Optimization of Tensile Strength for Zinc- Aluminum (ZA-27/SiC) Composite Materials Fabricated by Stir Casting

Main Article Content

Waleed T. Rashid

Abstract

One zinc-27 % aluminum alloy (ZA-27) with excellent corrosion resistance and high hardness is ZA-27, making it suitable for industrial applications such as vehicle parts. The alloy works better in tough mechanical conditions because it has carbide particles, like SiC or TiC, added to it, which make it harder, more resistant to wear, and improve its internal structure. Using Minitab statistical software, the design of experiments (DOE) was utilized to conduct studies with a statistical two-level factorial experimental design. The effect of three parameters, SiC particles percentage (X1), stirring speed (X2), and stirring time (X3), was studied on the tensile characteristics of the SiC-enhanced ZA-27. The ingot was smelted using the stir-casting process to make a composite material. Then, varied percentages of SiC particles (0 and 5 wt%), speeds (300 and 900 rpm), and stirring times (30 and 60 min.) were utilized to stir the molten metal. The regression results showed that there was a satisfactory fit of the model variability for both SiC particles (X1) and stirring speed (X2). The p-value for each parameter was less than 0.005, which is statistically significant. It was determined that the factors X1 = 5 wt.% X2 = 900 rpm, and X3 = 60 minutes could provide the greatest tensile strength of 465 MPa. The tensile strength (465.5 MPa) obtained in practice using the values of X1, X2, and X3 calculated by the programs is almost identical to that obtained practically.

Article Details

Section

Articles

How to Cite

“Optimization of Tensile Strength for Zinc- Aluminum (ZA-27/SiC) Composite Materials Fabricated by Stir Casting” (2025) Journal of Engineering, 31(10), pp. 184–198. doi:10.31026/j.eng.2025.10.10.

References

Arunkumar, K. N., Krishnappa, G. B., 2022. Mechanical properties of aluminum metal matrix composites - a review. International Journal of Engineering Research and Technology (IJERT). 11, pp. 174-178. https://doi.org/10.17577/IJERTV11IS030111.

Arunkumar, K. N., Krishnappa, G.B., Kasturirengan, S., Laxman, B.R., 2018. An experimental investigation on the hardness and shear behavior of aluminum, silicon carbide, and graphite hybrid composite with and without cryogenic treatment. Materials Today: Proceedings, 5, pp. 916–921. http://doi.org/10.1016 /j.matpr. 2017.11.163.

Alaneme, K.,K, Adeoye, K.,O., Oke, S.,K., 2016. Mechanical and wear behavior of steel chips reinforced Zn27Al composites. Leonardo Electronic Journal of Practices and Technologies (LEJPT). .29, pp. 1–16.

Ali, M., Arab, A., 2020. Review of stir casting technique and technical challenges for ceramic reinforcement particulate and aluminum matrix composites. Journal of Silicate-Based and Composite Materials. 72(6), pp.198-204. http://doi.org/10.14382/epitoanyag-jsbcm.2020.32.

ASTM E 8M, 1991. Standard test method for tension testing of metallic materials (metric), Annual Book of ASTM Standards, Philadelphia.

Bobic, B., Bobic, I., A., Vencl, M., Babic, Mitrovic, S., 2015. Corrosion behavior of compo casted ZA-27/SiCp composites in NaCl solution. Tribol in Ind .38(1), pp. 67-72.

Bhaskar, R., Hemanth, C., Jayasimha, N., 2017. Mechanical characterization of ZA-27 reinforced with SiCp MMCs. Third International Conference on Current Trends in Engineering Science and Technology (ICCTEST), pp. 232-237.

Chen, F., Binbin W., Zhiqiang C., 2020. Microstructure and wear behavior of in situ ZA27/TiB2 Composites. Metals. 10(12),1663, pp.2-17. https://doi.org/10.3390/met10121663

Chebolu, R., Nallu, R., Chanamala, R., 2022. Influence of SiC/TiB2 particles addition on corrosion behavior of as-cast Zn-Al-Cu alloy hybrid composites. Hindawi, Journal of Engineering. 2022, pp 1–5. http://doi.org/10.1155/2022/3669584.

Dlmis R., H., Cuv, l., A., Kci, C., Gul, O., R.,.2016. Investigation of Graphite nano particle addition on the physical and mechanical properties of ZA27 composites. Advanced Composites Letters,25(2), pp. 37-42. https://doi.org/10.1177/096369351602500202.

Dongxin, M., Xiangchen, M., Yuming, X., Yuchen, Y., Yanli, X., Zhiwei, Q., Yuexin, C., Long, W., Yongxian, H.,2021. Strength-ductility balance strategy in SiC reinforced aluminum matrix composites via deformation-driven metallurgy. Journal of Alloys and Compounds. 891(25). http://doi.org/10.10 16/j.jallc om.2021 .16 2078

Fatile, B., O., Adewuyi, B., O., Owoyemi, H., T., 2017. Synthesis and characterization of ZA-27 alloy matrix composites reinforced with zinc oxide nanoparticles. Engineering Science and Technology. pp. 1147-1154. http://dx.doi.org/10.10 16/j.jestch. 2017.0 1.001

Fnides, B., 2012. Analysis of technological parameters through response surface methodology in machining hardened X38CrMoV5-1 using whisker ceramic tool (Al2O3+SiC). Estonian Journal of Engineering. 18(1), pp. 26–41. http://doi.org/10.3176/eng.2012.1.03.

Gangwar, S., Payak, V., Pathak, K., Jamwal, A., Gupta, P., 2020. Characterization of mechanical and tribological properties of graphite and alumina reinforced zinc alloy (ZA-27) hybrid metal matrix composites, Sage Journal, 54, pp. 4889–4901.

Gurunagendra, R., Raju, R., Vijayakumar, P., Amith, G., H Hanumantharaju, G., Santosh A.,2021. Investigations on microstructure and tensile properties of as-cast ZA-27 metal matrix composite reinforced with zircon sand. Materials Today: Proceedings, 46(17), pp. 7618-7623.

Imtiaj, H., Minhaz, A., Tafsirul, H., 2025. An experimental study on the mechanical properties of stir-cast hybrid Al metal matrix composite reinforced with Al2O3 and TiO2. Journal of Engineering Advancements. 6(1), pp. 1-10. https://doi.org/10.38032/jea.2025.01.001

Kumar, G.B., Gouda, P.S., Pramod, R., Chowdary, U.S., Subash, T., Vamsi, M.S., Naresh, K., 2020. Development and experimental evaluation of titanium diboride particulate reinforcements on the Al6061 alloy composites' properties. Advanced Materials Process. Technol. 8, pp. 1209–1225. http://doi.org/10.1080/23740 68X.2020.1855399

Kumar, P., Tirth, V., 2013. Effect of stirring speed on retention of particles in AA2218-A1203 metal matrix composite processed by stir casting. MIT International Journal of Mechanical Engineering. 3(2), pp. 123-128.

Kheradmand, A.B., Tayebi, M., Z., 2022. Lalegani design of Fe–SiC–Cu–G composite alloy and optimization of graphite contribution for high sliding speed applications. Transactions of the Indian Institute of Metals .75(9), pp. 2311–2322. http://doi.org/10. 100 7/s12666-022-02562-0.

Krishnan, P., Arunachalam, R., Husain, A., 2020. Studies on the influence of stirrer blade design on the microstructure and mechanical properties of a novel aluminum metal matrix composite. Journal of Manufacturing Science and Engineering. 143(2), pp. 1–25. http://doi.org/10.1115/1.4048266

Liu, K., Jiang, X., Chen, S., Yuan, T., Yan, Z., 2022. Effect of SiC addition on microstructure and properties of Al–Mg alloy fabricated by powder and wire cold metal transfer process. journal of materials research and technology. 17, pp. 310-319. https://doi.org/10.1016/j.jmrt.2022.01.014.

Liu, Y., Du, T. , Qiao, A. , Mu, Y., Yang, H., 2022. Zinc-based biodegradable materials for orthopaedic internal fixation. Journal Funct Biomater. 13(4), 164, pp. 1-20. http://doi.org/10.3390/jfb13040164

Mohamed, K. D., Mohamed, K., K., 2023. Tensile and compressive mechanical properties of ZA27/ molybdenum disulfide, metal matrix composite. Research Engineering Structure Materials. 9 (3), pp. 709-718. http://dx.doi.org/10.17515/resm2022.583me1112

Moses, J., Dinaharan, I., Joseph, S., 2014. Characterization of silicon carbide particulate reinforced AA6061 aluminum alloy composites produced via stir casting. Procedia Materials Science. 5, pp. 106 – 112. http://dx.doi.org/10.1016/j.mspro.2014.07.247

Mahadevi, D., Manikandan, M., 2014. Modelling and parametric optimization using factorial design approach of TIG welding of AZ61 magnesium alloy. SSRG International Journal of Mechanical Engineering (SSRG-IJME). 1, pp. 16-20. http://doi.org/10.14445/23488360/IJME-V1I1P104

Mussatto, A., Ahad, I., Mousavian, T., 2021. Advanced production routes for metal matrix composites. Engineering Reports. John Wiley and Sons Inc.3(5), pp. 1-25. http://doi.org/10. 1002/eng2.12330.

Nithin, B., N., Nagaral, M., Maiyya, M., Nalband F., Auradi, V.,2024. Mechanical properties of ZrO2 particles reinforced Al2219 alloy metal composites prepared by the stir casting process. Journal of Mines, Metals and Fuels. 72(9), pp. 937-947. http://doi.org/10.18311/jmmf/2024/45198

Padmanathan, P., Aswin, S., Satheesh, A., Kanna, P.R., Palani, K., Devi, N.R., Sobota, T., Taler, D., Taler, J., and Węglowski, B., 2024. Parametric Optimization Study of Novel Winglets for Transonic Aircraft Wings. Applied Sciences (2076-3417), 14(17), P. 7483. https://doi.org/10.3390/app14177483

Saleh, B., Fathi, R., Radhika, N., Yu, Z., Liu, S., Zhang, L., 2024. Effect of yttrium oxide on microstructure and mechanical properties of functionally graded magnesium matrix composites. Journal of Alloys and Compounds. 981, P. 173723.

Sivananthan S., Ravi K., Samson C. J., 2020. Effect of SiC particle reinforcement on the mechanical properties of aluminium 6061 alloy processed using the stir casting route. Materials Today: Proceedings, 21(1), pp. 968-970. http://doi.org/10.1016/j.matpr.2019.09.068

Siva, R. M., Prasanna, P., 2024. Optimisation of friction spectral process parameters on AA8011 reinforced with titanium dioxide (Tib2) and zirconium oxide (ZrO2). Metal hybrid matrix. International Journal of Mechanical Engineering and Technology (IJMET). 15, pp. 9-25.

Shivalingaiah, K., Nagarajaiah, V., 2022. Stir casting process analysis and optimization for better properties in Al-MWCNT-GR-based hybrid composites. Metals 12, 1297, pp. 1-25. http://doi.org/10.3390/met12081297.

Sinatora, A., Viafara. C., 2009. Influence of hardness of the harder body on wear regime transition in a sliding pair of steels. Wear. 267(1), pp. 425-432. http://doi.org/10. 1016 /j.wear.2008.11.019.

Sathish, T., Mohanavel, V., Arunkumar, T., Raja, T., Rashedi, A., Alarifi, I. I., Badruddin, A., Algahtani, Afzal, A., 2021. Investigation of mechanical properties and salt spray corrosion test parameters optimization for AA8079 with reinforcement of TiN + ZrO2. Materials (Basel).4(18). https://doi.org/10.3390/ma14185260.

Simsek, D., Simsek, I., Ozyurek, D., 2020. Relationship between Al2O3 content and wear behavior of Al+2% graphite matrix composites. Sci Eng Compos Mater. 27, pp. 177–185. http://doi.org/10.1515/secm-2020-0017

Singh, L., Ram, B., Singh, A., 2013. Optimization of process parameters for stir casted aluminum metal matrix composite using the Taguchi method. IJRET. International Journal of Research in Engineering and Technology. 2(8), pp. 357-383. http://doi.org/10.15623/ijret.2013.0208059

Uday, K., Rajamurugan, G.,2022. Effect of stir casting parameters and mono/hybrid reinforcements on aluminium metal matrix composite-A review. Institution Mechanical Engineering. Part C Journal. 236, pp. 4904–4920. http://doi.org/10.1177/ 09544062211052166

Venkatesan, S., Anthony, M. X., 2018. Tensile behavior of aluminum alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes. Science and Technology of Materials .30, pp. 74–85. http://doi.org/10.10 16/j.st mat.2 018.02.005.

Waleed, R., 2024. Optimization of wear resistance of aluminum matrix composite (Al-7050/10wt% eggshell) by study of effect stirring speed and stirring time. Kufa Journal of Engineering. 15(4), pp. 83-97. http://doi.org/10.2423 7/djes . 2016.09108

Waleed, R., 2023. Mechanical properties characterization of Al 7075 / phosphogypsum metal matrix composites. Kufa Journal of Engineering. 14 (1), pp. 67-80. https://doi.org/10.30572/2018/KJE/140105.

Waleed, R., Khalid, R., 2021. Improvement and optimization of the hardness for the aluminum metal matrix composite using eggshell. Materials Science Forum. 1039, pp. 42-50. https://doi.org/10.4028/www.scientific.net/MSF.1039.42.

Weiqi, Y., Mohommad, R. M., Pawan, K., Matthew, A. W., Frank, E., Roger H. F., 2024. Exploring 2D X‑ray diffraction phase fraction analysis with convolutional neural networks: Insights from kinematic‑diffraction simulations. MRS Advances, 9, pp.921–928. http://doi.org/10.15 57/s4 3580-024-00862-9

Similar Articles

You may also start an advanced similarity search for this article.