أساليب البحث المحلية لحل مشاكل جدولة الآلة ثلاثية المعايير وثلاثية الأهداف
محتوى المقالة الرئيسي
الملخص
تلعب مشاكل الجدولة في بحوث العمليات دورًا حاسمًا في تحسين كفاءة النظام وتقليل تكاليف التشغيل. يركز هذا العمل على ثلاثة معايير (∑C_j، ∑E_j، L_max) يتم معالجتها بشكل مستقل وتحسينها في وقت واحد باستخدام تقييم قائم على باريتو، بهدف تقليل إجمالي وقت الإكمال، وإجمالي التبكير، والحد الأقصى للتأخير. المشكلة المدروسة هي مشكلة جدولة آلية ثلاثية الأهداف (∑C_j+∑E_j+L_max). ونظرًا لطبيعة المشكلة الصعبة NP، فقد تم اعتماد ثلاثة أساليب للحل: طريقة الفرع والحدود، وخوارزميتين ميتاهيوريستيكيتين هما خوارزمية البحث المحلي Tabu وخوارزمية طريقة البحث المحلي Bees. تم اقتراح دالة هدف جديدة وتقييمها باستخدام هذه الخوارزميات الراسخة. تم إجراء تحليل مقارن بناءً على جودة الحل والأداء الحسابي، مع تسليط الضوء على نقاط القوة والقيود لكل طريقة وتوفير رؤى قيمة حول قابلية تطبيقها على مشاكل الجدولة المعقدة متعددة الأهداف. تُستخدم خوارزمية الفرع والحد لمشاكل ذات أحجام أصغر (n ≤ 19)، بينما تُستخدم خوارزميات البحث Bees وTabu لمشاكل ذات نطاق أكبر تصل إلى n = 8000، مما يوضح إمكانية التطبيق العملي لهذه الأساليب عبر تعقيدات المشاكل المتنوعة.
##plugins.themes.bootstrap3.displayStats.downloads##
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Abbas, I.T., and Ghayyib, M.N., 2024. Using sensitivity analysis in linear programming with practical physical applications. Iraqi Journal of Science, 65(2), pp. 907–922. https://doi.org/10.24996/ijs.2024.65.2.27.
Abbass, D.A., 2019. Using branch and bound and local search methods to solve multi-objective machine scheduling problem. In Proceedings of 2019 First International Conference of Computer and Applied Sciences (CAS). Doha, Qatar, December 2019. IEEE. https://doi.org/10.1109/CAS47993.2019.9075460
Abdulqader, A., and Ali, S., 2023. Diversity Operators-based artificial fish swarm algorithm to solve flexible job shop problems. Baghdad Science Journal, 20, pp. 2067–2076. https://doi.org/10.21123/bsj.2023.6810.
Ahmed, M.G., and Ali, F.H., 2022. Exact method with dominance rules for solving scheduling on a single machine problem with multi objective function. Al-Mustansiriyah Journal of Science, 33(2), pp. 56–63. https://doi.org/10.23851/mjs.v33i2.1091.
Ali, F.H., and Jawad, A.A., 2020. Minimizing the total completion time and total earliness time functions for a machine scheduling problem using local search methods. Iraqi Journal of Science, Special Issue, pp. 126–133. https://doi.org/10.24996/ijs.2020.SI.1.17.
Ali, F.H., Jawad, R.N., and Hussein, W.A., 2022. Solving bi criteria and bi objectives of total tardiness jobs times and range of lateness problems using new techniques. Al-Mustansiriyah Journal of Science, 33(3), pp. 27–35. https://doi.org/10.23851/mjs.v33i3.1135.
Androutsopoulos, K.N., and Zografos, K.G., 2008. A decision support system for integrated hazardous materials routing and emergency response. Transportation Research Part C: Emerging Technologies, 16, pp. 684–703. https://doi.org/10.1016/j.trc.2008.01.004.
Atiya, B., Bakheet, A.J.K., Abbas, I.T., Bakar, M.R.A., Soon, L.L., and Monsi, M.B., 2016. Application of simulated annealing to solve multi objectives for aggregate production planning. AIP Conference Proceedings, 1739. https://doi.org/10.1063/1.4952566.
Aurasopon, A., Takeang, C., and Khamsen, W., 2025. Enhanced local search for bee colony optimization in economic dispatch with smooth cost functions. Processes, 13(3), pp. 1–16. https://doi.org/10.3390/pr13030787.
Chachan, H.A., and Hameed, A.S., 2019. Exact methods for solving multi-objective problem on single machine scheduling. Iraqi Journal of Science, 60(8), pp. 1802–1813. https://doi.org/10.24996/ijs.2019.60.8.17.
Costa, A., Corsini, R.R., Pagano, D., and Fernandez-Viagas, V., 2025. A machine learning-based optimization method for large-scale scheduling problems. Computers & Operations Research, 173, 106849. https://doi.org/10.1016/j.cor.2024.106849.
Dabah, A., Bendjoudi, A., AitZai, A., and Reghioui, M., 2019. Efficient parallel tabu search for the blocking job shop scheduling problem. Soft Computing, 23, pp. 13283–13295. https://doi.org/10.1007/s00500-019-03871-1.
Dos Santos, F., Costa, L., and Varela, L., 2024. Multi-objective scheduling optimization in job shop with unrelated parallel machines using NSGA-III. In Computational Science and Its Applications – ICCSA 2024 Workshops. Lecture Notes in Computer Science (LNCS), vol. 14816, pp. 370–382. Springer, Cham. https://doi.org/10.1007/978-3-031-65223-
3_25.
Fekih, A., Hadda, H., Kacem, I., and Hadj-Alouane, A.B., 2020. A hybrid genetic tabu search algorithm for minimizing total completion time in a flexible job-shop scheduling problem. European Journal of Industrial Engineering. https://doi.org/10.1504/EJIE.2020.112479.
Glover, F., 1989. Tabu search – Part I. ORSA Journal on Computing, 1(3), pp. 103–190.
Hajibabaei, M., and Behnamian, J., 2021. Flexible job-shop scheduling problem with unrelated parallel machines and resources-dependent processing times: a tabu search algorithm. International Journal of Computer Integrated Manufacturing, 34(11), pp. 1211–1227. https://doi.org/10.1080/17509653.2021.1941368.
Hassan, D.A., Mehdavi Amiri, N., and Ramadan, A.M., 2022. A heuristic approach to minimize three criteria using efficient solutions. Indonesian Journal of Electrical Engineering and Computer Science, 26(1), pp. 334–341. https://doi.org/10.11591/ijeecs.v26.i1.pp334-341.
Huang, X., Yin, J., and Deng, G., 2025. A hybrid discrete artificial bee colony optimization algorithm for the no-wait job shop problem with tardiness criterion. Journal of Algorithms & Computational Technology, 19. https://doi.org/10.1177/17483026251322104.
Ibrahim, M.H., and Ali, H., 2022. Solving multi-objectives function problem using branch and bound and local search methods. International Journal of Nonlinear Analysis and Applications, 13(1). https://doi.org/10.22075/ijnaa.2022.5780.
Jamalabadi, S., and Schwiegelshohn, U., 2023. WSRPT is 1.2259 competitive for weighted completion time scheduling. arXiv preprint arXiv:2307.07739. https://doi.org/10.48550/arXiv.2307.07739.
Khusna, A.N., and Prabowo, F.A., 2025. Enhancing customer satisfaction: Exploring the earliest due date method for production scheduling at PT. X. Journal of Engineering, 14(2), pp. 385–397. https://doi.org/10.23887/janapati.v14i2.84476.
Li, J., Pan, Q., Xie, S., and Wang, S., 2011. A hybrid artificial bee colony algorithm for flexible job shop scheduling problems. International Journal of Computers, Communications & Control, 6(2), pp. 286–296. https://doi.org/10.15837/ijccc.2011.2.2177.
Luo, Z., Liu, X., Tan, S., Xu, H. and Liu, J., 2023. Multi-objective multi-stage scheduling optimization algorithm: minimizing cost, time and maximizing quality. Processes, 11(4), 1147. https://doi.org/10.3390/pr11041147.
Motair, H.M., 2017. Solving composite multi-objective single machine scheduling problem using branch and bound and local search algorithms. Al-Mustansiriyah Journal of Science, 28(3), pp. 200–208. https://doi.org/10.23851/mjs.v28i3.122.
Neamah, N.M., and Kalaf, B.A., 2024. A hybrid approach for efficiently solving multi-criteria scheduling problems on a single machine. Iraqi Journal of Science, 65, pp. 907–922. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/11215/6471.
Neamah, N.M., and Kalaf, B.A., 2024. Solving tri-criteria: total completion time, total late work, and maximum earliness by using exact and heuristic methods on single machine scheduling problem. Iraqi Journal of Computer Science and Mathematics, 5(3), pp. 14–25. https://doi.org/10.52866/ijcsm.2024.05.03.002
Peng, W., Mu, J., Chen, L., and Lin, J., 2021. A novel non-dominated sorting genetic algorithm for solving the triple objective project scheduling problem. Memetic Computing, 13, pp. 271–284. https://doi.org/10.1007/s12293-021-00332-x.
Pham, D.T., Castellani, M., 2009. The bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(12), pp. 2919–2938. https://doi.org/10.1243/09544062JMES1494.
Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M., 2005. Bee algorithm: A novel approach to function optimization. Technical Note, MEC 0501, The Manufacturing Engineering Centre, Cardiff University.
Pinedo, M.L., 2008. Scheduling: Theory, Algorithms, and Systems. Springer. https://doi.org/10.1007/978-0-387-78935-4.
Sameer, S.F.O., 2023. Modified multi-criteria decision-making methods to assess classification methods. Iraqi Journal of Science, 64, pp. 893–906. https://doi.org/10.24996/ijs.2023.64.2.34.
Xie, J., Gao, L., and Wang, W., 2019. A tabu search-based memetic algorithm for the multi-objective flexible job shop scheduling problem. In Genetic and Evolutionary Computation Conference Companion (GECCO'19), pp. 1522–1525. https://doi.org/10.1145/3319619.3326817.
Yang, S., Meng, L., Ullah, S., Zhang, C., Sang, H. and Zhang, B., 2025. MILP modeling and optimization of three-stage flexible job shop scheduling problem with assembly and AGV transportation. Chinese Journal of Mechanical Engineering, 38, article 115. https://doi.org/10.1186/s10033-025-01281-z.
Yousif, S.F., Ali, F.H., and Alshaikhli, K.F., 2023. Using local search methods for solving two multi criteria machine scheduling problems. Al-Mustansiriyah Journal of Science, 34(4), pp. 96–103. https://doi.org/10.23851/mjs.v34i4.1430.
Zhang, W., 2025. Metaheuristics for multi-objective scheduling problems in shop environments: A systematic review. Front. Ind. Eng. 3:1540022. https://doi.org/10.3389/fieng.2025.1540022.
