محاكاة عددية وفيزيائية لتحسين الأداء الهيدروليكي للقنوات المبطنة باستخدام السدود القابلة للنفخ

محتوى المقالة الرئيسي

Saba Abdul Razzak Daher
Ameen Mohammed Salih Ameen

الملخص

عد النبؤ بتدفق المياه احد الاهتمامات المهمة لعماء المياه والمهندسين لتخطيط وادارة موارد المياه وتصميم مشاريع موارد المياه .يمكن ان يوفر التنبؤ بتدفق المياه على المدى الطويل والقصير معلومات قيمة حول امكانية تصميم مشروع المياه .


السدود المطاطية وتمسى اضا السدود القابلة للنفخ تكون مصنوعة من هياكل مطاطية اسطوانية مرنة قابلة للنفخ والتمدد متصلة بقاعدة صلبة اما في احد الطرفين او من كلا الطرفين ( مرساه واحدة او مزدوجة ) ويتم نفخها بالهواء او الماء او مزيج من كليهما .


تهدف هذه الورقة الى تحسين الاداء الهيدروليكي لقناة شط ال ابراهيم من خلال قياس عمق التدفق وارتفاع سطح الماء وتوزيع السرعة باستخدام السد القابل للنفح ومقارنة بعمق الماء وارتفاع سطح الماء قبل وضع السد عند تصريف الندرة ( 2 م3/ثانية ) . تم انشاء نموذج رقمي احادية- ثنائية الابعاد وتحليلها باستخدام برنامج HEC-RAS ,ومعايرته مع النموذج الفيزيائي .


اظهرت نتائج الدراسة الى زيادة ارتفاع سطح الماء خلال القناة بعد وضع السد القابل للنفخ مقارنة بالظروف الاعتيادية ( عدم وجود السد ) بنحو 1.32 م في منطقة السد و 0.16 م عند بداية القناه في حين ان السرعة في مقدم ومؤخر السد لا تؤثر على القناة ولا يحدث تأكل في كونكريت ارضية القناة .وان نتائج معايرة النموذج العددي مع النموذج الفيزيائي أظهرت نتائج مقبولة ( اكثر من 85% ) باستخدام طريقة الجذر التربيعي .

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"محاكاة عددية وفيزيائية لتحسين الأداء الهيدروليكي للقنوات المبطنة باستخدام السدود القابلة للنفخ" (2025) مجلة الهندسة, 31(7), ص 151–166. doi:10.31026/j.eng.2025.07.09.

المراجع

AbdUlameer, A. H., and Al-Sulttani, A. O.,2023. Evaluation of the minimum instream flow: a case study of Shatt-al Hillah river in Babylon governorate. International Journal of Design and Nature and Ecodynamics, 18(2), pp. 293-303. https://doi.org/10.18280/ijdne.180229

Alhamati, A. A. N., Mohammed, T. A., Ghazali, A. H., Norzaie, J., and Al-Jumaily, K. K.,2005. Determination of coefficient of discharge for air-inflated dam using physical model. Suranaree Journal of Science and Technology, 12(1), pp. 19-27

Alhamati, A. A. N., Mohammed, T. A., Norzaie, J., Ghazali, A. H., and Al-Jumaily, K. K., 2005. Behavior of inflatable dams under hydrostatic conditions. Suranaree Journal of Science and Technology, 12(1), pp. 1-18.‏

Alhamdi, H. M., and Al Thamiry, H. A. , 2023, August. Improving the discharge capacity of the Al Butera River. In IOP Conference Series (Vol. 1222, No. 1, pp. 012016). Earth and Environmental Science. https://iopscience.iop.org/article/10.1088/1755-

1315/1222/1/012016#:~:text=DOI%2010.1088/1755%2D1315/1222/1/012016

Ali, A. A., and Al -Thamiry, H. A., 2021. Controlling the salt wedge intrusion in Shatt Al-Arab River by a Barrage. Journal of Engineering, 27(12). https://doi.org/10.31026/j.eng.2021.12.06

AlKhafaji, H., Muttashar, W. R., and Al-Mosawi, W. M., 2023. Proposing an inflatable rubber dam on the Tidal Shatt Al-Arab River, Southern Iraq. Journal of the Mechanical Behavior of Materials, 32(1), P. 20220201.‏ https://doi.org/10.1515/jmbm-2022-0201

Alsaadi, T. S., and AL-Thamiry, H. A. K. ,2022, Evaluation and development of the (Hilla–Daghara) rivers system. Journal of Engineering,28(2), pp.46-62. https://doi.org/10.31026/j.eng.2022.02.04

Alrammahi, F. S., and Ahmed Hamdan, A. N., 2024. Hydraulic model for flood inundation in Diyala River Basin using HEC-RAS, PMP, and neural network. Open Engineering, 14(1), P. 20220530. https://doi.org/10.1515/eng-2022-0530

Al-Zaidy, H. S. A., and AL-Thamiry, H. A. K. 2020. Prediction capacity of Euphrates River at Assamawa City. Journal of Engineering, 26(4), pp. 111-122. https://doi.org/10.31026/j.eng.2020.04.08

Asaad, B. I., and Abed, B. S.,2020. Flow characteristics of Tigris River within Baghdad City during drought. Journal of Engineering, 26(3), pp. 77-92. https://doi.org/10.31026/j.eng.2020.03.07

Azzubaidi, R. Z., 2020. Current and modified flood discharge capacity of a reach of Tigris River between Kut and

Amarah barrages. Journal of Engineering, 26(2), pp. 129-143. https://doi.org/10.31026/j.eng.2020.02.10

Breukelen, M.V., 2013. Improvement and scale enlargement of the inflatable rubber barrier concept: A case study applicable to the Bolivar Roads Barrier, Maste Thesis, Delft University of Technology, Taxas,USA

Brunner, G.W., 2016. HEC-RAS River Analysis System 2D Modeling (User's Manual, US Army Corps of Engineers Hydrologic Engineering Centre). U.S. Army Corps of Engineers. https://www.hec.usace.army.

Chanson, H., 1998. Use of rubber dams for flood mitigation in Hong Kong-Discussion. Journal of Irrigation and Drainage Engineering-ASCE124 (3), pp. 181-182. https://doi.org/10.1061/(ASCE)0733-9437(1998)124:3(181)

Chu, C. R., Tran, T. T., and Wu, T.R., 2021. Numerical analysis of free-surface flows over rubber dams. Water, 13(9), P.1271. https://doi.org/10.3390/w13091271

Daham, M. H., Abed, B. Sh., 2020. One and two-dimensional hydraulic simulation of a reach in Al-Gharraf River. Journal of Engineering, 26(7), pp. 28-44. https://doi.org/10.31026/j.eng.2020.07.03

Daher, S. A. R ., Ameen, A. M. S. 2024, August. Simulation of flow characteristics in open channels with inflatable dam. In IOP Conference Series, 1374(1), P. 012059. Earth and Environmental Science.‏ https://iopscience.iop.org/article/10.1088/1755-1315/1374/1/012059/meta

Dehrashid, F. A., Heidari, M., Rahimi, H., Khoshkonesh, A., Yuan, S., Tang, X., Lu, C., and Wang, X., 2023. CFD modeling the flow dynamics in an open channel with double-layered vegetation. Modeling Earth Systems and Environment 9(1), pp. 543-555. https://doi.org/10.1007/s40808-022-01513-4

Gao, X., Guo, W., Dai, L., Guo, W., and Ren, Y., 2023. Experimental study on air-and water-inflated double-rubber dams. Journal of Irrigation and Drainage Engineering, 149(9), P. 04023021.https://doi.org/10.1061/JIDEDH.IRENG-10074

Ghali, H. M., and Azzubaidi, R. Z., 2021. Managing the flood waves from Hemrin Dam. Journal of Engineering, 27(7), PP. 42-52. https://doi.org/10.31026/j.eng.2021.07.04

Hashim, L.I., and Azzubaidi, R.Z., 2023. Discharge capacity of Euphrates River from Haditha Dam to Ramadi Barrage. Journal of Engineering 29 (03), pp. 117-124. https://doi.org/10.18280/ijdne.180219

Hitch, N.M., and Narayanan, R., 1983. Flexible dams inflated by water. Journal of Hydraulic Engineering109(7), pp. 1044-1048. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:7(1044)

Huang, Z.j., Xu, T.-b., Zhu, D.Z., and Zhang, S.D., 2023. Simulation of open channel flows by an explicit incompressible mesh-free method. Journal of Hydrodynamics, 35(2), pp. 287-298

https://doi.org/10.1007/s42241-023-0020-4

Jassam, W. A., and Abed, B.S., 2021. Hydraulic characteristics of the lower part of Diyala River, IOP Conference Series: Materi River, Science and Engineering, 1105(1), P. 012107.

Kareem, K. A.A., and AL-Thamiry, H. A., 2019. Identification of scouring zones in ungauged river by simulation: The case of Galal Badrah river, Iraq. Association of Arab Universities Journal of Engineering Sciences, 26(3), pp. 57-67.‏ https://doi.org/10.33261/jaaru.2019.26.3.007

lmbertson, N.M., 1960. Automatic rubber diversion dam in the Los Angeles River. Journal of American Water Works Association, 52, pp. 373-378. https://doi.org/10.1002/j.1551-8833.1960.tb00619.x

Lowery, K. and Liapis, S., 1999. Dynamic analysis of an inflatable dam subjected to a flood. Computational Mechanics 24, pp. 52-64. https://doi.org/10.1007/s004660050437

Mays, L. W., 2010. Water resources engineering. New York: John Wiley & Sons. ISBN 0-471-29783-6

Moorthy, C. D., Reddy, J. N., and Plaut, R. H.,1995. Three-dimensional vibrations of inflatable dams. Thin-walled structures, 21(4), pp. 291-306. https://doi.org/10.1016/0263-8231(95)93616-T

Razzaq, H. K., Abed, B. S., and Al-Saadi, A. J. J., 2024. Simulation of bed change in Al-Musayyab Canal using HEC-RAS software. Journal of Engineering, 30(05), pp. 114-131. https://doi.org/10.31026/j.eng.2024.05.08

Ren, J. T., Fei Wu, X., and Zhang, T., 2021. BA 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation. Journal of Hydrodynamics 33(4), pp. 833-843. https://doi.org/10.1007/s42241-021-0063-3

Shirazi, N.CH., Samani, A. K., and Boroomand, B., 2014. Numerical analysis of rubber dams using fluid-structure interactions. Flow Measurement and Instrumentation 40. https://doi.org/10.1016/j.flowmeasinst.2014.08.006

Shankar, N. J., Chan E. S., and Zhang Q. Y., 2001.Three-dimensional numerical simulation for an open channel flow with a constriction. Journal of Hydraulic Research, 39(2), pp. 187-201. https://doi.org/10.1080/00221680109499820

Streeter, M., Barbarigos, L. R., and Adriaenssens, S., 2015. Form finding and analysis of inflatable dams using dynamic relaxation. Applied Mathematics and Computation. https://doi.org/10.1016/j.amc.2014.12.054

U.S. Army Corps of Engineers, 2016. Hydrologic Engineering Centre, River Analysis System (HEC-RAS Version 5.0.3), https://www.hec.usace.army.mil/software/hec-ras/ (Accessed: September 3, 2024)

Yaseen, Z. M., Mohtar, W. H. M. W., Ameen, A. M. S., Ebtehaj, I., Razali, S.F.M., Bonakdari, H., and Shahid, S., 2019. Implementation of univariate paradigm for streamflow simulation using hybrid data-driven model: Case study in tropical region. IEEE Access, 7, pp. 74471-74481. https://doi.org/10.1109/ACCESS.2019.2920916

Zhang, J., Zhang, Sh., Wang, Ch., Wang, W., and Ma. L., 2022. Flow characteristics of open channels based on patch distribution of partially discontinuous rigid combined vegetation. Frontiers in Plant Science 13, pp. 976646. https://doi.org/10.3389/fpls.2022.976646

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.