تحديات الحقول النفطية بين النظرية والتطبيق من خلال وجهات نظر الجيوميكانيك
محتوى المقالة الرئيسي
الملخص
تُساهم تحديات الحفر بخسائر تتجاوز المليار دولار سنوياً اضافةً تقلبات أسعار النفط والمنافسة المتزايدة على إنتاجه. تؤكد هذه الدراسة على أهمية اعتبار مبادئ ميكانيكا الارض في هندسة البترول خلال كافة عمليات المكامن والحفر وعمليات الإنتاج. أُجريت دراسة على بئر اتجاهي في حقل الرميلة النفطي الواقع جنوب العراق لحساب الخواص الجيوميكانيكية في تكوينات الكربونات والحجر الرملي والصخر الزيتي. تم تحليل الإجهاد السائدة وخصائص مقاومة الصخرة ومرونتها. أظهرت النتائج ان الانزلاق الضربي (Strike Slip) هو الإجهاد السائد خلال تكوين السعدي وحتى الزبير. يُظهر أن خواص مرونة تكوين التنومة ومقاومته منخفضتان، مما يشير إلى خواص انسيابية طينية مثالية لقدرة الرفع الفعالة. مكمن (MishCR1) القابل للإنتاج يظهر ثبات ميكانيكي عالٍ للصخور مقاوم للانضغاط وإعادة تنشيط الصدع او بنائها. أما المكامن (MishMA وMishMB2 وMishMB1 وZu1 وZu2) المنتجة للبترول فهي ذات خواص جيوميكانيكية معتدلة؛ متطلبة معدلات إنتاج وإدارة ضغط مصممتان خصيصًا لها علاوةً على أساليب استخلاص مُحسنة للتخفيف من مخاطر التشوه. أما مكامن الحجر الرملي ضمن تكوين الزبير (Zu1 وZu2) ونهر عمر، فيوصى فيوصى باستعمال شبكات مخصصة التعزيز من خلال التثبيت الكيميائي للحفاظ على أداء المكامن وتعزيز استخلاص النفط. تؤكد هذه الدراسة الحاجة إلى رؤى جيوميكانيكية لتحسين العمليات البترولية والتخفيف من مخاطر الإنتاج.
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Aadnoy, B., and Looyeh, R., 2011. Petroleum rock mechanics: drilling operations and well design, Gulf Professional Publishing.
Aadnoy, B.S., and Looyeh, R., 2019. Petroleum rock mechanics: drilling operations and well design, Gulf Professional Publishing.
Abbas, A.K., Manhalawi, A., Alameedy, U., and F., Ralph E. F., 2019. Using an analytical model to predict collapse volume during drilling: A case study from Southern Iraq. ARMA US Rock Mechanics/Geomechanics Symposium. ARMA, ARMA-2019-1525.
Al-Ajmi, A.M., and Zimmerman, R.W., 2006. Stability analysis of vertical boreholes using the Mogi–Coulomb failure criterion. International Journal of Rock Mechanics and Mining Sciences, 43 (8), pp. 1200-1211. https://doi.org/10.1016/j.ijrmms.2006.04.001.
Albattat, R., and Hoteit, H., 2021. A semi-analytical approach to model drilling fluid leakage into fractured formation. Springer Nature Link, 60 (6), pp. 353-370. https://doi.org/10.1007/s00397-021-01275-3.
Alidaryan, M., Khosravi, M., Bahaaddini, M., Moosavi, M., and R., H 2023. Mobilization of cohesion and friction angle of intact rocks in the shearing process. Springer Nature Link, 56 (11), pp. 8221-8233. https://doi.org/10.1007/s00603-023-03484-z.
Alomari, E.M., Ng, K.W., Khatri, L., and W., S. S., 2023. Effect of physical properties on mechanical behaviors of sandstone under uniaxial and triaxial compressions. Materials (Basel), 16 (13), pp. 50-68. https://doi.org/10.3390/ma16134867.
Aqrawi, A., Thehni, G., Sherwani, G., and K., Bma 1998. Mid‐Cretaceous rudist‐bearing carbonates of the Mishrif Formation: An important reservoir sequence in the Mesopotamian Basin, Iraq. Journal of Petroleum Geology, 21 (1), pp. 57-82.
Atapour, H., and Mortazavi, A., 2018. The influence of mean grain size on unconfined compressive strength of weakly consolidated reservoir sandstones. Journal of Petroleum Science and Engineering, 171, pp. 63-70. https://doi.org/10.1016/j.petrol.2018.07.029.
Ayal, A.M., Sadeq, D.J., and A., Fahd Saeed, 2024. Mechanical earth model coupled with critical drawdown pressure to mitigate sand production in the Nahr Umr Formation, Southern Iraq. Iraqi Journal of Chemical and Petroleum Engineering, 25 (4), pp. 93-106. https://doi.org/10.31699/IJCPE.2024.4.9.
Bazyrov, I., Glazyrina, A., Lukin, S., Alchibaev, D., Salishchev, M., and O. Yu, 2017. Time-dependent hydro-geomechanical reservoir simulation of field production. Procedia Structural Integrity, 6, pp. 228-235. https://doi.org/10.1016/j.prostr.2017.11.035.
Chang, L., Wang, H., Zhuo, L., and Chen, Chen. Research and application of rock mechanics evaluation method for drill cuttings in a complex ultra-deep well. ARMA US Rock Mechanics/Geomechanics Symposium, 2024. ARMA, D032S039R009.
Dake, L.P., 1983. Fundamentals of reservoir engineering, Elsevier.
Dakhiel, A.H. and Hadi, H.A., 2021. Integrated 3D mechanical earth modelling to intensively investigate the wellbore instability of Zubair oil field, southern Iraq. The Iraqi Geological Journal, pp. 38-58.
Edan, B.K., and Abdulhussein, H.A., 2023. Geomechanics analysis of well drilling instability: A review. Journal of Engineering, 29 (08), pp. 94-105. https://doi.org/10.31026/j.eng.2023.08.07.
Fjaer, E., Holt, R.M., Horsrud, P. and Raaen, A.M., 2008. Petroleum related rock mechanics, 53. Elsevier.
Haider, S.T., Al-Adili, A.A.-A., and R.K.A., 2020. Using a novel approach to determine the pore pressure of the West Qurna 15 oil well in southern Iraq. Journal of Engineering, 26 (10), pp. 35-49. https://doi.org/10.31026/j.eng.2020.10.03.
Hong'en, D., Dandan, H. and Wenxin, C., 2005, April. Sand production prediction and the selection of completion methods for horizontal wells in Intercampo Oil Field, Venezuela. In SPE Asia Pacific Oil and Gas Conference and Exhibition, P. SPE-93821. SPE.
Jaeger, J., Cook, N., and Z., R., 2009. Fundamentals of rock mechanics.-John Wiley & Sons. PP.
John, R.O. , Temitope, O.F. , Yunusa, O.C. , Anthony, A.A. , Efeoghene, E. , Faith, E.I., and , A., Gospel Chinwendu, 2020. Comparative characterization of petrophysical and mechanical properties of Siliciclastic reservoir rocks within a compressional structure of the Teapot Dome Oilfield, Wyoming, USA. Annals of Science Technology, 5 (2), pp. 1-12.
Khankishiyev, O., and Salehi, S., 2024. Hard rock drilling for super-hot enhanced geothermal system development: Literature review and techno-economic analysis. Arxiv, 10 (2), pp. 43-61. https://doi.org/10.48550/arXiv.2402.14824.
Knez, D., and Rajaoalison, H., 2021. Discrepancy between measured dynamic poroelastic parameters and predicted values from Wyllie’s equation for water-saturated Istebna sandstone. Acta Geophysica, 69 (2), pp. 673-680.
Lake, L.W., Johns, R.T., Rossen, W.R. and Pope, G.A., 2014. Fundamentals of enhanced oil recovery. Society of Petroleum Engineers: Richardson, TX, USA, 2014. https://doi.org/10.2118/9781613993286.
Liu, C. , Zhan, Q. , Yang, L. , Zheng, X. , Li, P., and , S., Niaz Muhammad, 2021. Recognition of interface and category of roadway roof strata based on drilling parameters. Journal of Petroleum Science and Engineering, 204, P. 108724.
Mahdi, Z.A., and Farman, G.M., 2023a. 3D geological model for Zubair Reservoir in Abu-Amood Oil Field. The Iraqi Geological Journal, pp. 40-50. https://doi.org/10.46717/igj.56.1B.4ms-2023-2-12.
Mahdi, Z.A., and Farman, G.M., 2023b. Estimation of petrophysical properties for the Zubair Reservoir In Abu-Amood Oil Field. The Iraqi Geological Journal, pp. 32-39. https://doi.org/10.46717/igj.56.1B.3ms-2023-2-11.
Maleki, S., Moradzadeh, A., Riabi, R.G., Gholami, R., and S. Farhad, 2014. Prediction of shear wave velocity using empirical correlations and artificial intelligence methods. NRIAG Journal of Astronomy Geophysics, 3 (1), pp. 70-81. https://doi.org/10.1016/j.nrjag.2014.05.001.
Mitchell, J., 2001. Trouble-free drilling, Drilbert Engineering, Woodlands, TX.
Mohamadian, N. , Ghorbani, H. , Wood, D.A. , Mehrad, M. , Davoodi, S. , Rashidi, S. , Soleimanian, A., and S. Amirafzal Kiani, 2021. A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning. Journal of Petroleum Science and Engineering, 196, pp. 107811. https://doi.org/10.1016/j.petrol.2020.107811.
Mohammed, S.I., Sraud, H.A., Radhi, A.G. and Azeez, S.W., 2022. Appraisal well design in "X" oil field. Journal of Petroleum Research and Studies, 12(1), pp. 31-50. https://doi.org/10.52716/jprs.v12i1.589.
Moos, D., Peska, P., Finkbeiner, T., and Z. Mark, 2003. Comprehensive wellbore stability analysis utilizing quantitative risk assessment. Journal of Petroleum Science and Engineering, 38 (3-4), pp. 97-109.
Nemati, N., Ahangari, K., Goshtasbi, K., and S. Reza, 2024. An investigation of the effect of drawdown pressure on sand production in an Iranian oilfield using a hybrid numerical modeling approach. Journal of Petroleum Exploration Production Technology, 14 (4), pp. 1017-1033. https://doi.org/10.1007/s13202-024-01751-5.
Quosay, A., and Knez, D., 2016. Sensitivity analysis on fracturing pressure using the Monte Carlo simulation technique. Oil Gas-European Magazine, 42 (3), pp. 140-144.
Rajabi, M. , Hazbeh, O. , Davoodi, S. , Wood, D.A. , Tehrani, P.S. , Ghorbani, H. , Mehrad, M. , Mohamadian, N. , Rukavishnikov, V.S., and R., Ahmed E., 2022. Predicting shear wave velocity from conventional well logs with deep and hybrid machine learning algorithms. springer, 13 (5), pp. 1-24. https://doi.org/10.1007/s13202-022-01531-z.
Sharland, P.R. , Archer, P.R. , Casey, D.M. , Davies, R.B. , Hall, S.H. , Heward, A.P. , Horbury, A.D., and S., Michael D, 2001. Arabian plate sequence stratigraphy, an integrated approach. Geo Arabia special publication 2 sponsors, P. 340.
Sun, S., and Pollitt, D.A., 2021. Optimising development and production of naturally fractured reservoirs using a large empirical dataset. Petroleum Geoscience, 27 (2), pp. 20-79.
Wang, R., and Tang, Y., 2024. Study on the rock physical mechanical properties evaluation of the tight oil reservoir in Chang 7 member, Longdong area, Ordos Basin, China. Frontiers in Earth Science, 12 (5), pp. 134-152.
Wong, T.-F., and Baud, P., 2012. The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44 (2), pp. 25-53.
Yang, B. , He, M. , Deng, B., and , Z., Zhiqiang, 2022. Correlation between the tensile to compressive strength ratio and mechanical parameters of rock based on a nonlinear M-C criterion. Arabian Journal of Geosciences, 15 (10), P. 928. https://doi.org/10.1007/s12517-022-10195-2.
Zeynali, M.E., 2012. Mechanical and physico-chemical aspects of wellbore stability during drilling operations. Journal of Petroleum Science and Engineering, 82, pp. 120-124. https://doi.org/10.1016/j.petrol.2012.01.006.
Zoback, M.D., 2010. Reservoir geomechanics, Cambridge university press.