تقييم أداء وحدة الخلايا الشمسية البيروفسكيتية ضمن نطاق واسع من الإشعاع الشمسي ودرجة حرارة تشغيل الوحدة الشمسية
محتوى المقالة الرئيسي
الملخص
تعتبر الطاقة الشمسية مصدرا مستداما و نظيفا للطاقة, يتم استخدامها لتحويل أشعة الشمس إلى كهرباء باستخدام تقنيات مثل الخلايا الشمسية. تواجه الخلايا الشمسية تحديات مثل انخفاض كفاءة بعض الأنظمة و حاجتها لمساحات واسعة وقد تم التوجه الى تطوير تقنيات مثل خلايا البيروفسكايت الشمسية لتحسين الكفاءة و تقليل الحاجة للمساحات الكبيرة.
تم إجراء العمل التجريبي تحت ظروف التعرض الخارجي في بغداد – الجادرية. تم أخذ القراءات في أيام محددة، حيث كانت الظروف الجوية عبارة عن سماء صافية دون غيوم، ولا وجود للأتربة أو الأمطار. ولدراسة تأثير تغيرات درجة الحرارة على أداء الطاقة الشمسية، يجب الحفاظ على ثبات الإشعاع الشمسي، والعكس صحيح وللحصول على مدى واسع من درجات الحرارة وزيادة الدقة، تم إجراء القياسات للوحدة الشمسية المختبرة عند خمسة مستويات من الإشعاع الشمسي: 200، 400، 600، 800 و1000 واط/م². أعلى قدرة تم تسجيلها كانت 446.2 ميلي واط عند شدة إشعاع شمسي مقدارها 1000 واط/م² ودرجة حرارة الخلية بلغت 43 درجة مئوية، في حين أن أقل قيمة للقدرة كانت 64 ميلي واط عند إشعاع شمسي مقداره 200 واط/م² ودرجة حرارة الخلية 43.6 درجة مئوية.أقصى جهد في حالة الدائرة المفتوحة بلغ 10.80 فولت عند درجة حرارة الخلية 43 درجة مئوية عند إشعاع شمسي 1000 واط/م²، وأقصى تيار في حالة القصر77 ميلي أمبير عند إشعاع شمسي مقداره 1000 واط/م² ودرجة حرارة الخلية 58 درجة مئوية. تم تحقيق أفضل قيمة لعامل الامتلاءFF وبلغت 0.661 عند شدة إشعاع شمسي 200 واط/م² ودرجة حرارة للوحدة 43.6 في حين سُجلت أعلى كفاءة تحويل للطاقة بنسبة 8.9% عند شدة إشعاع 1000 واط/م² ودرجة حرارة 43 درجة مئوية.
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Abdulhadi, Z.A., Hashim, E.T., and Tolephih, M.H., 2025. Investigation of some key factors impacting floating photovoltaic solar system performance on major Iraq water bodies. Journal of Engineering, 31(3), pp. 63-80. https://doi.org/10.31026/j.eng.2025.03.04
Assadi, M.K., Bakhoda, S., Saidur, R,. and Hanaei, H., 2018. Recent progress in perovskite solar cells. Renewable and Sustainable Energy Reviews, 81, pp. 2812-2822. https://doi.org/10.1016/j.rser.2017.06.088
Chatzisideris, M.D., Espinosa, N., Laurent, A., and Krebs, F.C., 2016. Ecodesign perspectives of thin-film photovoltaic technologies: A review of life cycle assessment studies. Solar Energy Materials and Solar Cells, 156, pp. 2-10. https://doi.org/10.1016/j.solmat.2016.05.048
Cheng, P., and Zhan, X., 2016. Stability of organic solar cells: Challenges and strategies. Chemical Society Reviews, 45(9), pp. 2544-2582. https://doi.org/10.1039/C5CS00593K
Cui, J., Meng, F., Zhang, H., Cao, K., Yuan, H., Cheng, Y., Huang, F., and Wang, M., 2014. CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS applied materials and interfaces, 6(24), pp. 22862-22870. https://doi.org/10.1021/am507108u
Faisal, S.S., and Hashim, E.T., 2025. An approach to solar photovoltaic systems simulation utilizing builder block: a case study of a 100 MW system. Journal of Engineering, 31(1), pp. 98-119. https://doi.org/10.31026/j.eng.2025.01.06
Farhadi, B., Ciprian, M., Zabihi, F., and Liu, A., 2021. Influence of contact electrode and light power on the efficiency of tandem perovskite solar cell: Numerical simulation. Solar Energy, 226, pp. 161-172. https://doi.org/10.1016/j.solener.2021.08.043
Hahsim, E.T., 2016. Determination of mono-crystalline Silicon photovoltaic module parameters using three different methods. Journal of Engineering, 22(7), pp. 92-107. https://doi.org/10.31026/j.eng.2016.07.06
Hashim, E.T., and Hussien, S.A.M., 2018. Synchronous buck converter with perturb and observe maximum power point tracking implemented on a low-cost arduino-microcontroller. Journal of Engineering, 24(2), pp. 16-33. https://doi.org/10.31026/j.eng.2018.02.02.
Hashim, E.T., and Talib, Z. R. 2018 a. Study of the performance of the five-parameter model for a monocrystalline silicon photovoltaic module using reference data. FME Transactions, 46, pp. 585-594. https://doi.org/10.5937/fmet1804585T
Hashim, E. T., and Talib, Z. R., 2018 b. Modeling and simulation of solar module performance using the parameters model by using Matlab in Baghdad city. Journal of Engineering, 24(10), pp. 15-31. https://doi.org/10.31026/j.eng.2018.10.02.
Hashim, E.T., and Abbood, A.A., 2016. Temperature effect on power drop of different photovoltaic modules. Journal of Engineering, 22(5), pp. 129-143. https://doi.org/10.31026/j.eng.2016.05.09
Haider, M., and Yang, J.L., 2020. Efficient and stable perovskite–silicon two-terminal tandem solar cells. Rare Metals, 39(7), pp. 745-747. https://doi.org/10.1007/s12598-020-01430-4
Hossain, M.K., Toki, G.I., Samajdar, D.P., Mushtaq, M., Rubel, M.H.K., Pandey, R., Madan, J., Mohammed, M.K., Islam, M.R., Rahman, M.F., and Bencherif, H., 2023. Deep insights into the coupled optoelectronic and photovoltaic analysis of lead-free CsSnI3 perovskite-based solar cell using DFT calculations and SCAPS-1D simulations. ACS Omega, 8(25), pp. 22466-22485.
Huang, Z., Xu, W., and Yu, K., 2015. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991. https://doi.org/10.48550/arXiv.1508.01991
Ito, N., Kamarudin, M.A., Hirotani, D., Zhang, Y., Shen, Q., Ogomi, Y., Iikubo, S., Minemoto, T., Yoshino, K., and Hayase, S., 2018. Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air. The Journal Of Physical Chemistry Letters, 9(7), pp. 1682-1688. https://doi.org/10.1021/acs.jpclett.8b00275
Kadia, N.J., Hashim E. T., and Abdullah, I. B., 2022. Performance of different photovoltaic technologies for amorphous Silicon (A-Si) and Copper Indium Gallium Di-Selenide (CIGS) Photovoltaic Modules. Journal of Engineering and Sustainable Development, 26(1), pp. 95-105.
Katee, N.S., Abdullah, O.I., and Hashim, E.T. 2021. Extracting four solar model electrical parameters of mono-crystalline silicon (mc-Si) and thin film (CIGS) solar modules using different methods. Journal of Engineering, 27(4), pp. 16-32. https://doi.org/10.31026/j.eng.2021.04.02
Khattak, Y.H., Baig, F., Ullah, S., Mari, B., Beg, S. and Ullah, H., 2018. Numerical modeling baseline for high efficiency (Cu2FeSnS4) CFTS based thin film kesterite solar cell. Optik, 164, pp. 547-555.
Kojima, A., Teshima, K., Miyasaka, T., and Shirai, Y., 2006, June. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). In ECS Meeting Abstracts, 7, P. 397. IOP Publishing.
Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T. 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), pp. 6050-6051. https://doi.org/10.1021/ja809598r
Kosyachenko, L.A., Mathew, X., Paulson, P.D., Lytvynenko, V.Y., and Maslyanchuk, O.L., 2014. Optical and recombination losses in thin-film Cu (In, Ga) Se2 solar cells. Solar Energy Materials And Solar Cells, 130, pp. 291-302. https://doi.org/10.1016/j.solmat.2014.07.019
Kung, J.T., Kesner, B., An, J.Y., Ahn, J.Y., Cifuentes-Rojas, C., Colognori, D., Jeon, Y., Szanto, A., del Rosario, B.C., Pinter, S.F., and Erwin, J.A., 2015. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Molecular Cell, 57(2), pp. 361-375.
Lekesi, L.P., Koao, L.F., Motloung, S.V., Motaung, T.E., and Malevu, T., 2022. Developments on perovskite solar cells (PSCs): A critical review. Applied Sciences, 12(2), P. 672. https://doi.org/10.3390/app12020672
Minemoto, T., Kawano, Y., Nishimura, T., Shen, Q., Yoshino, K., Iikubo, S., Hayase, S., and Chantana, J., 2020. Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted pin structure. Solar Energy Materials and Solar Cells, 206, P. 110268. https://doi.org/10.1016/j.solmat.2019.110268
Mohammed, S.A., and Hashim, E.T., 2019. Designing a maximum power point tracking system for a monocrystalline silicon solar module using the arduino microcontroller and synchronous buck converter. FME Transactions, 47, pp. 524-533. http://doi.org/10.5937/fmet1903524M
Rahul, Abhishek, K., Datta, S., Biswal, B.B., and Mahapatra, S.S. 2017. Machining performance optimization for electro-discharge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, fuzzy inference system, and Taguchi approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, pp. 3499-3527. https://doi.org/10.1007/s40430-016-0659-7
Ren, G., Han, W., Deng, Y., Wu, W., Li, Z., Guo, J., and Guo, W. 2021. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. Journal of Materials Chemistry A, 9(8), pp. 4589-4625.
Sabbah, H., and Baki, Z. A. 2023. Device simulation of highly stable and 29% efficient FA 0.75 MA 0.25 Sn 0.95 Ge 0.05 I 3-based perovskite solar cell. Nanomaterials, 13(9), P. 1537. http://doi.org/10.3390/nano13091537
Shao, Y., Zheng, D., Liu, L., Liu, J., Du, M., Peng, L., and Liu, S. 2024. Innovations in interconnecting layers for perovskite-based tandem solar cells. ACS Energy Letters, 9(10), pp. 4892-4921. https://doi.org/10.7498/aps.73.20241187
Szabó, G., Park, N.G., De Angelis, F., and Kamat, P. V. 2023. Are perovskite solar cells reaching the efficiency and voltage limits?. ACS Energy Letters, 8(9), pp. 3829-3831.
Ullah H., Marí, B., Cui, H.N., 2013, Investigation on the effect of gallium on the efficiency of CIGS solar cells through dedicated software, Appl. Mech. Mater. 448–453, pp. 1497–1501. http://doi.org/10.4028/www.scientific.net/AMM.448-453.1497
Wang, W., Arora, R., Livescu, K., and Bilmes, J. 2015, June. On deep multi-view representation learning. In International Conference on machine learning (pp. 1083-1092). PMLR.
Xu, X., Zhao, Y., Sima, J., Zhao, L., Mašek, O., and Cao, X. 2017. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technology, 241, pp. 887-899. https://doi.org/10.1016/j.biortech.2017.06.023
Yusuf, A.S., Ramalan, A.M., Abubakar, A.A., and Mohammed, I.K. 2024. Effect of electron transport layers, interface defect density, and working temperature on perovskite solar cells using SCAPS 1-D Software. East European Journal of Physics, (1), pp. 332-341. https://doi.org/10.26565/2312-4334-2024-1-31