. Archives Appl. Sci. Res, 4(3), pp.1279
Abdullah, N., Ismail, N.M. and Nuruzzaman, D.M., 2018, March. Preparation of tin oxide (SnO2) thin films using thermal oxidation. In IOP Conference Series: Materials Science and Engineering (Vol. 319, p. 012022). IOP Publishing. https://doio.rg10.1088/1757-899X/319/1/012022
AL-Jawad, S.M., Sabr, A.S. and Elttayef, A.K., 2016. Doping effect on structure, optical, & sensing properties of nanocrystalline (SnO2) thin films prepared by Chemical Bath Deposition (CBD) technique. Engineering and Technology Journal, 34(5B), pp.186-197.
Bahade, S.T., Lanje, A.S. and Sharma, S.J., 2017. Synthesis of SnO2 thin film by sol-gel spin coating technique for optical and ethanol gas sensing application. International Journal of Scientific Research in Science and Technology (IJSRST), 3(7), pp.567-575.
Bendjedidi, H., Attaf, A., Saidi, H., Aida, M.S., Semmari, S., Bouhdjar, A. and Benkhetta, Y., 2015. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications. Journal of Semiconductors, 36(12), p.123002. https://doi.org/10.1088/1674-4926/36/12/123002
Bendjedidi, H., Attaf, A., Saidi, H., Aida, M.S., Semmari, S., Bouhdjar, A. and Benkhetta, Y., 2015. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications. Journal of Semiconductors, 36(12), p.123002. https://doi.org/10.1088/1674-4926/36/12/123002
Benhaoua, B., Abbas, S., Rahal, A., Benhaoua, A. and Aida, M.S., 2015. Effect of film thickness on the structural, optical and electrical properties of SnO2: F thin films prepared by spray ultrasonic for solar cells applications. Superlattices and Microstructures, 83, pp.78-88. https://doi.org/10.1016/j.spmi.2015.03.017
Bhatt, A.S., Ranjitha, R., Santosh, M.S., Ravikumar, C.R., Prashantha, S.C., Maphanga, R.R. and Silva, G.F.L.E., 2020. Optical and electrochemical applications of Li-doped NiO nanostructures synthesized via facile microwave technique. Materials, 13(13), p.2961 https://doi.org/10.3390/ma13132961
Bouabdalli, E.M., El Jouad, M., Garmim, T., Touhtouh, S., Louardi, A., Monkade, M. and Hartiti, B., 2021. Preparation and characterization of Nickel and Aluminum‐Codoped SnO2 thin films for optoelectronic applications. International Journal of Photoenergy, 2021(1), p.5556441. https://doi.org/10.1155/2021/5556441
Brandenburg, R., 2017. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science and Technology, 26(5), p.053001https://doi.org/10.1088/1755-1315/1263/1/012050
Bu, T., Gao, H., Yao, Y., Wang, J., Pollard, A.J., Legge, E.J., Clifford, C.A., Delvallée, A., Ducourtieux, S., Lawn, M.A. and Babic, B., 2023. Thickness measurements of graphene oxide flakes using atomic force microscopy: Results of an international interlaboratory comparison. Nanotechnology, 34(22), p.225702. https://doi.org/10.1088/1361-6528/acbf58
Chen, X., Du, B., Li, Q. and Liu, J., 2024. Bi2O3 doped indium tin oxide thin films fabricated via liquid metal printing. Journal of Alloys and Compounds, 976, p.173077. https://doi.org/10.1016/j.jallcom.2023.173077
Dangi, R., Basnet, B., Pandey, M., Bhusal, S., Budhathoki, B., Parajuli, K., Tiwari, S.K. and Kafle, B.P., 2023. Effect of oxygen vacancy on the crystallinity and optical band gap in tin oxide thin film. Energies, 16(6), p.2653. https://doi.org/10.3390/en16062653
Doyan, A., Muliyadi, L., Hakim, S., Munandar, H. and Taufik, M., 2021, February. The effect of dopant material to optical properties: energy band gap Tin Oxide thin film. In Journal of Physics: Conference Series (Vol. 1816, No. 1, p. 012114). IOP Publishing. https://doi.org/10.1088/1742-6596/1816/1/012114
Enoki, H., Nakayama, T. and Echigoya, J., 1992. The Electrical and optical properties of the ZnO‐SnO2 thin films prepared by RF magnetron sputtering. physica status solidi (a), 129(1), pp.181-191. https://doi.org/10.1002/pssa.2211290116
Guendouz, H., Bouaine, A. and Brihi, N., 2018. Biphase effect on structural, optical, and electrical properties of Al-Sn codoped ZnO thin films deposited by sol-gel spin-coating technique. Optik, 158, pp.1342-1348. https://doi.org/10.1016/j.ijleo.2018.01.025
Gupta, P. and Rathore, V., 2020. A comprehensive review: SnO2 for photovoltaic and gas sensor applications. Applied Innovative Research (AIR), 1(3-4), pp.184-193.
Labreche, F., Berbadj, A., Brihi, N., Karima, R. and Jamoussi, B., 2018. Green photoluminescence, structural and optical properties of Nd-TiO2 thin films. Optik, 172, pp.63-71. https://doi.org/10.1016/j.ijleo.2018.06.131
Ma, J., Wang, Y., Ji, F., Yu, X. and Ma, H., 2005. UV–violet photoluminescence emitted from SnO2: Sb thin films at different temperature. Materials Letters, 59(17), pp.2142-2145 .https://doi.org/10.1016/j.matlet.2005.02.049
Mazloom, J. and Ghodsi, F.E., 2013. Spectroscopic, microscopic, and electrical characterization of nanostructured SnO2: Co thin films prepared by sol–gel spin coating technique. Materials Research Bulletin, 48(4), pp.1468-1476. https://doi.org/10.1016/j.materresbull.2012.12.069
Mohammed, A.F., 2012. Effect of Post-Oxidation on SnO2 Thin Films. Eng. &Tech. Journal, 30(11).
Mohsin, A.N., Al-Ansari, R.A. and Adil, B.H., 2022, August. Non-thermal plasma effects on of structural and optical properties of Nio: Li thin films prepared by the spray pyrolysis technique. In AIP Conference Proceedings (Vol. 2437, No. 1). AIP Publishing. https://doi.org/10.1063/5.0092551
Murbat, H.H., Abdalameer, N.K. and Brrd, A.K., 2018. Effects of non-thermal argon plasma produced at atmospheric pressure on the optical properties of CdO thin films. Baghdad Science Journal, 15(2), pp.0221-0221: http://dx.doi.org/10.21123/bsj.2018.15.2.0221
Nasir, Z., Shakir, M., Wahab, R., Shoeb, M., Alam, P., Khan, R.H. and Mobin, M., 2017. Co-precipitation synthesis and characterization of Co doped SnO2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. International journal of biological macromolecules, 94, pp.554-565. https://doi.org/10.1016/j.ijbiomac.2016.10.057
Paneru, R., Lamichhane, P., Chandra Adhikari, B., Ki, S.H., Choi, J., Kwon, J.S. and Choi, E.H., 2019. Surface modification of PVA thin film by nonthermal atmospheric pressure plasma for antifogging property. AIP Advances, 9(7). https://doi.org/10.1063/1.5100776
Saadeddin, I., Pecquenard, B., Manaud, J.P., Decourt, R., Labrugère, C., Buffeteau, T. and Campet, G., 2007. Synthesis and characterization of single-and co-doped SnO2 thin films for optoelectronic applications. Applied Surface Science, 253(12), pp.5240-5249. https://doi.org/10.1016/j.apsusc.2006.11.049
Sawant, J.P., Pathan, H.M. and Kale, R.B., 2021. Spray pyrolytic deposition of CuInS2 thin films: properties and applications. Engineered Science, 13, pp.51-64. https://doi.org/10.30919/es8d1147
Serin, T., Serin, N., Karadeniz, S., Sarı, H., Tuğluoğlu, N. and Pakma, O., 2006. Electrical, structural and optical properties of SnO2 thin films prepared by spray pyrolysis. Journal of Non-Crystalline Solids, 352(3), pp.209-215.
Shi, Y., Hamsen, C., Jia, X., Kim, K.K., Reina, A., Hofmann, M., Hsu, A.L., Zhang, K., Li, H., Juang, Z.Y. and Dresselhaus, M.S., 2010. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano letters, 10(10), pp.4134-4139 https://doi.org/10.1021/nl1023707
Soumya, S.S. and Xavier, T.S., 2022. Effect of cobalt doping on the microstructural, optical and electrical properties of SnO2 thin films by sol-gel spin coating technique. Physica B: Condensed Matter, 624, p.413432. https://doi.org/10.1016/j.physb.2021.413432
Vossen, J.L. and Poliniak, E.S., 1972. The properties of very thin RF sputtered transparent conducting films of SnO2: Sb and In2O3: Sn. Thin Solid Films, 13(2), pp.281-284. https://doi.org/10.1016/0040-6090(72)90296-9
Xu, L., Li, X. and Yuan, J., 2008. Effect of K-doping on structural and optical properties of ZnO thin films. Superlattices and Microstructures, 44(3), pp.276-281. https://doi.org/10.1016/j.spmi.2008.04.004
Yang, J.K., Zhao, H.L., Li, J., Zhao, L.P., Chen, J.J. and Yu, B., 2014. Structural and optical properties and photoluminescence mechanism of fluorine-doped SnO2 films during the annealing process. Acta materialia, 62, pp.156-161. https://doi.org/10.1016/j.actamat.2013.09.043