Thermal Analysis of Natural Convection in an Annular enclosure partially filled with metal foam: A Numerical Study Using ANSYS Fluent
Main Article Content
Abstract
In this study presents a numerical investigation of natural convection heat transfer in an annular enclosure partially filled with metal foam. The inner cylinder is maintained at a constant temperature, while the outer cylinder is subjected to a uniform heat flux; both vertical sidewalls are thermally insulated. The fluid flow is modeled using the Navier–Stokes equations under the Boussinesq approximation, and the porous medium is described by the Brinkman–Forchheimer Darcy model, assuming local thermal equilibrium. Simulations are conducted using ANSYS FLUENT to examine the effects of pore density (10 PPI and 40 PPI), inclination angle (0°, 30°, 60°, 90°) and Rayleigh number (10⁴ ≤ Ra ≤ 10⁶) on thermal performance. Results indicate that the presence of metal foam significantly enhances heat transfer compared to the clear fluid case. The Nusselt number increases with both Rayleigh number and the inclination angle. Notably, the 10 PPI foam increases the average Nusselt number by approximately 50%, while the 40 PPI foam shows a 33% improvement compared to the clear fluid case. In all cases, temperature rises with increasing Rayleigh number, indicating stronger natural convection. Moreover, increasing the inclination angle from the horizontal configuration enhances heat transfer, with the most significant improvement between 60° to 90°.
Downloads
Article Details
Section
How to Cite
References
Aldoss, T. K., Alkam, M., and Shatarah, M., 2004. Natural convection from a horizontal annulus partially filled with porous medium. International Communications in Heat and Mass Transfer, 31(3), pp. 441–452. https://doi.org/10.1016/j.icheatmasstransfer.2004.02.014
Ali, A. M., 2012. Experimental and theoretical study of natural convection heat transfer between two inclined concentric cylinders filled with porous media. Tikrit Journal of Engineering Sciences, 18(4), pp. 40–51 https://doi.org/10.25130/tjes.18.4.14
Arpino, F., Carotenuto, A., Ciccolella, M., Cortellessa, G., Massarotti, N., and Mauro, A., 2016. Transient natural convection in partially porous vertical annuli. International Journal of Heat and Technology, 34(S2), pp. S512–S518. https://doi.org/10.18280/ijht.34S245
Badruddin, I. A., Al-Rashed, A. A., Ahmed, S. N. J., Khaleed, H. M. T., Ahmad, N. A., Kamangar, S., and Khan, T. M. Y., 2014. Investigation of discrete heating at upper section of a porous annulus. Australian Journal of Basic and Applied Sciences, 8(24), pp. 283–289.
Bejan, A., 2008. Convection in porous media. Applied Mathematical Sciences (Switzerland). https://doi.org/10.1007/978-0-387-76543-3_4
Braga, E. J., and de Lemos, M. J. S., 2006. Simulation of turbulent natural convection in a porous cylindrical annulus using a macroscopic two-equation model. International Journal of Heat and Mass Transfer, 49(19-20), pp. 3455–3466. https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.032
Bu-Xuan, W. and Xing, Z., 1990. Natural convection in liquid-saturated porous media between concentric inclined cylinders. International journal of heat and mass transfer, 33(5), pp. 827-833.
Chamkha, A. J., Miroshnichenko, I. V. and Sheremet, M. A., 2018. Unsteady conjugate natural convective heat transfer and entropy generation in a porous semicircular cavity. ASME Journal of Heat and Mass Transfer, 140(6). https://doi.org/10.1115/1.4038842
Charrier-Mojtabi, M.-C., 1997. Numerical simulation of two- and three dimensional free convection flows in a horizontal porous annulus using a pressure and temperature formulation. International Journal of Heat and Mass Transfer, 40(7), pp. 1521–1533. https://doi.org/10.1016/S0017-9310(96)00227-X
El-Shazly, K.M., 2000. Natural convection in annulus filled with either saturated porous media or horizontally divided into fluid and porous regions. Journal of Engineering and Applied Science, 47(3), pp. 539-554.
Ergun, S., 1952. Fluid flow through packed columns. Chemical Engineering Progress, 48(2), pp. 89–94.
Hamzah, J.A. and Nima, M.A., 2020. Experimental study of heat transfer enhancement in double-pipe heat exchanger integrated with metal foam fins. Arabian Journal for Science and Engineering 45, pp. 5153–5167 https://doi.org/10.1007/s13369-020-04371-3
Holman, J. P., 2010. Heat transfer (10th ed.). McGraw-Hill.
Hussein, A. M., Tahseen, T. A., and Jasim, A. H., 2009. Convection concentric annulus vertical cylinders filling porous media. Kirkuk University Journal Scientific Studies, 4(2), pp. 55–71., https://doi.org/10.32894/kujss.2009.39922
Iranmanesh, A., and Moshizi, S. A., 2024. Flow and heat transfer study of an annulus partially filled with metallic foam on two wall surfaces subject to asymmetrical heat fluxes. Arabian Journal for Science and Engineering, 49(2), pp. 1567–1584. https://doi.org/10.1007/s13369-023-07895-6
Khanafer, K., Al-Amiri, A., and Pop, I., 2008. Numerical analysis of natural convection heat transfer in a horizontal annulus partially filled with a fluid-saturated porous substrate. International Journal of Heat and Mass Transfer, 51(7–8), pp. 1613–1627. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.050
Kiwan, S., Alwan, H., and Abdelal, N. 2020. An experimental investigation of the natural convection heat transfer from a vertical cylinder using porous fins. Applied Thermal Engineering, 179. https://doi.org/10.1016/j.applthermaleng.2020.115673
Kiwan, S., and Al-Nimr, M. A., 2000. Using porous fins for heat transfer enhancement. ASME Journal of Heat and Mass Transfer. 123(4).
Kiwan, S., and Alzahrany, M.S., 2008. Effect of using porous inserts on natural convection heat transfer between two concentric vertical cylinders. Numerical Heat Transfer, Part A: Applications, 53(8), pp. 870–889. https://doi.org/10.1080/10407780701715869
Lu, T.J., Stone, H.A., and Ashby, M.F., 1998. Heat transfer in open-cellmetal foams. Acta Materialia. 46, pp. 3619–3635. https://doi.org/10.1016/S1359-6454(98)00031-7
Lu, W.; Zhao, C.Y., and Tassou, S.A., 2006. Thermal analysis on metal-foam filled heat exchangers. Part I: metal-foam filled pipes. International Journal of Heat Mass Transfer 49, pp. 2751–2761. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.012
Lu, Y., and Chen, Z., 2019. Numerical study on heat transfer performance of vacuum tube solar collector integrated with metal foams. International Journal of Low-Carbon Technologies, 14(3), pp. 344–350. https://doi.org/10.1093/ijlct/ctz005
Mahmood, M. A., Mustafa, M. A., Al-Azzawi, M. M., and Abdullah, A. R., 2020. Natural convection heat transfer in a concentric annulus vertical cylinders embedded with porous media. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 66(2), pp. 65-83.
Massarotti, N., Ciccolella, M., Cortellessa, G., and Mauro, A. 2016. New benchmark solutions for transient natural convection in partially porous annuli. International Journal of Numerical Methods for Heat and Fluid Flow, 26(3–4), pp. 1187–1225. https://doi.org/10.1108/HFF-11-2015-0464
Mohammed, A. A., 2007. Natural convection heat transfer in a vertical concentric annulus. Journal of Engineering, 13(3), pp. 1417–1427. https://doi.org/10.31026/j.eng.2007.03.03
Nield, D.A., and Bejan, A., 2013. Convection in porous media. (4th ed). Springer https://doi.org/10.1007/978-1-4614-5541-7
Nield, D.A., and Bejan, A., 2017. Convection in Porous Media. (5th ed). Springer http://dx.doi.org/10.1007/978-3-319-49562-0
Phanikumar, M. S., and Mahajan, R. L., 2002. Non-Darcy convection in high porosity metal foams. International Journal of Heat and Mass Transfer, 45(18), pp. 3781–3793. https://doi.org/10.1016/S0017-9310(02)00089-3
Poursharif, Z., Salarian, H., Javaherdeh, K., and Nimvari, M. E., 2022. Heat transfer investigation of non Newtonian fluid flow in an annular pipe embedded with porous discs: A turbulent study. Journal of Thermal Engineering, 8(2), pp. 235–248. https://doi.org/10.18186/thermal.1086202
Prasad, V. and Kulacki, F. A., 1985. Natural convection in porous media bounded by short concentric vertical cylinders. Journal of Heat Transfer,107(1), P. 147. https://doi.org/10.1115/1.3247371
Qu, Z. G., Xu, H. J. and Tao, W. Q., 2013. Conjugated natural convection in horizontal annuli partially filled with metallic foams by using two-equation model. Journal of Porous Media, 16(11), pp. 979–995. http://dx.doi.org/10.1615/JPorMedia.v16.i11.20
Saleh, M. H., and Katea, A. M., 2013. Laminar free convection in horizontal annulus filled with glass beads and with annular fins on the inner cylinder. Journal of Engineering, 19(8), pp. 999–1018. https://doi.org/10.31026/j.eng.2013.08.06
Sheremet, M. A., 2015. Unsteady conjugate natural convection in a three dimensional porous enclosure. Numerical Heat Transfer, Part A: Applications, 68(3), pp. 243–267. https://doi.org/10.1080/10407782.2014.977172
Wei, J. G., and Tao, W. Q., 1996. Three-dimensional numerical simulation of natural convection heat transfer in an inclined cylindrical annulus. Journal of Thermal Science, 5(3), pp. 175–183. https://doi.org/10.1007/BF02653182
Yasuyuki, T., Iwashige, K., Fukuda, K., and Hasegawa, S., 1984. Three-dimensional natural convection in an inclined cylindrical annulus. International Journal of Heat and Mass Transfer, 27(5), pp. 747–754. https://doi.org/10.1016/0017-9310(84)90144-3
Zhao, C.Y., Lu, W., and Tassou, S.A., 2006.Thermal analysis on metal-foam filled heat exchangers. Part II: tube heat exchangers. International Journal of Heat Mass Transfer, 49(15-16), pp. 2762–2770. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.014
